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Abstract

Despite recent advances in semantic manipulation using StyleGAN, semantic

editing of real faces remains challenging. The gap between the W space and the

W+ space demands an undesirable trade-off between reconstruction quality and

editing quality. To solve this problem, we propose to expand the latent space

by replacing fully-connected layers in the StyleGAN’s mapping network with

attention-based transformers. This simple and effective technique integrates

the aforementioned two spaces and transforms them into one new latent space

called W++. Our modified StyleGAN maintains the state-of-the-art generation

quality of the original StyleGAN with moderately better diversity. But more

importantly, the proposed W++ space achieves superior performance in both

reconstruction quality and editing quality. Despite these significant advantages,

our W++ space supports existing inversion algorithms and editing methods

with only negligible modifications thanks to its structural similarity with the

W/W+ space. Extensive experiments on the FFHQ dataset prove that our

proposed W++ space is evidently more preferable than the previous W/W+

space for real face editing. The code is publicly available for research purposes

at https://github.com/AnonSubm2021/TransStyleGAN
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artificial intelligence, disentanglement, Transformer

1. Introduction

The tremendous success of Generative Adversarial Networks (GANs) [1] has

revolutionized the field of data-driven image generation and has sparked sig-

nificant research attention. For human face synthesis in particular, the cur-

rent state-of-the-art architecture StyleGAN [2, 3] generates high resolution (i.e.

1024 × 1024 pixel), photo-realistic images by first mapping the latent code to

layer-wise style code and then feeding it into each convolution layer. Added

via adaptive instance normalization (AdaIN) or its improved technique called

weight demodulation, this style code S directly controls image features at var-

ious scales. The disentanglement of different attributes (coarse, medium, and

fine) exhibited in the intermediate latent space is further explored by numerous

follow-up works [4, 5, 6, 7, 8] to achieve semantically controllable human face

generation. However, this manipulation capability is not directly applicable to

real faces.

To mitigate this problem, an “invert then edit” methodology is adopted

[4, 5, 9, 10, 11, 12, 13]. A real image is first projected into the latent space

of StyleGAN. Then new latent codes are obtained by performing semantically

meaningful edits on inverted latent codes. However, projected latent codes in

the W space are not adequate for accurate regeneration of original images. The

extended latent space W+ has been shown to be more powerful for inversion

[14]. But editing latent codes in the W+ space is notoriously ill-posed because

they fall out of the semantically meaningful manifold. In contrast, latent codes

in the W space do not suffer from this problem and thus favor editing quality.

This divide between the W space and the W+ space, unfortunately, mandates

a compromise between reconstruction accuracy and manipulation naturalness.

In this paper, we present a straightforward but crucial enhancement to the

StyleGAN architecture which expands the dimension of its latent space for bet-

ter real face editing. We achieve this by replacing the fully-connected layers in
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Figure 1: (a) Model overview. While the original StyleGAN [3] feeds the same style code to

each convolution layer, we redesign the architecture of the StyleGAN mapping network using

Transformer so that different style codes are provided to different layers. We illustrate the

structure for resolution at 256 × 256. (b) An illustration of our proposed mapping network.

We omit some standard layers that are not essential for our architecture to not clutter the

exposition.

the mapping network M with attention-base transformer structures [15]. This

modified mapping network M ′ maps a random input vector in the Z space to a

new intermediate latent space named W++. The new W++ space has the same

dimension as the W+ space, which is much larger than the W space and thus

achieves a finer reconstruction quality. Unlike latent codes in the W+ space,

latent codes in the proposed W++ space do not fall out of the semantically

meaningful manifold after manipulation because they are directly utilized for

image synthesis during training. As a result, our W++ space enjoys a better

editing quality. In addition, our enhanced StyleGAN maintains the state-of-

the-art performance of the original StyleGAN with a moderate improvement in
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terms of generation diversity. Lastly, our proposed W++ space readily works

with existing inversion algorithms and editing methods requiring only minor

adjustments.

