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TransMRSR: Transformer-based Self-Distilled Generative
Prior for Brain MRI Super-Resolution
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Abstract Magnetic resonance images (MRI) acquired

with low through-plane resolution compromise time and

cost. The poor resolution in one orientation is insuf-

ficient to meet the requirement of high resolution for

early diagnosis of brain disease and morphometric study.

The common Single image super-resolution (SISR) so-

lutions face two main challenges: (1) local detailed and

global anatomical structural information combination;

and (2) large-scale restoration when applied for recon-

structing thick-slice MRI into high-resolution (HR) iso-

tropic data. To address these problems, we propose

a novel two-stage network for brain MRI SR named

TransMRSR based on the convolutional blocks to ex-

tract local information and transformer blocks to cap-
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ture long-range dependencies. TransMRSR consists of

three modules: the shallow local feature extraction, the

deep non-local feature capture, and the HR image re-

construction. We perform a generative task to encap-

sulate diverse priors into a generative network (GAN),

which is the decoder sub-module of the deep non-local

feature capture part, in the first stage. The pre-trained

GAN is used for the second stage of SR task. We fur-

ther eliminate the potential latent space shift caused

by the two-stage training strategy through the self-

distilled truncation trick. The extensive experiments

show that our method achieves superior performance to

other SSIR methods on both public and private datasets.

Code is released at https://github.com/goddesshs/Trans

MRSR.git.

Keywords Magnetic Resonance Images · Super-
Resolution · Generative Piror · Transformer

1 Introduction

Brain magnetic resonance images (MRI) are important

for the early diagnosis and early treatment of brain dis-

eases with clear anatomical structures and high con-

trast. Meanwhile, morphometric analysis such as accu-

rate estimation of gray and white matter volume based

on 3D brain MRI is a key technique in neuroscience to

study human brain development, aging, plasticity, and

disease. However, acquiring high-resolution MRI with

adequate signal-to-noise (SNR) is challenging due to

the prolonged acquisition procedure and patient breath-

hold [1]. It is common in the clinical setting to obtain

anisotropic 2D MRI with high in-plane resolution(≤
1mm), but the low through-plane resolution (4 ∼ 7mm)

in the tradeoff between quality and cost, as illustrated

in Fig. 1. Super-resolution technique is a promising
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Fig. 1 Visual comparison between our method and state-
of-the-art SR methods on a through-plane image. The
anatomical details in the reconstructed MRI image by our
TransMRSR are found to be closest to those in the HR im-
age.

post-processing tool to improve image quality without

changing the MRI hardware.

Simple use of affine transformation, e.g., interpo-

lation methods, to restore isotropic voxels has serious

blurriness and artifacts. The loss of most high-frequency

information in the through-plane degrades accurate 3D

analysis [2]. Recently, the deep learning-based SR me-

thods have shown great potential in turning a huge

amount of routine diagnostic brain MRI into useful data

for neurometric research [3]. 2D Single image super-

resolution methods work slice-by-slice to restore HR

volumetric data based on 2D SR networks [4,5], while

3D SISR networks are also applied to extract connec-

tions between slices [6,7,8]. Other networks try to im-

prove the quality of the images generated using GANs

[8,9]. Although these studies have some effect, we still

face two main challenges. Firstly, most existing meth-

ods harness deep convolution layers for feature extrac-

tion. The convolution kernel with the limited receptive

field is inadequate to capture long-range dependencies

required by complicated anatomical structure recon-

struction [10]. Secondly, most networks perform well

on ×2 or ×4 upsampling, yet suffer severe performance

degradation on ×8 upsampling, which cannot satisfy

the needs of real applications.

