
Exact antialiasing
of textured terrain
models

Daniel Cohen-Or

Computer Science Department, School of Mathemat-
ical Sciences, Tel-Aviv University, Ramat-Aviv 69978,
Israel
e-mail: daniel@math.tau.ac.il

We introduce a fast area-sampling anti-
aliasing technique for textured terrain
models. We scan the model in image or-
der, averaging the pixel footprint values.
The technique samples all, but only, the
visible parts. It improves previous texture
mapping methods that ignore self-
occluded footprints. It is superior to
super-sampling. The image quality is as-
sessed in both spatial and temporal do-
mains. The good precision of the sampling
process in the spatial domain provides an
alias-free temporal domain. The low com-
putational cost of the rendering technique
and its high-quality filtering in the spatio-
temporal domain offer a tool for real-time
rendering of discrete terrain models.

Key words: Terrian visualization — Visual
simulations — Voxel-based modelling —
Ray casting — Antialiasing — Area samp-
ling — Supersampling

1 Introduction

Images of continuous scenes that contain
arbitrarily high spatial frequencies are sample
and represented in a finite set of raster pixels.
Due to the discrete nature of the image raster,
the image is limited to display only a finite
range of frequencies. Aliasing is a phenomenon
caused by high frequencies sampled at a lower
rate. Spatial domain aliasing produces artifacts
such as Moire patterns or jagged edges. Spatial
aliasing, which can be acceptable in a still image,
can cause stronger visual artifacts in a real-time
animated sequence of images. An eye-irritating
effect caused by spatio-temporal domain aliasing
is known as flickering. This is due to the display of
high frequencies at falsely spatial locations that
are not correlated in time, which causes sudden
changes in pixel values.
Antialiasing techniques use subpixel accuracy to
reduce or eliminate aliasing artifacts. Accurate
spatial antialiasing reduces flickering due to the
coherency exhibited among the images in the time
domain (shown in Sect. 5). Thus, real-time anima-
tions of textured models must employ a very accu-
rate antialiasing technique to avoid the disturbing
flickering. However, embedding accurate anti-
aliasing into the rendering process traditionally
causes a serious performance degradation, which
conflicts with the real-time requirement. The anti-
aliasing technique presented in this paper is
embedded in an algorithm that renders textured
terrains.
The paper is structured as follows. In Sect. 2,
a brief review of antialiasing methods of textured
models is presented In Sect. 3, previous works on
terrain rendering are surveyed and the scheme
that is implemented in this work is introduced.
The new antialiasing technique is introduced in
Sect 4. In Sect. 5, it is shown that, by implement-
ing exact spatial aliasing, the technique reduces
temporal aliasing artifacts. The algorithm’s cost is
analyzed in Sect. 6, and in Sect. 7 we show results
from a few test cases. We end with conclusions in
Sect. 8.

2 Antialiasing techniques

Antialiasing methods can be regarded as an ap-
proximation of the convolution integral between
the continuous image I and a filter kernel H at

The Visual Computer (1997) 13 :184—198184 (Springer-Verlag 1997

every output point S (i, j) of the image:

S (i, j)":: I(i#x, j#y)H (x, y) dxdy. (1)