To demonstrate our W++ space’s outstanding compatibility, we apply a

few prevailing methods for inversion and editing, respectively. For the task

of inversion, we choose the StyleGAN projector [3] to represent optimization-

based methods and the pixel2style2pixel (pSp) [16] to illustrate learning-based

methods. For the task of editing, we start with the InterfaceGAN [4, 5] for single

attribution manipulation. Inspired by the idea of conditional GAN (cGAN) [17],

we then propose a cGAN-based pipeline for attribute editing of real faces. Unlike

traditional cGANs, our pipeline (see Figure 6) uses attributes extracted by

pre-trained models as conditioning information. Another difference is that our

discriminator learns to distinguish real and fake images without any conditioning

information and thus is same as one in a naive GAN.

Our main contributions are summarized as follows:

• We propose to enhance the StyleGAN model by replacing fully-connected

layers in its mapping network with attention-based transformers. This

augmentation keeps the state-of-the-art generation quality and also mod-

erately improves the generation diversity.

• Our proposed latent space W++ achieves superior performance in both

reconstruction quality and editing quality.

• Our new W++ space offers excellent compatibility with existing algo-

rithms for both inversion and editing. Only minor changes are needed.

2. Related Work

In the following, we briefly describe the existing literature on the subject

of real face editing. The ”invert then edit” methodology has become the de

facto standard in this active research field. In the first inversion step, a given

image is projected back into the latent space of StyleGAN and the inverted
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latent code can faithfully reconstruct the input image through the generator.

Then new latent codes are obtained by changing the old ones along semantically

meaningful directions in the latent space.

2.1. GAN Inversion

The recent survey by Xia et al. [18] provides an exhaustive overview of

GAN inversion algorithms. Existing methods can be classified into three main

categories: optimization-based, learning-based, and a hybrid approach.

Optimization-based algorithms iteratively improve a latent code to minimize

the error for a given image. Using an additive ramped-down noise, the original

StyleGANv2 [3] proposes to embed images in the W space which enables better

editing at the cost of worse reconstruction. To the contrary, Image2StyleGAN

and Image2StyleGAN++ [14, 9] embed images into the extended W+ space

which effectively optimizes a separate style for each scale. This approach sacri-

fices editing quality for reconstruction quality. To find a better balance, PIE [12]

and StyleGAN2Encoder [19] adopt a two-stage encoding process which first em-

beds an image in the W space and then refines its initial latent code by opti-

mizing in the W+ space.

Learning-based methods [20, 16, 21] aim to train an encoder network which

maps an image to the latent space. Compared with optimization-based algo-

rithms, learning-based methods have the advantage of low computation com-

plexity but suffer from inferior reconstruction quality.

The hybrid type such as [10] combines the above two techniques where an

encoder network is first used to obtain an approximate latent code and then

this latent code is improved with optimization.

2.2. Latent Space Manipulation

Given its approximate linearity, the latent space of StyleGAN has been the

primary target for semantic manipulation. Supervised methods find linear di-

rections that correspond to changes in a given binary labeled attribute (such as

5



young vs. old) with the supervision of semantic annotations. StyleRig [22] uti-

lizes a pre-trained 3DMM to find the mapping between rigging information and

face manipulation. StyleFlow [11] modifies a set of predetermined attributes

by learning a transformation between different vectors in the W+ space. Inter-

faceGAN [4, 5] trains linear support vector machines (SVMs) to classify latent

codes based on semantic labels and uses the normal vector of each hyperplane

as the latent direction of the selected attribute.

To facilitate attribute manipulation in an unsupervised manner, GANSpace [6]

performs PCA on the sampled data to find primary directions in the latent space.

Conversely, Collins et al. [7] discovers the connection between local semantics

and components of latent codes using k-means clustering. Finally, SeFa [23]

is a closed-form factorization method which computes interpretable directions

without any kinds of training or optimization.

2.3. Other Space

Most recently, a few concurrent works [24, 25, 26] have been proposed to

address this “reconstruction-editing” conundrum by exploring other space op-

tions.

