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Abstract
At present, occlusion and similar appearance pose serious challenges to the task of person re-identification. In this work,
we propose an efficient multi-scale channel attention network (EMCA) to learn robust and more discriminative features to
solve these problems. Specifically, we designed a novel cross-channel attention module (CCAM) in EMCA and placed it after
different layers in the backbone. The CCAM includes local cross-channel interaction (LCI) and channel weight integration
(CWI). LCI focuses on both the maximum pooling features and the average pooling features to generate channel weights
through convolutional layers, respectively. CWI combines the two channel weights to generate richer and more discriminant
channel weights. Experiments on four popular personRe-ID datasets (Market-1501, DukeMTMC-ReID, CUHK-03 (detected)
and MSMT17) show that the performance of our EMCA is consistently significantly superior to the existing state-of-the-art
methods.

Keywords Person re-identification · Convolutional neural network · Attention mechanism

1 Introduction

Person re-identification (Re-ID) has been extensively studied
as a person search problem across non-overlapping cameras
[1, 2]. Person Re-ID is an effective way to realize cross-site-
specific pedestrian tracking and has very broad application
prospects, such as intelligent video surveillance, intelli-
gent security and intelligent traceability systems, which has
become a hot topic in both research and industry. With the
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development of deep convolutional neural networks, learn-
ing with discriminant features by stacking convolutional and
pooling layers has achieved advanced results in person Re-
ID. However, person Re-ID can be affected by factors such
as occlusion and similar appearance in real-world scenarios.
As shown in Fig. 1a–c, targets are difficult to distinguish due
to similar appearances. In Fig. 1d–f, the targets are obscured
by other people or objects while walking. Figure1 shows
that BagTricks [3] are not able to solve these problems well.
To effectively address these challenges, we designed a more
discriminant person Re-ID model.

Before that, substantial efforts have been made to solve
different challenges. Among them, combined with body part
information [6–10] has empirically proved to be effective in
enhancing the feature robustness against bodymisalignment,
incomplete parts andocclusions. Inspiredby this observation,
attention mechanisms were introduced to enhance features
to effectively capture the discriminative appearance of the
human body. Since then, attention-based models [11–17]
have greatly improved the person Re-ID performance.

In recent years, the Re-ID models [18–21] extract dis-
criminative features by embedding the attention module to
solve the problem of occlusion and similar appearance. Wu
et al. [18] proposed an attention deep architecture withmulti-
scale deep supervision for person re-identification. This
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Fig. 1 Ranking result of the BagTricks [3] on the Market-1501 [4] and
DukeMTMC-ReID [5]. The green boxes represent the query images,
and the red boxes indicate the images with the wrong match

model adds attention modules at different stages of the back-
bone network to achieve more efficient multi-scale feature
extraction. Zhao et al. [19] proposed a novel deep network
composed of query-guided attention blocks, which enhanced
the feature learning process of the target image in the gallery
under the guidance of the query. Chen et al. [20] proposed a
feature pyramid network (APNet) that adopt the “Squeeze-
and-Excitation” block (SE) [22] as the channel-wise attention
helps themodel to focus on themore salient feature by assign-
ing larger weight to channels that show a higher response.
Gong et al. [21] proposed global–local attention to learn the
semantic context in the channel and spatial dimensions by
combining CBAM [23]. Although these networks perform
well by embedding attention modules, there still exists two
important and challenging problems. Thefirst is how to effec-
tively capture and exploit the information of featuremapwith
different scales to enrich features. The second is that channel
attention can only effectively capture the local information,
while reducing the dimension through fully connected layers,
and cause some key information to be lost.

Based on the above observations, we see it is necessary to
develop an effective attention module. In this paper, we pro-
pose a novel lightweight attention module named CCAM,
which can process the channel information of input features
at different scales and can effectively capture more discrim-
inative features without dimensionality reduction. As shown
in Fig. 2, we see that CCAM can focus on more discriminant
areas of the human body.

In summary, the contributions of this paper are summa-
rized as follows:

• We propose a novel cross-channel attention module
(CCAM) which consists of LCI and CWI. CCAM can
process the channel information of input features at
different scales and can effectively capturemore discrim-
inative features without dimensionality reduction.