In order to address these shortcomings, we propose a

transformer based MRI SR network named TransMRSR,

an efficient approach to reconstruct 3D MRI from mul-

tiple LR through-plane slices. Our training process fol-

lows a two-stage paradigm. Firstly, we pre-train a gen-

erative StyleSwin [11] by utilizing many existing HR im-

ages to provide a rich generation prior. Then, we train

the whole network in the downstream super-resolution

task. Specifically, we use the StyleSwin as the decoder

part of the deep feature capture module and adapt the

priors to brain MRI SR tasks. We align the latent space

of the decoder in the first generative task and the sec-

ond SR task by self-distilled ”truncation trick”. Besides,

we introduce residual learning between the shallow fea-

ture and deep feature modules to better recover high-

frequencies better.

In summary, Our contributions can be listed as fol-

lows:

– We propose a novel architecture named TransMRSR

utilizing convolution module to extract local fea-

tures and transformer to capture long-range depen-

dencies. Our TransMRSR consists of three submod-

ules: the shallow feature extraction based on the

convolution layer, the deep feature capture based

on the UNet, and the HR image reconstruction.

– We pre-train a StyleSwin using the existing public

multi-modal HR brain MRI dataset and further use

the brain prior to the MRI super-resolution task.

We use the encoder to extract multi-scale features.

The highest-level semantic features are converted

into latent vectors to condition the style of the im-

age. The self-distilled ”truncation trick” is proposed

to eliminate latent space offsets between generative

and super-score tasks. In order to enforce restric-

tions on what the decoder generates, we use features

from each layer of the encoder to adjust the output

of the decoder image at multiple levels.

– We perform extensive experiments on synthetic and

clinical datasets. Our TransMRSR outperforms other

SISR methods on quantitative metrics and visual

quality.

2 Related Work

2.1 MR Image Super-resolution

With the introduction of SRCNN [12], deep neural net-

works outperform traditional interpolation-based and

reconstruction-based methods on various SR tasks [13,

14,15,16,17,18]. Many studies further change the con-

volution neural network (CNN) architecture to improve

performance [19,20]. Using the mean square error as

the objective function to train the network can achieve

a high peak SNR, but the restored images usually lack

high-frequency detail information and visual quality. To

solve this problem, Ledig et al. [21] introduce the adver-

sarial loss based on the generative adversarial network

(GAN). A common issue of the convolution network is

that the limited receptive field of the convolution ker-

nel cannot adequately capture long-range dependencies.

Liang et al [11] combine the local features extracted by

the convolution layer and non-local features extracted
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by the Swim Transformer block, and obtain better per-

formance with fewer parameters.

The success of deep learning-based natural SISR

methods promotes the application of deep learning tech-

nologies in MR image SR tasks [5,6,7,10,22,23,24]. For

instance, Du et al. [7] use long and short skip connec-

tions for brain MRI reconstruction. Lyu et al. [23] feed

five generic super-resolution models into GAN based on

ensemble learning to obtain the final super-resolution

image. Zhang et al. [5] propose squeeze and excitation

reasoning attention networks, which recalibrate feature

responses with adaptive attention vectors learned by

primitive relationship reasoning attention. Considering

the information from continuous structure, the 3D con-

volution networks are also used for the MR image SR

tasks [6,7,24]. Utilizing the complementary information

between MRI multi-contrast images is a promising way

to yield SR images with higher information [22,10]. Li

et.al [10] develop innovative Transformer empowered

multi-scale contextual matching and aggregation tech-

niques. A common issue for these methods is finding

the connection between the reference image and the low

image, which is difficult or time-consuming.

2.2 Generative Prior

GAN, composed of a generator and a discriminator, re-

stores high-frequency details and produces perceptually

satisfying SR images [25,26]. Recent studies have shown

that GANs effectively encode rich semantic information

in intermediate features [27] and latent codes [28]. GAN

inversion aims to invert a given image back into the la-

tent code of a pre-trained GAN model [29]. PLUSE [30]

iteratively optimize the latent code of StyleGAN for

each input. mGANprior [31] employs multiple latent

codes and integrates them with adaptive channel im-

portance to recover the input image. The optimization-

based methods typically require large memory and long

time to find the closest latent code. Zhu et al. [32]

train a separate encoder to obtain latent code z as

the initialization for optimization. However, the low-

dimension latent codes are insufficient to keep faithful

spatial information. GLEAN [33] conditions the pre-

trained styleGAN with latent code and multi-resolution

convolutional features. GFPGAN [34] extracts latent

codes and multi-scale features based on the U-Net struc-

ture and then feed them into pre-trained StyleGAN2.