Although having achieved a satisfactory trade-off, [24] fails to eliminate the

fundamental conflict caused by performing reconstruction and editing in two

different latent spaces. Their proposed P space is transformed from the W space

by inverting the last Leaky ReLU layer in the StyleGAN mapping network, while

the P+ space is extended from the P space by concatenation in a similar way

as the W+ space being extended from the W space.

Instead of the latent space, [25, 26] investigate the style space which is

spanned by all possible style vectors. However, as is pointed out in [26], the

style space achieves worse manipulation naturalness and closer reconstruction

when compared with the W+ space. This, unfortunately, even aggravates the

problem that we are trying to solve.
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Table 1: Quantitative comparison of our model and the original StyleGAN on generation

quality with the FFHQ dataset. ↑ indicates that higher is better, and ↓ that lower is better.

Model FID ↓ Precision ↑ Recall ↑ Density ↑ Coverage ↑

StyleGANv2 4.69 0.670 0.430 1.278 0.955

Ours 4.67 0.662 0.454 1.261 0.961

Figure 2: FID score curve for different StyleGAN models at 256 × 256 resolution during

training. The StyleGAN with 14 independent mapping networks reaches its optimal score

5.97 at Iteration 250K. Our enhanced StyleGAN model achieves the best FID score 4.67 at

Iteration 230K.

3. Method

3.1. Motivation

The fundamental reason for having to sacrifice either reconstruction quality

or editing quality for the other is the fact that these two operations are best suit-

able in two separate latent spaces. The original StyleGAN uses the same style

vector for all varied scales during image generation, which essentially constrains

the dimension of the intermediate latent space W to be 1× 512. By traversing

the W space, we can find semantically meaningful directions for editing. During

inversion, on the other hand, such restriction is lifted which enlarges the dimen-
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sion of the W+ space to be k× 512 (k is the number of style codes). This extra

flexibility allows for a more faithful restoration, but it also distorts all editing

directions. To resolve this contradiction, we need to expand the input space Z

to be of dimension k × 512 and in turn expand the intermediate latent space

W . But how do we achieve that? (For simplicity and conformity, we fix the

image resolution to 256× 256 and thus set the value of k to 14 for the following

analysis.)

One straightforward solution is to expand the dimension of fully-connected

layers in the mapping network from 512 to 7168 (which is equal to 14×512). Al-

though the dimension of the intermediate latent space is successively increased in

this way, the computation cost also grows quadratically. The estimated FLOPs

of a fully-connected layer is 512 × 512. And the estimated FLOPs of an ex-

panded fully-connected layer becomes 7168 × 7168, which is 196 times of an

original one. And it grows to 324 times at 1024 × 1024 resolution as k reaches

18.

Another possible solution is to use an individual mapping network for each

layer, which avoids the explosion of computational complexity occurred above.

This means 14 independent mapping networks each creating a different style

vector. Since each new mapping network is structurally identical to the original

one, this approach limits the computational growth to linear. However, as is

shown in Figure 2, the generation quality indicated by the FID metric deterio-

rates significantly. The main reason for this degradation is the absence of any

correlation among style vectors. In the original StyleGAN, consistency of global

features across scales is ensured by feeding the same style vector to all layers in

the synthesis network. However, using fully independent mapping networks to

compute style vectors completely prohibits such a correlation.

3.2. W++ Space

An ideal solution to this problem should therefore satisfy the following two

conditions: (i) limited growth of computational cost; (ii) some degree of corre-

lation among style vectors. The attention-based transformer structure [15] fits
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these two conditions naturally.

A detailed illustration of our mapping network is provided in Figure 1(b).

We follow the original design of the transformer with a multi-head self-attention

and a simple position-wise fully connected feed-forward network. A latent code

z is randomly sampled from the input latent space Z. This Z space is almost

identical to its counterpart in the original StyleGAN except that its dimension

is enlarged to 14× 512. Then a fixed 1D position embedding is added to retain

the layer index of each style vector [27]. The query (q), the key (k), and the

value (v) all derive from this same latent code z concatenated with position

embedding through separate linear transformations. According to the ablation

study by Karras et al [2] on the depth of the mapping network, 8 is the optimal

choice. Therefore, we implement our mapping network by stacking 8 transform-

ers. Outputs of this network form our new latent space, W++.