Fig. 2 Visualization of attention maps on Market-1501 [4] and
DukeMTMC-ReID [5]. iOriginal images; ii heat map of BagTricks [3];
iii heat map of EMCA. BagTricks [3] is able to extract features effec-
tively. However, it cannot capture some highly distinguishable features,
but the EMCA can do it

• Based on Bagtricks [3], we design a network named
EMCA by embedding CCAM into different layers of the
network, which can capture more discriminative features
to solve problems such as occlusion and similar appear-
ance.

• We also analyze properties of four major public datasets,
including Market-1501 [4], DukeMTMC-ReID [5],
CUHK-03 (detected) [24] and MSMT17 [25]. By using
the practical designs, training tricks and analyzed results,
the proposed method achieves new state-of-the-art per-
formance on all the four public datasets.

2 Related work

2.1 Brief overview of person re-identification

In recent years, with the rapid development of deep learning,
the prevailing success of deep neural networks in computer
vision has made human Re-ID no exception. A person Re-
ID model typically consists of two components: a feature
extractor and a similarity metric. A line of works focused on
improving either the feature extractor, the similarity metric
or both of them. For a better feature extractor, many meth-
ods [10, 26–28] concentrate on designing local-basedmodels
that divide the body into different parts from which features
are extracted and fused to obtain a robust representation. To
mine more clues as the prior knowledge, some methods uti-
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lize human pose information [9, 29–31] for accurate part
detection or person normalization. For a better similarity
metric, some methods [3, 11, 20, 32] combined triplet loss
with identification loss and jointly learned a metric in the
model. Zhou et al. [7] trained the model with focal triplet
loss, which imposes a constraint on the intra-class and an
adaptively weight adjustment mechanism to handle the hard
sample problem. Liao et al. [33] proposed an efficient mini-
batch sampling method for large-scale deep metric learning.

2.2 Attentionmechanisms in person Re-ID

Recently, attention mechanisms [22, 23, 34] have been
widely used for a variety of visual tasks. Now, the atten-
tion mechanism is also successfully applied in Re-ID tasks.
Chen et al. [12] proposed the holistic attention branch (HAB)
to make the feature maps obtained by backbone could focus
on persons so as to alleviate the influence of background,
and partial attention branch (PAB) is proposed to make
the extracted features can be decoupled into several groups
that are separately responsible for different body parts, thus
increasing the robustness to pose variation and partial occlu-
sion. Wang et al. [13] proposed a batch coherence-guided
channel attention (BCCA) module that highlights the rele-
vant channels for each respective part from the output of a
deep backbone model. Sun et al. [14] proposed a multi-level
attention embedding and multilayer feature fusion (MEMF)
model, in which the multi-level attention block can highlight
representative features and assist global feature expression
and multilayer feature fusion can increase the fine-grained
feature expression. Zhong et al. [15] proposed a progressive
feature enhancement (PFE) algorithm that filters pixel-wise
and channel-wise noises on the intermediate feature maps
through a two-stage attention module (TSAM) to further
facilitate the layer-specific feature generation. Rao et al. [16]
presented a counterfactual attention learning method to learn
more effective attention based on causal inference. They
proposed to learn the attention with counterfactual causal-
ity, which provides a tool to measure the attention quality
and a powerful supervisory signal to guide the learning pro-
cess. Motivated by the tremendous success of self-attention
[35–39] in re-identification tasks, Yan et al. [17] proposed a
cross-attention layer that associates different images of the
same identity to learn attention maps that are effective across
all these images. This reduces the discrepancy of the attention
across different images of the same identity.

Our proposed attention mechanism differs from previous
methods in several aspects. First, previous methods can-
not effectively acquire and utilize channel information for
feature maps at different scales, resulting in the loss of fine-
grained feature. In contrast, CCAM aim at processing the
global information of multi-scale input features and learning
attention weights without dimensionality reduction to obtain

the more detailed and discriminative feature representation.
Second, although previous methods achieve high perfor-
mance, their multiple branches and multiple tasks make the
model structure too complex. Our attention maps are directly
learned from the data and context, without relying on manu-
ally defined parts, pose estimation, nor part region proposals.
CCAM is a plug-and-play lightweight attention module that
is embedded within a single backbone, making our model
more lightweight than themultitask learning alternatives [12,
14, 15].