Supersampling is a common antialiasing technique
that approximates this integral. It samples the
continuous image at N times the output image
resolution. The samples are then low-pass filtered
at the Nyquist limit of one cycle every two pixels.
In computer graphics images, the spectrum en-
ergy does not necessarily fall off with increasing
spatial frequencies, and some aliasing may always
be introduced. This is due to the fact that the filter
is applied only after the image is sampled and not
on the continuous space. However, if the samples
are positioned stochastically rather than over
a regular grid, then the patterned artifacts caused
by frequencies above the Nyquist limit are traded
for a noise that is less irritating to the human eye
(Cook 1986).
Another antialiasing approach applies the filter-
ing prior to sampling. The visible area seen from
an output image pixel is convolved with the kernel
filter in order to calculate Eq. 1 accurately. How-
ever, determining the visibility for each output
pixel can be extremely costly (Catmull 1978). Al-
though the results are convolved with a simple
box filter whose kernel extent is limited to one
pixel, such an exact area sampling produces high-
quality images (see Sect. 4). Other works have
proposed techniques that approximate the sub-
pixel visibility by small discrete masks (Carpenter
1984; Schilling 1991). These techniques operate in
object order, thus partial visible subpixel data are
accumulated at an image space buffer. Due to the
small size (e.g., 4]4) of the masks, the dynamic
color resolution is limited.
The convolution operation, as defined by Eq. 1, is
a space-invariant filter. Fort practical scenarios,
various shapes and sizes of filter kernels have to
be applied to each output image pixel. A simple
example is a textured plane viewed by a perspec-
tive transformation. where the pixel footprint gets
larger towards the horizon. The pixel footprint is
defined as the object-precision visible area seen
from the window pixel. For arbitrary complex
projection transformations, the pixel footprint
shape can have an arbitrary complexity. However,
when a perspective viewing transformation is ap-
plied, the quadrilateral defined by the four projec-
ted points of the pixel extent provides a good

approximation of the pixel footprint over texture
space. Common space-variant techniques (Watt
and Watt 1992), however, do not account for
subpixel visibility and convolve the entire foot-
print including its occluded parts.
The antialiasing technique presented in this paper
uses a space-variant filter that is exact in the sense
that it computes area sampling rather than super-
sampling. The pixel footprint is scanned, and only
its visible area is filtered (averaged). A multi-
resolution prefiltered pyramid is employed to re-
duce the complexity of large footprints.

3 Rendering terrain models

Textured terrain models represented by a poly-
gonal mesh can be rendered by a standard
graphics pipeline that supports mip-maps texture
mapping in hardware with bit-mask methods for
edge antialiasing (Akeley 1993). Mip-maps (Will-
iams 1983) are easily implemented, but are prone
to low-quality antialiasing, sine the filter shape is
limited to certain squares. Better filtering, imple-
mented in software, was proposed by Arganov
and Gotsman (1995) for avisual flythrough.
Digital textured terrains can be rendered back-
wards by a ray-casting approach (Cohen and
Shaked 1993; Coquillart and Gangnet 1984; Mus-
grave 1991; Paglieroni and Petersen 1994). The
image is generated by casting a ray-of-sight,
emanating from the viewpoint, through each of
the image pixels towards the terrain. The ray
traverses above the terrain until it ‘‘hits’’ the ter-
rain surface. The terrain’s texture is then sampled
and mapped back to the source pixel. If the sam-
pled value is just point sampled and not filtered,
then the quality of the output image is very low.
Filtering can be applied either before sampling
(prefiltering, area sampling) or after (supersamp-
ling). Figure 1 shows two images of a terrain. The
top image is point sampled, while the bottom
image is supersampled at a rate of N"8 (pixels).
As can be seen, the supersampled image has
a much better quality.
Musgrave (1991) used bilinear interpolation,
which yields acceptable quality only when the
pixel footprint is rather small. Point sampling of
a multiresolution prefiltered texture (Cohen and
Shaked 1993) can better deal with variant foot-
prints, but is still not exact enough to avoid

185

a

b

Fig. 1. The quality of an output image using: a point sampling;
b supersampling

flickering. Better quality can be achieved by com-
bining linear interpolation and supersampling
(Cohen-Or 1996). In Sect. 7 we compare the qual-
ity of supersampling with exact area sampling and
show the superiority of the latter.
We adopted the model in which the terrain data
are represented by an array of heights. The rays
can interpret these 1-D values as 3D parallelo-
grams (known as voxels or sticks) or as thin verti-
cal ‘‘walls’’ emanating from the grid lines. The
basic rendering algorithm is a ray-casting
algorithm that generates the image in column
order (Fig. 2). Since the model is discrete, there
is no explicit intersection calculation, but a
sequential search for a ‘‘hit’’ between the ray
and voxel.
In the technique we employ the method of
Cohen-Or (1996); the steps along the ray are per-
formed on the projection of the ray on the plane
rather than in the 3D space. The heights along the
ray are incrementally and uniformly sampled and
compared to the height of the terrain below it
until a hit occurs, and the color of the terrain at