Computation cost. In our case, the overall computational complexity of the

transformer is dominated by linear transformations instead of the similarity

calculations. Each linear transformation is bounded by O(kd2) where the di-

mension d is 512 and the number of style codes k is 14. We also add a com-

pression ratio c as a trick to reduce the total computation, which lowers the

complexity to O(k(d
c )2); in practice, we set the value of c to 4. In total, our

W++ space introduces an approximately five-fold increase in computational

cost for the mapping network. However, such expansion has limited impact

on the whole model given the fact that most of the StyleGAN’s computation

burden falls upon the synthesis network and the discriminator.

Style correlation. The cosine similarity between two linear transformations of

the same input, the query and the key, is calculated by the self-attention module.

This similarity matrix is then multiplied with the value which is another linear

transformation of the input. Therefore, the latent code in our W++ space is

essentially a weighted sum of the input latent code in the Z space along the k

(= 14) dimension. All coefficients are learned during the training stage. Hence,

the mapping network of the original StyleGAN is a special case of ours where
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Table 2: Quantitative comparison on image reconstruction with StyleGAN projector [3] in

different latent spaces. Reported results are average values over 400 images. ↓ means lower

number is better.

Metrics inversion in W space inversion in W+ space inversion in W++ space

avg Perceptual loss ↓ 0.2079± 0.0389 0.0855± 0.0177 0.0937± 0.0179

avg MSE loss ↓ 0.0776± 0.0512 0.0217± 0.0179 0.0255± 0.0183

correlation between any two elements in the k dimension is rigidly constrained to

1. Using 14 independent mapping networks is at the other end of the spectrum

because the correlation is then equivalent to 0. Depending on the input values,

our correlation coefficients fall within [0, 1] after training and vary for different

pairs.

As is shown in Figure 1(a), the output latent code is divided into 14 different

style codes along the k dimensions. Each style code with a dimension of 512

is then fed to a different layer in the synthesis network at different scale. No

changes are made to the original styleGAN architecture to accommodate the

proposed W++ space.

4. Experiments

We evaluate our proposed W++ space using the FlickrFaces-HQ (FFHQ)

dataset [2] from three aspects: generation quality, reconstruction quality, and

editing quality. All experiments are performed using PyTorch at 256 × 256

resolution with 8 NVIDIA Tesla V100 GPUs.

4.1. Image Synthesis

We first evaluate our proposed W++ space by comparing it with the origi-

nal StyleGANv2 1. We train both models from scratch using exactly the same

1Our work builds upon the PyTorch implementation of StyleGANv2 by rosinality, which

is publicly available at https://github.com/rosinality/stylegan2-pytorch

10

https://github.com/rosinality/stylegan2-pytorch


Figure 3: (a) Qualitative comparison on image reconstruction with StyleGAN projector [3]

in different latent spaces. (b) Qualitative comparison on image reconstruction with pSp en-

coder [16] in different latent spaces. Top row displays differences between inverted images and

original images.

hyperparameters. The generation quality is measured by Frechet inception dis-

tances (FID) [28] and the diversity is reflected by Recall [29] and Coverage [30] 2.

The results are provided in Table 1.

Our modified StyleGAN achieves comparable generation quality than the

original StyleGANv2 3. Furthermore, there is a slight shift from precision to

recall as our model achieves higher recall and lower precision. But as is pointed

out in [3], this is generally desirable because recall can be traded into precision

via truncation, whereas the opposite is not true. A similar phenomenon is

observed in the density and coverage pair, where density measures fidelity and

coverage quantifies diversity.

In summary, our new StyleGAN maintains the state-of-the-art generation

quality of the original StyleGAN. Also, our model gains slightly in terms of

diversity thanks to its larger latent space Z.