2.3 Review the BagTricks

Webriefly introduce our baseline architecture:BagTricks [3].
As illustrated in Fig. 3, BagTricks [3] is a strong baseline that
collects some effective training tricks and adopts ResNet-50
as the backbone. The stride parameter of conv5_x is set to
1 instead of 2 to preserve more details. The global average
pooling layer converts the output feature maps of conv5_x
into feature vectors, which are fed to triplet loss for metric
learning at the training stage. The feature vectors are linearly
scaled to final feature vectors by a batch normalization (BN)
layer, which are fed to ID loss (usually cross-entropy loss) at
the training stage. The final feature vectors are directly used
to compute the distance matrix at the inference stage.

BagTricks [3] serves as a strong baseline and has been
proved to boast good performance. Although BagTricks
[3] can extract features efficiently, it cannot capture highly
differentiated features. We embedded CCAM into the back-
bone and achieved impressive performance. In Fig. 2, we see
that EMCA can focus on the discriminative human body
regions compared to BagTricks [3]. We perform extensive
experiments on Market-1501 [4], DukeMTMC-ReID [5],
CUHK-03 (detected) [24] and MSMT17 [25] and show that
EMCA significantly outperforms BagTricks [3].

3 Proposedmethod

In this section, we first briefly describe the overall architec-
ture of EMCA. Then, we will introduce LCI and CWI in
CCAM in detail, respectively.

3.1 The structure of EMCA

The overall architecture of the proposed EMCA is shown in
Fig. 4, which is modified from the baseline depicted in Fig. 3.
The input part, backbone and loss functions are inherited.
EMCA has three important components: ResNet-50, CCAM
and the loss functions.

Major update of the architecture is the insertion of channel
attention modules between convolutional layers to focus on
features from different scales. In Fig. 4, we add the designed
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Fig. 3 Model architecture of BagTricks [3]. The backbone of the net-
work is ResNet-50. The convolution stride of conv5_x is changed from
2 to 1 to retain more image details. Then, the features of conv5_x go

through a global average pooling (GAP) and become a vector feature,
which is fed to triplet loss at the training stage

Fig. 4 EMCA architecture, which is modified from Fig.2. The backbone of the network is ResNet-50 and place CCAM after conv2_x, conv3_x
and conv4_x. In the training stage, ID loss, triplet loss and center loss are used to optimize model parameters

CCAM after conv2_x, conv3_x and conv4_x layer, which
can effectively extract different levels of discriminative fea-
tures. Given an intermediate feature map, the LCI and CWI
in CCAM calculate the attention weights of the features to
obtain the attention feature map.

In order to obtain a more robust Re-ID model, EMCA is
trained under the loss function L total consisting of ID loss
(cross-entropy loss) L ID, triplet loss LTri and center loss LC:

L total = L ID + LTri + βLC (1)

where β is the balanced weight of center loss. ID loss, triplet
loss and center loss play their respective roles in the model.
ID loss can distinguish between positive and negative sam-
ples to some extent, but it is difficult to handle some difficult
samples. Triplet loss can shorten the distance to positive sam-
ples while training models, while maximizing distance from
negative samples. Center loss learns a center for the deep

features of each class, which makes up for the absolute dis-
tance that triplet loss ignores them. Specifically, we add the
triplet loss and center loss after the global average pooling
(GAP) layer and place the ID loss after the fully connected
(FC) layer.

3.2 The cross-channel attentionmodule

The overall architecture of our proposed channel attention
module is shown in Fig. 5. Given the input feature Xl ∈
R
C×H×W form lth layer, we getWl

f ∈ R
C×1×1 after LCI and

CWI. Multiply the Wl
f with Xl to get the weighted attention

feature Al ∈ R
C×H×W , then add Al and Xl to obtain the

final discriminant features Xl ∈ R
C×H×W , as shown below:

˜Xl = Al + Xl = (Xl ⊗ Wl
f ) + Xl (2)
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Fig. 5 Structure of cross-channel Attention Module. CCAM includes
LCI and CWI. LCI focuses on both the maximum pooling feature and
the average pooling feature, and the two types of features interact locally

across channels to generate corresponding channel weights. CWI inte-
grate channel weights from the two channel weights

The residual connection (+Xl) allows us to insert a new
block in any pretrained model without breaking its initial
performance.