Korkmaz et al. [35] learns a high-quality MRI prior in

an unsupervised generative modeling task and optimize

zero-shot reconstruction objective.

3 Method

3.1 Overall Architecture

Consider an MRI volume V (x, y, z) ∈ Rx×y×z, we refer

to the x axis as the sagittal axis, the y axis as the

coronal axis, and the z axis as the axial axis. x is equal

to y much greater than z for an anisotropic volume

taken along z axis. The aim of this work is to restore

high-resolution (HR) image V (x, y, z) ∈ Rx×y×r·z from

low-resolution (LR) image, where r = x/z ≫ 1.

The overall architecture of TransMRSR is depicted

in Fig. 2. Our TransMRSR consists of three parts: the

shallow feature extraction based on the convolution layer,

the deep feature capture based on the UNet, and the

HR image reconstruction. The shallow feature extrac-

tion and HR image reconstruction modules are com-

posed of several residual convolutional blocks. We de-

sign the deep features extraction module based on the

encoder-decoder architecture. We first perform a gen-

erative task based on the StyleSwin to gather diverse

priors. Next, we train the whole network for the down-

stream SR task. To be more precise, we utilize it as the

decoder of the deep feature capture module and fine-

tune the parameters to adapt to the SR task. Given an

interpolated low-resolution image as input,

TransMRSR performs the restoration process as fol-

lows:

– TransMRSR first applies several residual blocks to

obtain shallow feature embeddings Fs.

– Then, these low-level features pass through a sym-

metric encoder-decoder and are transformed into

deep features. The encoder receives the low-level
feature and exponentially reduces the size of the fea-

ture maps to 4 × 4. After that, the high-level hint

Fe is mapped to intermediate latent vectors through

one linear layer. We further eliminate the potential

latent space shift caused by the two-stage training

strategy through the self-distilled truncation trick

before passing them to the decoder. Specifically, the

latent vectors are interpolated with the nearest cen-

troid which is computed once after the generative

task. Starting from a learned constant input, the

pre-trained decoder adjusts the style of the image

at each convolution layer based on the latent code

[36]. To further improve reality and fidelity, multi-

resolution encoder features Fe are used to modulate

the decoder features Fd through the Channel-Wise

Scale&Shift layer (CWSS). The decoder successively

recovers the high-resolution representations.

– Next, HR reconstruction layers aggregate the low-

level local features extracted by convolution opera-

tion and long-range dependencies captured by Trans-
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Fig. 2 The overall architecture of the proposed TransMRSR. Each encoder layer is a residual swim transformer block (RSTB),
which consists of two swim transformer layers (STL). Decoder is a StyleSwim network containing several Stylelayer. SSTB
denotes the StyleSwimTranfromer block conditioned with latent vectors from the output of the decoder. The latent codes
extracted by the encoder are truncated with the nearest centroid which is computed after the generative task.

former based module to generate a residual image.

Both local and global features are well fused to pre-

serve structural and textual details in the restored

images.

– Finally, the degraded image and the residual image

are added to generate the final output.

3.2 Encoder

After the input LR image passes through convolution

layers to get shallow feature maps Fs, i.e., Fe0 , we apply
several hierarchical encoder layers to reduce the size of

feature maps as:

Fel = El(Fel−1
) (1)

residual Swin Transformer Block (RSTB) followed by

a 3× 3 convolution layer for feature enhancement. We

adopt shortcut connections between input and out to

stabilize feature extraction. The feature map size is re-

duced by the patch merging layer, which also diversi-

fies windows. Specifically, given the input feature map

Fel−1
∈ RH×W×C1 of layer l−1, the Encoder operation

is as follows:

F̂el = Conv(RSTB(Fel−1
)) + Fel−1

(2)

Fel = PM(F̂el) (3)

where PM denotes the patch merging layer. A PM con-

catenates the features of each group of 2× 2 neighbor-

ing patches to reduce the size of the feature map from

H × W to H
2 × W

2 and applies a linear layer increase

Fig. 3 Channel-Wise Scale&Shift layer

the number of channels. Finally, we let the output of

the last layer pass through a fully-connected layer to

get the latent vectors. For fewer artifacts, the vector

input to each decoder block is different from the same

vectors used by StyleSwin:

Fl = MLP (FeN ) (4)

The latent features Fl guide the pre-trained decoder

to generate an HR image with high-level information.

To make full advantage of the multi-scale features pro-

duced by the encoder, we further merge the output

of every encoder layer into the corresponding decoder

layer.

3.3 Generative Prior Decoder

The brain has a relatively fixed structure like the face.

Inspired by [33,34], we pre-train a brain GAN using

large-scale HR brain images to capture a distribution
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over the brain. Instead of exhaustively searching in a

generative model’s latent space to generate realistic out-

puts [30], we feed the semantic features extracted by the

encoder into the decoder with self-distilled truncation

and propose CWSS modules to adjust the GAN feature

with the multi-resolution output of the encoder at each

resolution level. We align the latent space between the

generative task and the SR task by avoiding the latent

code residing in the distant and sparse margins of the

distribution. More specifically, we cluster M randomly

sampled latent codes {Fli}
M
i=1 into N clusters, obtain-

ing N cluster centers
{
Flcj

}N

j=1
[37]. This operation is

performed only once. During the training and inference

phase, the latent code extracted by the encoder is in-

terpolated with the nearest centroid Flc as:

Flt = ϕFl + (1− ϕ)Flc (5)

where ϕ controls the truncation level. The truncated

latent code pass through a stride of 1, 3 × 3 Conv2D

to get two parameters α and β. α is used as attention

maps to scale the output of each layer of the decoder

and β is utilized to promote the input to the next layer

as:

α, β = Conv(Fel) (6)

Fd(l−1)in
= α⊙ Fdlout

+ β (7)

where Fd(l−1)in
, Fdlout

denotes the input of the (l−1)th

layer and the output of the l-1 layer of the encoder,

⊙ denotes channel-wise multiplication. For a balance

of realness and fidelity, we perform scale and shift on

part of the GAN features and leave the left features

unchanged, as shown in Fig. 3:

Fd(l−1)in
= CWSS(Fdlout

|α, β) (8)

= Concat[F 0
dlout

, α⊙ F 1
dlout

+ β] (9)

where F 0
dlout

, F 1
dlout

are the split features from Fdlout

in channel dimension, and Concat [·, ·] denotes the con-
catenation operation [34]. Then, Fd(l−1)in

passes through

styleBasic-layer of depth 2. The block split attention

heads into two groups, one for window-based multi-

head self-attention and the other for shifted-window-

based self-attention. Finally, we adopt bilinear interpo-

lation for upsampling. Details can be found in [11].

3.4 Skip Connection

We design skip connection following [38]. The shallow

features and deep features are fused before passing thro-

ugh the HR image reconstruction part as:

IRes = HRec(Fs + Fd1
) (10)

where HRec(·) is the function of HR image reconstruc-

tion module. The shallow feature layers are responsi-

ble for extracting low-frequency and local information

such as edges and textures, while the UNet network

specializes in capturing high-frequency information and

long-range dependencies. The TransMRSR takes it a

step further by utilizing a long skip connection that al-

lows the low-frequency information to be directly trans-

mitted to the reconstruction module. This strategy en-

ables the deep feature extraction module to concentrate

on high-frequency information and also stabilizes the

training process. We also apply residual learning to re-

construct the residual between the LR and HR image

instead of the HQ image as:

ISR = ILR + IRes (11)

where ISR denotes the reconstructed MR image.