2The code is publicaly available at https://github.com/clovaai/

generative-evaluation-prdc
3The best FID score announced using rosinality’s Pytorch implementation at 256 × 256

resolution is 4.5. While the best FID score we have achieved after multiple runs is 4.69 at

the same resolution. However, this performance gap does not affect our findings because the

training codes are identical.
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4.2. Real Face Inversion

In this experiment, we compare inversion in the proposed W++ space with

both W and W+ space. We choose two well-established inversion algorithms,

the projector from [3] as an example for the optimization-based methods, and

the pSp [16] as an instance for the learning-based methods. Apart from its

outstanding reconstruction quality, we also demonstrate that our W++ space

readily supports existing works.

4.2.1. Optimization-Based

Although initially proposed for inversion in the W space, the StyleGANv2’s

projector has been extended to support inversion in the W+ space as well. Since

the W++ space shares the same dimension as the W+ space, this projector

easily works in our new space. Quantitative evaluations between inversion in

the W space, the W+ space, and our W++ space are provided in Table 2.

Figure 3(a) displays qualitative comparisons for visual inspection.

For quantitative examination, we choose two metrics, the mean square error

(MSE) loss and the perceptual loss defined as the LPIPS distance [31] between

target images and restored images. We perform optimization on a total of 400

images and report the average value for both metrics in all three spaces. Our

proposed W++ space outperforms the W space by a large margin in both

metrics.

For qualitative examination, the W space clearly performs the worst in re-

construction quality. Due to its low dimension, it simply fails to faithfully restore

the identity of the person in the input image. The W+ and our W++ space,

on the other hand, do not suffer from this drawback. Inverted images in these

two spaces are almost indistinguishable because they have the same dimensions.

These findings are also confirmed by the element-wise difference map shown in

the top row of Figure 3(a).

Therefore, our proposed W++ space clearly outperforms the W space in

reconstruction quality while it achieves comparable results with the W+ space.
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Table 3: Quantitative comparison on image reconstruction with pSp [16] in different latent

spaces. Reported results are average values over 400 images. ↓ means lower number is better.

Metrics inversion in W space inversion in W+ space inversion in W++ space

avg Perceptual loss ↓ 0.4158± 0.0590 0.3557± 0.0517 0.3641± 0.0530

avg MSE loss ↓ 0.0661± 0.0298 0.0398± 0.0204 0.0412± 0.0204

4.2.2. Learning-Based

Our proposed W++ space also supports existing learning-based inversion

algorithms such as pSp [16] 4 effortlessly. The only modification necessary is to

replace the previous StyleGAN model with our enhanced one. We follow the

default hyperparameters for training.

The quantitative and qualitative results are shown in Table 3 and Figure 3(b)

respectively. We adopt the same numerical metrics as above. In accordance with

findings in previous works, the reconstruction quality of the learning-based pSp

is worse than the reconstruction quality of the optimization-based StyleGAN

projector. Again, our proposed W++ space accomplishes equivalent superiority

with the W+ space in reconstruction quality.

4.3. Real Face Editing

After projecting real images into the latent space, we perform manipulation

in the obtained latent codes for semantic editing. Again, we choose two methods

to prove the advantage of our proposed W++ space in editing quality. One is

the well-known InterfaceGAN [4, 5] and the other is a conditional GAN-based

editing pipeline which uses pre-trained models as attribute extractors.

4.3.1. InterfaceGAN

Following the procedure in [4, 5], we train a linear support vector ma-

chine (SVM) 5 to find the editing direction which manipulates a real image.

4The code is publicly available at https://github.com/eladrich/pixel2style2pixel.
5The code is publicly available at https://github.com/genforce/interfacegan.
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Figure 4: Qualitative comparison of age transformation using InterfaceGAN [4, 5] in different

latent spaces. The age label for each image is created using the pre-trained DEX [32] model.

Columns identified by blue boxes are on display in Figure 6. “∼ N” denotes “approximately

N years old”. Our results (the bottom row) achieve considerably stronger robustness for

long-distance manipulation.

100000 random latent codes are first generated and then a pre-trained predic-

tor network, such as DEX [32] 6, is selected to create attribute labels for their

corresponding images. Afterwards, these data pairs are used to train the lin-

ear SVM. For this demonstration, we use the StyleGANv2’s projector to obtain

latent codes for real images.