3.2.1 Local cross-channel interaction

It is well known that different feature channels represent
different feature information. [22, 23] generated attention
weights through dimensionality reduction of fully connected
layers. Wang et al. [34] believed that the dimensionality
reduction operation in this method will have side effects
on channel attention prediction and proposes a local cross-
channel interaction strategy without dimensionality reduc-
tion. Inspired by this view, we construct LCI to perform
local cross-channel operations to aggregate local channel
information. Many person Re-ID models typically use aver-
age pooling features to aggregate spatial information, which
results in feature data that is more sensitive to background
information. We think that the maximum pooling collects
another important clue about the object feature. Unlike the
previous approach, we not only use the average pooling fea-
tures, but also use both the average pooling features and the
maximum pooling features. As shown in Fig. 5, the work-
ing principle of LCI is mainly divided into two steps. The
first step is to give an input feature map Xl ∈ R

C×H×W ,
where C is the total number of channels, H × W is the size
of the feature map and l is a layer of the network. Then, the
maximum pooling feature Fl

max ∈ R
C×1×1 and the average

pooling feature Fl
avg ∈ R

C×1×1 were extracted from layer l,
respectively, as shown below:

Fl
max = GMP(Xl) = Max

i=1,··· ,H
j=1,··· ,W

{Xl
i j } (3)

Fl
avg = GAP(Xl) = 1

WH

H
∑

i=1

W
∑

j=1

Xl
i j (4)

where GMP is the global maximum pooling and GAP is
the global average pooling. In the second step, we per-
form fast 1D convolution of size k on the resulting Fl

max
and Fl

avg to generate maximum pooling channel weights

Wl
max ∈ R

C×1×1 and average pooling channel weights
Wl

avg ∈ R
C×1×1, which are obtained by:

Wl
max = C1Dk(GMP(Xl)) = C1Dk(F

l
max) (5)

Wl
avg = C1Dk(GAP(Xl)) = C1Dk(F

l
avg) (6)

where C1Dk indicates 1D convolution, the convolution ker-
nel size is k. Here, Eqs. (5) and (6) guarantee efficiency
by appropriately capturing local cross-channel interactions
through one-dimensional convolution.

3.2.2 Channel weight integration

Previously in the LCI component, we obtained the channel
weights Wl

max and Wl
avg. We design CWI to integrate chan-

nel weights from the two channel weights which have more
comprehensive and discriminative information. As shown in
Fig. 5, CWI works in two main steps. First, CWI connects
the Wl

max and the Wl
avg in the 0th dimension to obtain the
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connected channel weights Wl
cat ∈ R

2C×1×1. It can be rep-
resented by the following equation:

Wl
cat = Concat0d(W

l
max,W

l
avg) (7)

where Concat0d means that two tensors are connected along
the zeroth dimension. Immediately after, the Wl

cat through
convolutional layers of size 1 × 1 to extract richer channel
weights Wl

conv ∈ R
C×1×1. Finally, we use the ReLU activa-

tion function to get the final channel weight Wl
f ∈ R

C×1×1,
as shown below:

Wl
f = ReLU(Wl

conv) = ReLU(Conv1×1(W
l
cat)) (8)

where Conv1×1 represents a convolutional block with a con-
volutional kernel size of 1 × 1.

3.3 Discussion

In this subsection, we discuss the proposed attention mod-
ule with other attention modules structures and explain why
our CCAM is effective and efficient. As shown in Fig. 6,
we compare three different attention structures including
Squeeze-and-Excitation module (SE) [22] and the channel
attention module of CBAM (CBAM-C) [23], ECA [34] with
our CCAM.

In SE [22] module, they use spatially global average-
pooled features to compute channel-wise attention, by using
two fully connected (FC) layers with the nonlinearity.
CBAM-C [23] is similar to SE [22] module, but it addition-
ally uses global maximum pooling features, and finally adds
the global average pooling features to the global maximum
pooling features to obtain channel weights with comprehen-
sive feature information. InECA[34]module, they found that

avoiding dimensionality reduction is important for learning
channel attention. They also use the global average pooling
features to compute channel-wise attention, but unlike the
structure of SE [22], they use one-dimensional convolution
to obtain channel weights instead of fully connected layers
to avoid dimensionality reduction.