3.5 Loss Function

3.5.1 Reconstruction Loss

we use L1-loss to restore the general details of SR im-

ages:

£rec = ∥ISR − IHR∥1 (12)

where IHR denotes the ground-truth.

3.5.2 Content Loss

To prevent over-smoothed SR results brought by L1-

norm, we compare the difference between SR and HR

in high-level feature space to improve visual quality.

Particularly, feature maps from the 2nd, 4th, 7th, and

10th from the pre-trained VGG19 model are selected

to compute the content loss following [39]. The content

loss can be viewed as the Mean-square-error (MSE) be-

tween two feature maps:

£cont =

4∑
l=1

E(ISR,IHR) ∥ϕl (ISR)− ϕl (IHR)∥22 (13)

where ϕ denotes output the l-th layer of VGG19.

3.5.3 Style Loss

In addition to L1-loss and content loss, we also include

style loss proposed by Gatys et al. [40]. Matching ex-

tracted features statistically by computing MSE be-

tween the Gram matrices of the reconstructed image

retains the texture information:

£style = E(ISR,IHR) ∥G(ϕl (ISR))−G(ϕl (IHR))∥22 (14)
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Table 1 Quantitative results on the IXI-Test and SixP dataset with different enlargement scales, in terms of PSNR and SSIM.
The best and second-best are marked in red and blue, respectively.

Dataset IXI-Test SixP

Scale ×4 ×8 ×4 ×8

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR 34.14 0.9574 29.67 0.9209 33.52 0.9437 27.36 0.8561

GFP-GAN 36.37 0.9753 29.50 0.9108 35.29 0.9683 29.15 0.9002

MINet 38.04 0.9826 30.10 0.8923 36.31 0.9741 29.09 0.8758

SwinIR 37.84 0.9837 30.47 0.9371 36.42 0.9764 29.76 0.9238

Restormer 37.52 0.9834 30.35 0.9436 35.80 0.9745 29.31 0.9265

TransMRSR 38.56 0.9862 30.85 0.9451 36.98 0.9793 30.32 0.9353

Fig. 4 Dice coefficient scores of different SR methods on two different test datasets with ×4 and ×8 enlargement.

where G(F ) = FFT ∈ Rnc×ml computes the outer

product of feature map matrix F and its transpose ma-

trix FT . nc represents the number of feature maps and

ml is the product of the height and width of the fea-

ture maps. The Gram matrix measures the correlation

between feature maps and can be used to represent the

style of an image. Using this loss function promotes fea-

ture matching considering the structural coherence of

brain images.

In the end, the total objective of the TransMRSR

model is:

£total = λrecon£recon + λcont£cont + λstyle£style (15)

The loss hyper-parameters are set as follows: λrecon =

1.0, λcont = 0.5, and λstyle = 0.5.

4 Experiments

4.1 Datasets

The training dataset used in this paper is from the IXI

dataset. The IXI dataset consists of multiple modali-

ties acquired from 576 subjects with 1 × 1 × 1mm res-

olution. We perform the generation task on the multi-

modal dataset containing T1-weighted images (T1w)

and T2-weighted (T2w) images. We train SR models

on the T1 images and T2 images respectively. The 576

volumes are split into two groups, 536 for pretraining

StyleSwin and 40 for the super-resolution task. The 40

volumes are further divided into 25, 5, and 10 as train-

ing, validation, and test data respectively. Due to the

2D nature of the proposed method, we get 3696, 744,

and 1481 images for training, validation, and testing

correspondingly. Additionally, we randomly select 10

volumes from an in-house 3D T1w dataset named SixP,

and an in-house 2D T1 dataset named Snata for test-

ing. Image registration is performed with FSL in the

MNI space. The size of each 3D volume is reoriented to

182 × 218 × 181. we restore image x-z plane slices and

discard slices without any information.