the hit point is mapped back to the source pixel. If
no hit occurs, then the background color of the
sky is mapped. Since the terrain is an elevation
map, we can assume that the terrain model has no
vertical cavities (i.e., a vertical line has only one
intersection with the terrain), and thus the traver-
sal can be accelerated using coherence between
rays. The basic idea is that as long as the camera
does not roll, a ray cast from a vertically adjacent
pixel always hits the terrain at a greater distance
from the viewpoint than that of the ray below it.
When the pitch angle is not equal to zero, the
image lane is not perpendicular to the xy-plane,
and thus the ray emanating from the upper pixel is
a bit slanted, making the implementation of the
vertical coherence inexact (Lee and Shin 1995,
Wright and Hsieh 1992).
The image pixels are generated column by col-
umn, from bottom to top. A ray R

i
emanating

above the ray R
i~1

will always traverse distance
not shorter than the distance of the ray R

i~1
.

Thus, the ray R
i
can start its traversal from a dis-

tance equal to the range of the previous hit point
of the ray R

i~1
(Fig. 3). This feature shortens the

ray’s traversal considerably.
In Fig. 4 we introduce a pseudo-C code for the
generation of one image column. The following
notation is introduced and illustrated in Fig. 3.
Denote the camera position by COP. Let i!1
denote the current screen pixel, and P

i~1
, its posi-

tion in world coordinates. Assumed that the ray
R

i~1
is x-major, and hits a voxel »

k
located at the

point x
k

on the xy-plane. Denote by s(R
i
) and

H(R
i
), the slope and height of R

i
(above the cur-

rent voxel »
k
), respectively. Let Sample (»

k
) de-

note the interpolated color of voxel »
k

and
its adjacent voxel, and let H(»

k
) denote its height.

To continue the traversal of the ray R
i

from
point x

k
, the ray’s slope is computed by

s(R
i
)"(P

i
.h!COP .h)/ (P

i
.x!COP .x) (2)

and the height of the ray R
i
at point x

k
is

H(R
i
)"P

i
.h#(x

k
!P

i
.x) * s(R

i
). (3)

An analysis of the rendering cost has to take in
account both the operations performed upon hit-
ting the terrain and the cost of the basic ray
traversal.

186

2

3

4

Fig. 2. Discrete ray casting of a voxel-based terrain

Fig. 3. Climbing from the hit point of ray R
i~1

to ray R
i

Fig. 4. The basic point-sampling algorithm for generating
one column of pixels

Upon hitting the terrain, the terrain texture is
sampled, and the slope and height of the new ray
are computed (Eqs. 2 and 3). For each image pixel
through which the terrain (and not the sky) is
visible, this operation is performed only once.
Advancing along the ray requires a few basic
instructions. If standard incremental traversal is
implemented, the number of executions of this
operation is equal to the number of voxels in the
image footprint. This number is huge when the
image footprint extends to the horizon. Instead,
we implement a multiresolution traversal of the
terrain, in which the size of one step along the ray
is proportional to the pixel’s footprint size. Thus,
the rendering cost becomes independent of the
size of the image footprint, and the number of
steps over the terrain becomes proportional to
the image size rather than to the terrain size
(Cohen-Or 1996).