Compared to these attention modules mentioned above,
the proposed CCAM concentrates the advantages of these
attentionmodules and is more efficient than them. In general,
the advantages of CCAM over these attention modules are:
(1) The global average pooling feature and the global maxi-
mumpooling feature are used simultaneously to obtain richer
feature information; (2) one-dimensional convolution is used
to replace the fully connected layer to avoid the loss of feature
information caused by dimensionality reduction (we perform
comparative experiments on fully connected layers and one-
dimensional convolution in Table 7 of Sect. 4.4); (3) the two
types of weights are concatenated instead of added, and the
final channel weights are integrated through the convolu-
tional layer. Finally, we make CCAM with these attention
modules for comparison experiments, and the results are
shown in Table 6 of Sect. 4.4.

4 Experiment

To evaluate our model, we conducted experiments on
four popular person re-identification datasets: Market-1501
[4], DukeMTMC-ReID [5], CUHK-03 (detected) [24] and
MSMT17 [25]. First, we compare the performance of our
model with existing comparative advanced methods on four
datasets. Second, we reported a set of ablation experiments
to verify the effectiveness of each component. Finally, we

Fig. 6 Schematic comparison between a SE [22], b channel attention module of CBAM (CBAM-C) [23], c ECA [34] and d CCAM
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Table 1 Statistics of used datasets

Dataset #total ID #training ID #gallery ID #image #gallery image #camera

Market-1501 [4] 1501 751 752 32,668 19,732 6

DukeMTMC-ReID [5] 1404 702 1110 36,411 17,661 8

CUHK-03 (detected) [24] 1467 767 700 13,161 5332 2

MSMT17 [25] 4101 1041 3060 126,441 82,161 15

provide more visual analysis to illustrate the effectiveness of
our model.

4.1 Datasets

Understanding the datasets is the most important step in per-
son Re-ID. The person Re-ID datasets consists of training
set, gallery set and query set. The training set is used to train
the model, the query set and gallery set are used to test the
model. We evaluate our method on four popular person re-
identification datasets, which are described in detail in Table
1.

Market-1501 [4] contains 32,668 labeled images of 1501
identities captured by six cameras, which are almost equally
divided into a training set and a test set (gallery + query).
There are 12,936 images of 751 identities in the training set,
while the rest are used for testing. There are 750 identities in
the test set, including 3,368 query images and 19,732 gallery
images.

DukeMTMC-ReID [5] provided a large dataset recorded
by eight cameras, which included 36,411 labeled images of
1404 identities. The 1404 identities are randomly divided,
with 702 identities for training and the others for testing.
Among them, 16,522 images of 702 identities are used for
training, and 2228 query images and 17,661 gallery images
of 1110 identities for testing.

CUHK-03 (detected) [24] consists of two separate
datasets: Detected and Labeled. The difference is how labels
are generated. Labels of CUHK-03 (detected) are without
manual correction, which is easy to obtain, close to the indus-
try but more difficult to cope with. The dataset contains
13,161 images with 1467 person IDs split into training and
test sets without overlap. These images are captured by only
two cameras.

MSMT17 [25] is the current largest publicly available
person Re-ID dataset. It has 126,441 images of 4101 iden-
tities captured by a 15-camera network, which are also split
into training and test sets without overlap. Note the gallery
set contains 82,161 images of 3060 person IDs. The numbers
are much greater than those in the training set. MSMT17 is
significantly more challenging than the other three, due to its
massive scale, more complex and dynamic scenes.

4.2 Implementation details and evaluation

In the experiment, we used an RTX 3090 GPU with 24GB
RAM for training. Bagtricks [3] introduced tricks including
warm-up learning rate and adjusted the last stride of conv5_x
layer as 1 anddata argumentationwith randomerasing,which
we confirm to be effective. Label smoothing is not harmful,
which we keep. The backbone of the network is ResNet-50
initialized with pretrained parameters on ImageNet [40], and
the dimension of the FC layer in the network was changed to
the number of identities N in the dataset. During training, we
randomly select K images of P identities to form a training
batch. In this work, we set P = 16 and K = 4. The images
in the batch are re-sized to 256 × 128 pixels, and then, each
image is flipped, normalized and randomly erased at a prob-
ability level of 0.5. The Adam method is used to optimize
the model. We set up the model for a total of 240 training
epochs. In practice, we spent 10 epochs linearly increasing
the learning rate from 3.5 × 10−5 to 3.5 × 10−4. Then, the
learning rate is decayed to 3.5 × 10−5 and 3.5 × 10−6 at
50th epoch and 90th epoch respectively. In equation (1), the
weight size of Center Loss β set to 0.0005. For the size of
the one-dimensional convolution kernel k in Eqs. (5) and (6),
we refer to the parameter setting of [34], which is set to 5.