Our TransMRSR is trained on synthetic data. We

downsample the HR images by factors of r = 4, 8 in

the z-axis for T1w images and in the x-axis for T2w

images to simulate thick-slice MRI following [2]. The

thick-slice MRI then is upsampled to the original res-

olution for HR space restoration. We extract LR-HR

training pairs along x-axis, i.e., x-z plane slices, for t1w

volumes and z for t2w volumes, i.e., x-y plane slices.

The same downgrading operation is also used on the

SixP dataset.
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Table 2 Quantitative results of the T2w images with different enlargement scales on the IXI-Test. The best and second-best
are marked in red and blue, respectively.

Dataset IXI-Test

Scale ×4 ×8

Metrics PSNR SSIM
Dice-
W

Dice-
G

Dice-
CSF

Dice-
Avg

PSNR SSIM
Dice-
W

Dice-
G

Dice-
CSF

Dice-
Avg

EDSR 32.94 0.9510 0.9716 0.9698 0.9377 0.9597 26.54 0.8566 0.9271 0.9170 0.9126 0.9198

GFP-GAN 35.72 0.9761 0.9739 0.9654 0.9488 0.9627 29.36 0.9259 0.9440 0.9103 0.9124 0.9223

MINet 37.16 0.9812 0.9749 0.9790 0.9697 0.9745 30.26 0.9430 0.9402 0.9407 0.9455 0.9421

SwinIR 36.73 0.9815 0.9782 0.9714 0.9676 0.9724 29.95 0.9395 0.9382 0.9324 0.9435 0.9380

Restormer 37.25 0.9836 0.9751 0.9794 0.9683 0.9743 30.38 0.9440 0.9405 0.9397 0.9415 0.9405

TransMRSR 37.37 0.9843 0.9769 0.9794 0.9688 0.9750 30.42 0.9443 0.9477 0.9369 0.9398 0.9415

4.2 Evaluation Metrics

First, we assess the effectiveness of models utilizing in-

dices of Peak Signal-to-Noise Ratio (PSNR) and Struc-

tural Similarity (SSIM). Second, we exmaine the SR re-

sults of the proposed TransMRSR and SOTA methods

in downstream segmentation tasks. The spatial simi-

larity of the reconstructed brain between reconstructed

images and ground truth is measured using the Dice

coefficient:

Dice(X,Y ) =
2 |X ∩ Y |
|X|+ |Y |

(16)

Specifically, we compute dice coefficient scores on the

grey matter (Dice-G), white matter (Dice-W), cere-

brospinal fluid (Dice-CSF), and average dice score (Dice-

Avg).

4.3 Implementation Details

We first extract HR slices from x-y, x-z, and y-z planes

and pad them to 256 × 256 for pre-trained StyleSwin.

The channel multiplier of StyleSwin is set to one for the

compact model. We use two residual blocks to extract

shallow features. The UNet consists of six upsamples

and six downsamples, each with two successive swin

transformer block [41]. The KMeans algorithm is em-

ployed to obtain 8 cluster centers of 60,000 randomly

sampled latent codes. We find the nearest center for

each latent code using euclidean distance.

We train our model using two NVIDIA Tesla V100

GPUs based on PyTorch framework. We pad the image

size to 256×256 as input. We augment the training data

with random horizontal flip, vertical flip, and transpose

in H and W dimensions. The training batch size is set

to 6. The learning rate starts from 0.1 and decreases by

a factor of 0.5 every 30 epochs. We use Adam optimizer

with β1 = 0.5, β2 = 0.999. The maximum number of

training rounds is 100. When the PSNR obtained in

the validation set is continuously increased by no more

than 0.05 for 10 rounds, we terminate it.

4.4 Main Results

We compare our model with five SR methods: EDSR

[42], GFP-GAN [34], MINet [22], SwinIR [38] and Rest-

ormer [43] through both quantitative and qualitative

results. For a fair comparison, we remove the last up-

sampling module of all networks. Images are upsampled

to high-resolution space before passing through the net-

work.