4 Exact antialiasing

A prominent concern in rendering an image of
a terrain is to reduce aliasing artifacts caused
by the inherent point-sampling properties of the
ray-casting process. At the same time, we want to
perform the antialiasing operation at a reasonable
cost, without a significant degradation in the per-
formance of the naive algorithm just shown.
The terrain image usually contains high spatial
frequencies that are sampled and represented in
the finite set of raster pixels. If the image is not
filtered correctly, aliasing artifacts are inevitable.
There are two types of aliasing artifacts, caused by
the sampling nature of the ray casting: spatial
aliasing the temporal aliasing. Temporal aliasing
is evident when a sequence of images is generated
and displayed at high speed from a flying camera,

187

so that each image is rendered from a slightly
different viewpoint.
To overcome these aliasing problems, we have to
improve the sampling of the terrain. In the follow-
ing, we present three antialiasing techniques and
evaluate their effectiveness and cost. We first con-
sider the point sampling and linear interpolation
techniques. Then, we introduce an efficient imple-
mentation of supersampling and area sampling
and show the superiority of area sampling.
We use three tools to evaluate the quality of
the sampling process. The first two tools are used
to evaluate subpixel image quality, and the third
is used to evaluate aliasing in the temporal
domain.

1. A ‘‘zoom-in’’ image is an image of the terrain in
which magnified voxels are displayed. Such an
image is create by viewing the terrain from a very
small window, which enables evaluation of the
smoothness of an image (Sect. 4.1).
2. An enlarged subpixel image of one pixel, show-
ing all the colors sampled from that pixel. Each
color occupies an area proportional to the weight
given to it when determining the pixel’s color.
Such an image serves as a tool for comparing the
quality of sampling with supersampling with that
of area sampling (Sects. 4.1 and 5).
3. An image of one column of an image over time.
It enables one to evaluate the smoothness of the
transition between consecutive frames and thus
to visualize temporal aliasing in a single image
(Sect. 5).

4.1 Point sampling and linear interpolation

Point sampling is implemented by sampling only
one voxel per pixel. Linear interpolation can be
implemented by sampling the two adjacent voxels
hit by the ray and computing a weighted average
of the voxel’s colors. Let us assume that the ray
steps along integer coordinates on the x-axis, and
hits the terrain point (x, y). With point sampling,
the pixel’s color is given by

Sample (x, y)"C (x,xyy),

while with linear interpolation, the weighted aver-
age of the adjacent voxel’s colors is computed

with the formula:

Sample(x, y)"C(x, xyy) * (vyw!y)

#C (x,vyw) * (y!xyy). (4)

Since multiresolution traversal is implemented,
the size of the voxels is determined according to
the voxel’s distance from the screen. The width of
the voxel is equal to that of pixel footprint. Thus,
by sampling two adjacent voxels for the pixel, the
entire footprint’s width is covered. As a conse-
quence, the sampling quality improves consider-
ably. This simple filter reduces noises caused by
high spatial frequencies, and the created image
has a smooth transition of color along its horizon-
tal lines. This improvement is emphasized in
a ‘‘zoom-in’’ image of terrain, in which the voxels
are magnified. Figure 5 shows two pairs of such
‘‘zoom-in’’ images of the terrain. The left images
are point sampled, while the right ones are filtered
by linear interpolation. The filtered images have
a smoother transition of colors along their hori-
zontal lines.
Improving the quality of the sampling also helps
to reduce temporal aliasing artifacts. The linear
interpolation reduces flickering by reducing the
number of visible voxels that are not sampled in
the naive point-sampling process. This feature is
elaborated in Sect. 5.

4.2 Supersampling

Linear interpolation filters with a wider support
than a single pixel; however, linear interpolation
alone fails to reduce aliasing when the pixel foot-
print is elongated at low-pitch angles. As a com-
mon remedy to the footprint undersampling, the
pixel can be supersampled. Vertical supersamp-
ling can be implemented by ray casting N equally
spaced rays from each pixel, from bottom to top.
The pixel’s color is the average of the N samples.
Denote by R

i
the ray emanating from pixel i and

by R
i`1

, the ray emanating from pixel i#1. To
simplify the supersampling process, we can as-
sume that rays R

i
and R

i`1
are parallel. Thus, the

rays in between them have the same slope (Fig. 6).
This assumption enables an efficient implementa-
tion of supersampling, without any significant loss
of quality.