We adopt the cumulative match characteristic (CMC) [41]
and the mean average precision (mAP) [4] as evaluation
indicators for our model. The CMC curve shows the recogni-
tion accuracy of Rank-n, which can effectively evaluate the
performance of the model. The abscissa of CMC curve is
Rank-n, where n = 1, 5, 10, etc. The ordinate is the recogni-
tion accuracy. The mAP represents the average accuracy of
correctly retrieving the specified identities in the database.
Combining CMC curve andmAP can comprehensively mea-
sure the performance of the model.

4.3 Comparison to state-of-the-art methods

We compare EMCA with other methods on Market-1501
[4], DukeMTMC-ReID [5], CUHK-03 (detected) [24] and
MSMT17 [25], as shown in Table 2, 3, 4 and 5, respectively.
For fair comparisons, no post-processing such as re-ranking
strategies or multi-query fusion was used for our methods.
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Table 2 Comparison to state-of-the-art methods on Market-1501

Methods Publications mAP Rank-1

BagTricks [3] CVPR 2019 85.9 94.5

PISNet [19] ECCV 2020 87.1 95.6

AGW [42] arXiv 2020 87.8 95.1

GASM [43] ECCV 2020 84.7 95.3

PAT [35] CVPR 2021 88.0 95.4

PFE [15] TIP 2021 87.5 95.2

FA-Net [44] TIP 2021 84.6 95.0

ADC-2OIB [45] CVPR 2021 87.7 94.8

APNet-S [20] TIP 2021 89.0 96.1

TransReID [36] ICCV 2021 88.9 95.2

BINet [46] TIP 2021 88.7 95.3

OSNet [28] TPAMI 2021 84.7 93.1

CAL [47] CVPR 2022 87.5 94.7

FED [48] CVPR 2022 86.3 95.0

EMCA (Ours) – 89.1 95.6

Table 3 Comparison to state-of-the-art methods on CUHK-03
(detected)