Since the step size plays a crucial role in latent space manipulation, we first

conduct an empirical study to align both the visual effect and the classifica-

tion score of edited images in different spaces. Figure 4 and Figure 5 display

the intermediate frames of the entire age transformation and gender transition-

ing respectively. The first column shows the inverted images and subsequent

columns contain images edited to different extents. As the editing distance

between the latent code and the classifying boundary keeps increasing, the edit-

ing quality of both the W and the W+ space starts to deteriorate, especially

for editing in the W+ space. For gender manipulation in particular (see Fig-

ure 5), changes in the gender direction also transforms the person’s race from

white to Asian. In contrast, our proposed W++ space does not suffer from

6The code is publicly available at https://github.com/siriusdemon/pytorch-DEX.
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Figure 5: Qualitative comparison of gender transitioning results using InterfaceGAN [4, 5] in

different latent spaces. Columns identified by blue boxes are on display in Figure 6. Our results

(the bottom row) achieve considerably stronger robustness for long-distance manipulation.

the “distance effect” problem and shows considerably stronger robustness for

long-distance manipulation.

The blue boxes indicate the columns we select for each attribute and the fi-

nal results are shown in Figure 6. The results in the W+ space (see the middle

row) clearly exhibits the worst editing quality in both cases. Although enjoying

a better editing quality, the W space suffers from the “distance effect” prob-

lem [4, 5] where only near-boundary manipulation works well. When the latent

code goes further from the boundary, the quality of edited images deteriorates

dramatically as manipulating one attribute starts to affect others. In compar-

ison, our proposed W++ space (see the bottom row) achieves an exceedingly

more satisfying editing quality. The improvement is extremely obvious in the

third column where images are modified to transit gender. In this case, the race

of the target person changes from white to Asian when moving the latent code

along the gender direction in the W space. Edited images in our W++ space

faithfully preserve personal identity even for long-distance manipulations.

Two more examples for age transformation are provided in Figure 10 and

Figure 11. Figure 12 and Figure 13 exhibit two extra examples for gender

transitioning.
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Figure 6: Manipulating real faces with respect to the attribute age in different latent spaces.

Given a real image to edit, we first invert it back to the latent space using StyleGAN projec-

tor [3] and then manipulate the latent code with InterFaceGAN [4, 5]. Our results (highlighted

by the red box) achieve considerably stronger robustness for long-distance manipulation.

4.3.2. cGAN-based Pipeline

To further demonstrate the superiority of our proposed W++ space, we uti-

lize a conditional GAN-based pipeline for attribute manipulation of real faces.

As is shown in Figure 7, our pipeline adds conditioning information to the Style-

GAN generation process. During training, the pre-trained attribute extractor

first extracts attribute information from target images. Then this attribute

code is concatenated with the latent code in our W++ space. Different style

codes are concatenated with exactly the same attribute code and are fed to the

synthesis network to generate outputs. Afterwards, the same attribute extrac-

tor extracts attribute information from generated images. An L1 attribute loss

between the two attribute codes is minimized as a form of supervision. Unlike

traditional cGAN, the discriminator in our case does not take any conditioning

information as input. It is only trained to distinguish realistic-looking images

from fake ones and thus is identical to the discriminator in StyleGANv2. Also,

only the StyleGAN part (the mapping network, the synthesis network, and the

discriminator) is trainable since the attribute extractor is fixed.

For editing real faces, the corresponding latent code for a given input is

obtained through inversion. Different attribute classifiers are selected to extract

16



Figure 7: Our conditional GAN-based framework for editing real images. Here we cast one

person’s facial expression(eyes open and mouth closed) to another person.

different attributes (such as age, gender, smile, eyes open) from target images.

Concatenated with various attribute codes, the synthesis network consequently

generates images of the same person but with intended attributes.

In this experiment, we use the StyleGANv2’s projector to invert real images

into latent codes. The default hyperparameters are used to train projectors in

all three spaces (W , W+, and W++) for a fair comparison. We utilize a pre-

trained feature extractor which captures various facial movements essential for

depicting a person’s smile. The attribute code extracted is a 1D vector of 51

facial coefficients. For editing the smile expression in particular, we extract the

attribute code from a single source image and apply it to all input images. The

comparison results are shown in Figure 8.