4.4.1 Quantitative Results

We compute PSNR/SSIM scores with three T1w datas-

ets under 4× and 8× enlargement. As shown in Ta-

ble. 1, our model achieves the best performance on

all datasets. We further demonstrate the power of rich

prior to preserve texture and structure information un-

der 8× enlargement. Our model outperforms the best

model by 0.3 dB and 0.0012 in PSNR and SSIM re-

spectively. To assess the reliability of the reconstructed

images, we perform the segmentation task with a Brain

MRI analysis tool named FSL. We excluded segmenta-

tion results on images reconstructed by EDSR due to

the poor quality. As shown in Fig. 4, Our TransMRSR

produces consistent improvement in the downstream

task. The Dice coefficient scores of the Gray matter,

the Cerebrospinal fluid, and the average dice scores are

the highest. However, FSL takes almost all voxels as

white matter resulting in higher Dice-W, lower Dice-G,

Dice-CSF, and Dice-Avg values for mediocre models

(i.e, GFP-GAN).
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Fig. 5 Visual comparison of different SR reconstruction methods on the IXI test dataset with ×4 and ×8 enlargement. The
reconstructed images and the corresponding error map are provided.

Fig. 6 Visual comparison of different SR reconstruction methods on the IXI test dataset with ×4 and ×8 enlargement. The
reconstructed images and the corresponding error map are provided.
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Fig. 7 Qualitative results of different SR reconstruction methods on the SixP dataset with ×8 enlargement. The reconstructed
images are zoomed in with different maps on the right for best view.

Fig. 8 Comparisons on the real-world SnaTa dataset. Images are best viewed when magnified.

In addition, we apply the first-stage multimodal gen-

erative priors to perform super-resolution tasks on the

IXI T2w dataset. Performance measurements are listed

in Table. 2. The superior performance demonstrates

that the generative priors have the potential to han-

dle multimodal SR tasks. As can be seen in Table 2,

TransMRSR achieves consistent state-of-the-art perfor-

mance on PSNR and SSIM metrics.

4.4.2 Qualitative results

Fig. 5 and Fig. 6 provide the ×4 and ×8 enlargement

of T1w and T2w images on the IXI test dataset. The

darker colors in the error maps represent the larger er-

rors. As can be seen, our TransMRSR restores most of

the brain structures for multimodal images. The distri-

bution of the brain sulci and gyri in the reconstructed

images is basically consistent with the HR images.

To evaluate the generalization capability and ro-

bustness, we further feed a synthetic and a real-world

dataset into models. As shown in Fig. 7, our method

can restore more anatomical details in the SixP dataset

even on ×8 SR tasks. The model used to restore real-

world images is trained on the IXI dataset under ×8 en-

largement. Fig. 8 shows TransMRSR restores more de-

tails with less noise and artifacts compared with other

networks. Despite being trained on a synthetic dataset,

our TGPSRMR can handle complex degradations.

4.5 Ablation study

In this section, we conduct an ablation study on the

8× SR task. We construct three variant models: w/o

GP, which is our model without generative prior, w/o

SDT, which is our model without self-distilled trun-

cation trick, w/o MRSE, which is our model without

multi-resolution encoder features (i.e, Fl) fed into the

decoder, and w/o skip connection, which is our model

without skip connection between shallow feature and

deep feature, the input and the output of the deep fea-

ture extraction module. Testing is performed on the IXI

test dataset. Next, we demonstrate the effectiveness of

key components of TransMRSR.

4.5.1 Improvements of Generative Prior (GP)

As shown in Table. 3, our TransMRSR obtains a 0.63dB

improvement in PSNR and a 0.0067 boost in SSIM

compared to a non-pretrained decoder. The structural

prior of the brain is preserved in pre-trained StyleSwin

so that the network can retain more structural infor-

mation under large-scale SR tasks, as shown in Fig.

9. To demonstrate the effectiveness of fine-tuning the

generative prior, we compare the performance of freez-

ing versus fine-tuning the parameters of StyleSwin. As

shown in Table. 4, Our fine-tuning strategy performs

better (0.31dB+ PSNR, 0.0041+ SSIM) when restor-

ing T2 images.
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Table 3 Ablation study results on IXI-Test under ×8 enlargement scale. The best is marked in red.