Methods Publications mAP Rank-1

BagTricks [3] CVPR 2019 56.6 58.8

LSTS-NET [49] IJCV 2020 67.9 70.11

AGW [42] arXiv 2020 62.0 63.6

DPD [50] TIP 2020 68.5 70.2

BINet [46] TIP 2021 69.8 72.3

OSNet [28] TPAMI 2021 67.8 72.3

LReID [51] CVPR 2021 50.8 56.16

EMCA (Ours) – 69.8 73.6

Table 4 Comparison to state-of-the-art methods onDukeMTMC-ReID

Methods Publications mAP Rank-1

BagTricks [3] CVPR 2019 76.4 86.4

PISNet [19] ECCV 2020 78.8 88.8

GASM [43] ECCV 2020 74.4 83.3

AGW [42] arXiv 2020 79.6 89.0

PAT [35] CVPR 2021 53.6 64.5

ADC-2OIB [45] CVPR 2021 74.9 87.4

PFE [15] TIP 2021 77.1 89.2

FA-Net [44] TIP 2021 77.0 88.7

APNet-S [20] TIP 2021 78.8 89.3

TransReID [36] ICCV 2021 80.6 89.6

BV-Person [17] ICCV 2021 80.6 90.5

OSNet [28] TPAMI 2021 76.6 88.7

FED [48] CVPR 2022 78.0 89.4

EMCA (Ours) – 80.8 90.6

Table 5 Comparison to state-of-the-art methods on MSMT17

Methods Publications mAP Rank-1

BagTricks [3] CVPR 2019 49.0 73.0

AGW [42] arXiv 2020 49.3 68.3

GASM [43] ECCV 2020 52.5 79.5

PFE [15] TIP 2021 56.2 80.1

FA-Net [44] TIP 2021 51.0 76.8

BINet [46] TIP 2021 52.8 76.1

OSNet [28] TPAMI 2021 55.1 79.1

LReID [51] CVPR 2021 27.9 54.1

CAL [47] CVPR 2022 57.3 79.7

EMCA (Ours) – 56.8 80.1

Table 2 shows that our EMCA achieved 89.1% mAP and
95.6% Rank-1 on the Market-1501 [4]. Its Rank-1 accuracy
is slightly 0.5% lower thanAPNet [20] and the same asRank-
1 accuracy in PISNet [19], yet EMCA clearly surpasses all
methods in termsofmAP.Table 3 shows thatEMCAachieved
69.8% mAP and 73.6% Rank-1 on CUHK-03 (detected)
[24]. Its accuracy in terms of mAP is equal to BINet [46],
but its Rank-1 is higher than all methods. Table 4 shows
that our EMCA achieves 80.8% mAP and 90.6% Rank-1 on
DukeMTMC-ReID [5], which is significantly better than all
methods. Table 5 shows that EMCA achieved 56.8% mAP
and 80.1% Rank-1 in MSMT17 [25]. Its mAP accuracy is
slightly 0.5% lower than CAL [47] and its Rank-1 accuracy
is equal to PFE [15], yet EMCA is clearly higher than all
methods in terms of mAP and Rank-1.

On Market-1501 [4], DukeMTMC-ReID [5], CUHK-03
(detected) [24] and MSMT17 [25], our EMCA clearly out-
performed the baseline BagTricks [3], which is 3.2%, 4.4%,
13.2% and 7.8% higher than the baseline on mAP and which
is 1.1%, 4.2%, 14.8% and 7.1% higher than the baseline on
Rank-1, respectively. In addition, ComparedwithAGW[42],
which are also designed based on BagTricks [3], our EMCA
performs better than them. The above experiments can prove
that EMCA is a powerful person Re-ID model.

4.4 Ablation study

The Effect of CCAM To study the effectiveness of the
CCAM, we add CCAM to the baseline network. We choose
some advanced attention modules for comparison, including
SE [22], the channel attention of CBAM (CBAM-C) [23] and
ECA [34]. For the fairness of comparison, we re-implement
these attention modules on top of the baseline. Table 6 indi-
cates the experimental results of these attention modules. We
found that CCAM was significantly superior to other atten-
tion modules on four datasets. Experiments have shown that
our CCAMhas a significant impact on baseline performance.
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Table 6 mAP and the Rank-1 of
CMC are used to evaluate the
effectiveness of CCAM on four
datasets

Methods Market-1501 DukeMTMC-ReID CUHK-03 (detected) MSMT17

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Baseline 85.9 94.5 76.4 86.4 56.6 58.8 49.0 73.0

+SE 86.8 94.2 76.9 87.5 67.4 69.9 52.2 76.5

+CBAM-C 87.2 94.8 77.8 87.7 67.4 69.9 53.1 76.7

+ECA 87.3 95.1 77.7 87.7 66.4 69.1 52.4 76.2

EMCA (Ours) 89.1 95.6 80.8 90.6 69.8 73.6 56.8 80.1

Table 7 Evaluate the
effectiveness of feature selection
on four datasets

Methods Market-1501 DukeMTMC-ReID CUHK-03 (detected) MSMT17

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Baseline 85.9 94.5 76.4 86.4 56.6 58.8 49.0 73.0

+GMP 82.3 92.8 73.8 86.2 53.9 55.7 47.2 71.5

+GAP 86.8 94.9 77.5 88.5 65.9 68.3 54.8 78.0

+FC Layer 88.1 94.9 78.8 88.8 67.6 70.3 55.4 79.0

EMCA (Ours) 89.1 95.6 80.8 90.6 69.8 73.6 56.8 80.1

Effective Feature Selection. In order to verify the effec-
tiveness of using both the maximum pooling features and
the average pooling features, we experiment onMarket-1501
[4], DukeMTMC-ReID [5], CUHK-03 (detected) [24] and
MSMT17 [25]. We use the GMP and GAP separately on a
baseline basis. In Table 7, we found that using only GMP in
CCAM performed less than baseline, while using only GAP
performed better than baseline.Obviously,whenEMCAuses
bothGMP andGAP, itsmAP andRank-1 accuracy are higher
than using one of features alone and certainly higher than
baseline. In addition, we experimented with the effect of
CCAM with FC layer and found that its accuracy is not
as high as CCAM with one-dimensional convolution. Fig-
ure7 shows the CMC curve of the EMCA on four datasets.
We noticed that EMCA achieved the best performance. This
indicates the correct selection of features and confirms that
EMCA performs optimally when using both the maximum
pooling features and the average pooling features with one-
dimensional convolution.