Here we show two examples, one female and one male. Inverted images

in the W space show the lowest quality, which in turn impairs the quality of

edited images and makes the W space ill-suited for real image editing. The W+

space achieves excellent reconstruction quality but the worst editing quality.

The smile expression after editing is indistinguishable. Our proposed W + +

space, on the other hand, attains outstanding quality in both reconstruction

and editing. The smile expression in the edited images are both apparent and

natural. Additionally, our cGAN-based editing pipeline enables exceptional

attribute disentanglement. As is shown in the last row of Figure 8, all irrelevant

features remain unaltered. Additional results can be found in Figure 14 and

17



Figure 8: Manipulating real faces with respect to the attribute smile in different latent spaces.

Given a real image to edit, we first invert it back to the latent space using StyleGAN projec-

tor [3] and then manipulate the latent code with our proposed cGAN-based editing pipeline.

Our results (highlighted by the red box) exhibit the most apparent and natural smile expres-

sion.

Figure 15.

4.4. User Study

In addition, we conduct a user study to evaluate our proposed W + + space

quantitatively. Participants are randomly assigned inverted images and edited

images in either the W space or the W+ space, paired with corresponding

images in the W ++ space. Then they are asked to select the one of the highest

quality according to their own judgements. In this way, we are able to determine

which space generates more authentic images to the human eye.

4.4.1. Details of the User Study

The user study has 4 tasks, namely inversion, aging, smiling and transition.

In each task, the original image is shown to the left along with two generated

images to the right. One of the two images is in the proposed W + + space,

while the other one is randomly picked either in the W space or the W+ space.

The sequence of these two images shown is shuffled so that the image in the

W + + space could either be in the second column or the third column. More

importantly, all tasks in our study follow the double-blind procedure to guard
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against any potential bias.

Inversion: In this task, the goal is to reconstruct an image from a latent

code. 3 sets of images are randomly picked out of a total number of 12. The

participant is then asked to select one image per set which looks more identical

to the original image among the two.

Aging: In this task, the goal is to edit a portrait so that the person looks

like at 60 years old. 3 randomly selected sets of images are shown. And the

participant is asked to select the one more realistic per set.

Smiling: In this task, the goal is to edit a portrait so that the person puts

on a smiling face. 2 sets of images are randomly picked out of a total number of

6. The participant is then asked to select the more genuine one per set among

the two images shown.

Transition: In this task, the goal is to edit an image so that the person is

transited to the opposite gender. 2 randomly selected sets of images are shown.

And the participant is asked to select the one more authentic per set.

We recruit a total number of 41 users with diverse backgrounds. 21 of them

are self-identified as male, while the rest is self-identified as female. There are

12 participants who are younger than 25, 19 between age 25 and 30, 7 between

age 30 and 35, and 3 above the age of 35. 11 people has some experience in the

field of computer vision, while the others do not.

4.4.2. Result Analysis

We designate the W space and the W+ space as 2 independent control

groups and compare the result of the W++ space with each of them respectively.

As is shown in Figure 9, our proposed W + + space is overwhelmingly more

preferable among participants than either the W space or the W+ space in

most tasks. For example, 91.7 percent of users conclude that the reconstruction

quality of our W ++ space is better than the W space(according to Figure 9(a))

and 96.3 percent of participants believe that the editing quality for aging in the

proposed W + + space is better than the W+ space(according to Figure 9(b)).

Figure 9(b) also shows that 55.6 percent of human subjects prefer the inverted
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Figure 9: Stacked bar charts of the preference ratio (a) the W + + space vs. the W space (b)

the W + + space vs. the W+ space

images in our W + + space to those in the W+ space, which resonates with

the fact that these two spaces achieve comparable perceptual loss and MSE loss

values.