Configuration
Modules Metrics

GP SDT MREF SC PSNR SSIM Dice-W Dice-G Dice-CSF Dice-Avg

w/o GP × ×
√ √

30.33 0.9351 0.9521 0.9062 0.8690 0.9091

w/o SDT
√

×
√ √

30.70 0.9431 0.9441 0.9414 0.9601 0.9485

w/o MREF
√ √

×
√

14.34 0.4041 0.6962 0.6123 0.9118 0.7401

w/o SC
√ √ √

× 30.36 0.9140 0.9473 0.9427 0.9512 0.9471

TransMRSR
√ √ √ √

30.85 0.9451 0.9381 0.9479 0.9673 0.9511

Fig. 9 Qualitative comparison on the different variant model under IXI-Test dataset with ×8 enlargement scale. The first
row includes the reconstructed images and the second row is the corresponding error maps. Zoom in for best view.

Table 4 Ablation study results on training strategy about
GP under ×8 enlargement scale.

Configuration
IXI-Test(T1) IXI-Test(T2)

PSNR SSIM PSNR SSIM

forzen GP 30.84 0.9450 30.11 0.9402

fine-tuned GP 30.85 0.9451 30.42 0.9443

4.5.2 Effectiveness of Self-distilled Truncation (SDT)

A performance drop is observed if we do not use self-

distilled truncation trick for both T1w and T2w restora-

tion (see Table. 2 and Table. 5) The SDT trick transfers

knowledge from multimodal generative tasks to mul-

timodal super-resolution tasks when we perform only

one generative task to encapsulate multimodal priors.

Specifically, the help of the nearest latent centroid is ob-

vious in the restoration of T2w images, resulting in an

improvement of 0.17dB and 0.001 in PSNR and SSIM

respectively.

Table 5 Ablation study results on SDT under ×8 enlarge-
ment scale.

Configuration
IXI-Test(T1) IXI-Test(T2)

PSNR SSIM PSNR SSIM

w/o SDT 30.70 0.9431 30.25 0.9433

with SDT 30.85 0.9451 30.42 0.9443

4.5.3 Impact of multi-resolution encoder features

(MREF)

When we remove all encoder features, the network re-

sembles the typical GAN inversion methods that only

learn latent code. Table. 3 shows the worst performance

when we only preserve the latent codes to guide the

decoder. As shown in Fig. 9, the restored image is of

low quality and cannot show any brain structures. It

is consistent with GFP-GAN [34], the low-dimension

latent vectors are insufficient to guide the restoration.

We find a huge improvement (PSNR: 23.32dB, SSIM:

0.8187) when we fix generative priors without MREF.
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4.5.4 Importance of skip connection (SC)

we investigate Tran without skip connection between

shallow features and deep features. The network di-

rectly learns the recovery of HR images instead of the

residual image. As shown in Table. 3 and Fig. 9, a

performance drop is observed and boundaries between

brain structures smooth out.

5 Conclusion

In this paper, we propose a transformer-based frame-

work named TransMRSR for brain MRI SR reconstruc-

tion. Our model is able to restore fine details even on

large factor reconstruction tasks, e.g., ×8, with the help

of generative prior encapsulated on a pre-trained Style-

GAN. Extensive experiments show that TransMRSR

outperforms other competing methods in terms of vi-

sual quality and quantitative results. Specifically, the

degree of folding of the sulci and gyri in the image

restored by our network is very close to that in the

ground-truth. The robustness of our model to recover

real-world dataset makes it potentially suitable for clin-

ical applications. Future work includes measuring the

authenticity of the restored images and investigating

the effect of TransMRSR on downstream analysis tasks,

such as lesion segmentation. Besides, we shall design a

better way of knowledge distillation to exploit genera-

tive priors for more medical image tasks and methods.
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