Efficient Position to Place Attention Module. Figures8
and 9 compare the performance of the CCAM after the dif-

ferent layers of ResNet-50, where layer2 means placing the
attentionmodule after conv2_x, and so on.We verify the per-
formance of placing the CCAM between conv2_x, conv3_x
and conv4_x, respectively. As shown in Figs. 8 and 9, mAP
and Rank-1 of CMC have the highest accuracy when CCAM
is placed after conv2_x, conv3_x and conv4_x. Obviously,
EMCAworks best by placingCCAMafter conv2_x, conv3_x
and conv4_x at the same time.

Fig. 8 Evaluate the mAP of effective placement of attention module on
four datasets

Fig. 7 CMC curve of Baseline, Baseline+GMP, Baseline+GAP, EMCA with FC Layer and EMCA on the four datasets
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Fig. 9 Evaluate the Rank-1 of effective placement of attention module
on four datasets

4.5 Visualizations

Attention Pattern Visualization. We use the Grad-CAM
[52] tool to analyze the attention map of Baseline, Base-
line+GMP, Baseline+GAP and EMCA. The Grad-CAM tool
marks areas that the model considers important. The redder
the marked area is, the more important it is. We conduct a
set of attention visualizations on final output feature maps
of the Baseline, Baseline+GMP, Baseline+GAP and EMCA,
as shown in Fig. 10. We notice that the feature maps from

Fig. 10 Visualization of attentionmaps fromBaseline, Baseline+GMP,
Baseline+GAP and EMCA. As shown in row five, the attention map of
EMCA can focus on more areas of the foreground, rather than focusing
on the background and few person features

Fig. 11 Six Re-ID examples of Baseline, Baseline+GMP, Base-
line+GAP and EMCA on Market-1501 and DukeMTMC-ReID. Left:
query image. Right: i rank-5 results of Baseline. ii rank-5 results of
Baseline+GMP. iii rank-5 results of Baseline+GAP. iv rank-5 results of
EMCA. Images in red boxes are negative results. Among them, EMCA
retrieval performance is the best

the baseline show little attentiveness. The attention maps
of Baseline+GMP and Baseline+GAP pay little attention to
human features. In contrast, we see that the attention maps of
EMCAare focus onmore parts of the human body, which can
more effectively capture the discriminative features of per-
son and pay little attention to irrelevant information around
person.

Re-ID Qualitative Visual Results. Figure11 shows
Re-ID visual example of Baseline, Baseline+GMP, Base-
line+GAP and EMCA. We observed that EMCA had no
matching errors compared to Baseline, Baseline+GMP and
Baseline+GAP, which indicates that our method solved the
problem of occlusion and appearance similarity to a certain
extent.
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5 Conclusion

In this work, we design a network named EMCA to
learn more representative, robust and discriminative feature
embeddings to solve occlusion and similar appearance prob-
lems in Re-ID tasks. In the model, we propose a novel
attention module named CCAM, which can process the
channel information of input features at different scales
and can effectively capture more discriminative features
without dimensionality reduction. CCAM consists of LCI
and CWI. LCI focuses on both the maximum pooling fea-
tures and the average pooling features to generate channel
weights separately, and CWI combines the two channel
weights to generate richer and more discriminant channel
weights. EMCA demonstrated its state-of-the-art perfor-
mance through extensive experiments on four datasets,where
ablation studies and visualizations showed the effectiveness
of the model structure and each added component.

However, image-based person re-identification is very dif-
ficult and limited to solve problems such as occlusion and
similar appearance.With the excellent results of a large num-
ber of video-based person re-identification research works,
we observed that the information in the video frames have
greater research value for alleviating the problems of occlu-
sion and appearance similarity. In the future, we can incor-
porate more effective attention modules into video-based
person re-identification networks to address the challenges
of occlusion and similar appearance.
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