To evaluate the statistical significance, we supplement our user study with

a two-way ANOVA test and the result is shown in Table 4. The p values for the

models in both tables are less than the threshold of 0.001 which indicates that

the difference of W + + and the other model is highly statistically significant

rather than caused by random factors. Therefore, our proposed W + + space

is superior to both the W space and the W+ space with highly statistical

significance. Furthermore, the p values for the tasks in both tables are more

than the threshold of 0.05. This implies that our results are not attributable to

the choice of tasks. As a result, the superiority of our proposed W + + space is

universal across all tasks.

5. Conclusion

In this work, we propose to upgrade the StyleGAN architecture by replacing

its mapping network with 8 attention-based transformers. This modification

transforms its original latent space to a new latent space called W++. Our

StyleGAN model retains the state-of-the-art generation quality and moderately

improves generation diversity. However, unlike the previous W or W+ spaces,

our proposed W++ space achieves superior performance in both reconstruction
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Table 4: Two-way ANOVA analysis for (a) the W + + space vs. the W space (b) the W + +

space vs. the W space to analyze the statistical significance.

Table (a) SS df MS F P

Models 53.33 1 53.33 127.59 < 0.0001

Tasks 2.24 3 0.75 1.79 0.1494

Models*Tasks 6.68 3 2.23 5.33 0.0014

Error 109.51 262 0.42 - -

Total 171.76 269 - - -

Table (b) SS df MS F P

Models 36.11 1 36.11 99.77 < 0.0001

Tasks 1.76 3 0.59 1.62 0.1851

Models*Tasks 15.35 3 5.12 14.14 < 0.0001

Error 93.38 258 0.36 - -

Total 146.6 265 - - -

quality and editing quality. Additionally, it supports existing inversion algo-

rithms and editing methods with only minor adjustments needed. Experiments

using FFHQ dataset clearly demonstrate the merits of our method.

Our work has some limitations that we leave to future work. Although our

proposed W++ space has achieved excellent reconstruction quality by expand-

ing the original latent space, the inverted image still looks a little different from

the input real image. This dissimilarity adversely impacts the editing quality of

real images. In the future, we would like to close this gap.
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Figure 10: Qualitative comparison of age transformation using InterfaceGAN [4, 5] in differ-

ent latent spaces. The age label for each image is created using the pre-trained DEX [32]

model. “∼ N” denotes “approximately N years old”. Our results (the bottom row) achieve

considerably stronger robustness for long-distance manipulation.
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M. Zollhofer, C. Theobalt, Stylerig: Rigging stylegan for 3d control over

portrait images, in: Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, 2020, pp. 6142–6151.

[23] Y. Shen, B. Zhou, Closed-form factorization of latent semantics in gans,

arXiv preprint arXiv:2007.06600.

[24] P. Zhu, R. Abdal, Y. Qin, P. Wonka, Improved stylegan embedding: Where

are the good latents?, arXiv preprint arXiv:2012.09036.

[25] Y. Liu, Q. Li, Z. Sun, T. Tan, Style intervention: How to achieve

spatial disentanglement with style-based generators?, arXiv preprint

arXiv:2011.09699.

[26] Z. Wu, D. Lischinski, E. Shechtman, Stylespace analysis: Disentangled

controls for stylegan image generation, arXiv preprint arXiv:2011.12799.

[27] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-

terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit,

26



Figure 15: Manipulating real faces with respect to the attribute smile in different latent

spaces. Given a real image to edit, we first invert it back to the latent space using StyleGAN

projector [3] and then manipulate the latent code with our proposed cGAN-based editing

pipeline. Our results (highlighted by the red box) exhibit the most apparent and natural

smile expression.

N. Houlsby, An image is worth 16x16 words: Transformers for image recog-

nition at scale, in: International Conference on Learning Representations,

2021.

[28] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, Gans

trained by a two time-scale update rule converge to a local nash equilibrium,

in: I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, R. Garnett (Eds.), Advances in Neural Information Processing

Systems, Vol. 30, Curran Associates, Inc., 2017.

[29] T. Kynkäänniemi, T. Karras, S. Laine, J. Lehtinen, T. Aila, Improved pre-

cision and recall metric for assessing generative models, in: H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (Eds.),
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