188

a

b

Fig. 5. Linear interpolation versus point sampling. Images generated by point sampling are on the left side, while images created
by linear interpolation are on the right side: a the camera is very close to the voxels, emphasizing the smoothness of the filtered image;
b the camera is a little farther away, but still close enough to emphasize the effect of the filtering

The implementation of supersampling is quite
similar to the previously described point-samp-
ling algorithm. However, whenever the ray hits
the terrain (and it is not the Nth sample of the
current pixel), the ray’s height is updated by an
increment of a constant value that is predeter-
mined for the pixel. The next ray starts its traver-

sal from the new height without recalculation of
the ray’s slope. In the Nth sample, the ray’s height
and slope are updated, and the rendering of the
next pixel starts. The cost of supersampling re-
mains relatively reasonable, since the algorithm
traverses the same set of voxels as in the naive
implementation with an addition of only a small

189

6

7

8

Fig. 6. During supersampling we assume that the rays R
i

and R
i`1

are parallel. When the pitch angle is small, the
pixel’s footprint is very large and undersampled

Fig. 7. When the pitch angle is small, a pixel’s footprint
can be small at some part, causing redundant voxel
oversampling, and undersampling at some other parts

Fig. 8. The implementation on a voxel hit in supersampling

number of operations. A detailed analysis of the
rendering cost can be found in Sect. 6.
In Fig. 8, we introduce a pseudo-C code for super-
sampling one column of pixels. We modify only
the code for the operations that are performed
upon a hit. The code uses the following notation,
in addition to that introduced in the Sect. 3. De-
note the supersampling rate by N per, and the
index of the samples, by j. Denote the sum of
colors for pixel i by R, and denote R as the
current ray, set to R

i
at the beginning of rendering

pixel i. In the implementation, the slope and
height of ray R

i`1
are precomputed in the begin-

ning of sampling pixel i. This computation is es-
sential for determining the vertical increment
made by hitting a voxel. Suppose the current
voxel is »

k
"(H

k
,x

k
) and the sampling of pixel

i begins. The difference between the height of ray

R
i`1

and ray R
i
above voxel »

k
is precalculated to

set the vertical increment D
i
to be the constant

(H(R
i`1

)!H(R
i
))/N.

As already mentioned, the supersampling tech-
nique has its drawbacks. Suppose that we super-
sample at a predetermined ratio N. When the
pitch angle is small, one pixel’s footprint can be-
come very large, and more than N samples are
needed to determine the pixel’s color, as seen in
Fig. 6. This yields both spatial and temporal alias-
ing artifacts. When the terrain is steep, the pixel’s
footprint may contain only one voxel, making the
supersampling of N rays redundant. Figure 7 il-
lustrates occurrences of both oversampling and
undersampling of the terrain.
A good implementation of supersampling must be
adaptive to the true size of the pixel footprint.
However, since the size of a pixel footprint

190

depends not only on the viewing angle, but also
on the terrain topography, it is difficult to imple-
ment adaptive supersampling efficiently.
The area sampling implementation introduced in
the next section improves the quality of sampling
with only a marginal increase in the cost of the
algorithm.

4.3 Area sampling

Area sampling is an antialiasing technique that
takes into account all visible areas of the model
for each image pixel and filters the colors of these
areas. Exact area sampling determines the relative
contribution of each part of the model to the pixel
color.
Area sampling can be implemented by making
a slight modification to the implementation of
supersampling. Whenever the ray hits a voxel, the
voxel’s color is sampled and is given a weight
proportional to the area visible from the pixel.
Then, the next ray’s traversal starts from the top
of the voxel (Fig. 10), unlike the supersampling
implementation in which the next ray starts from
a predetermined value, independent of the voxel
context. In this way, all the visible voxels are
traced, and an exact weighted average of their
colors is computed.
Efficient implementation of supersampling re-
quires predetermining of a supersampling rate
N at a reasonable value. As we have seen, this may
result in understanding as well as oversampling.
The major advantage of area sampling implemen-
tation is that all the visible area seen from a pixel
is traced and filtered, regardless of the viewing
parameters.
Figure 9 shows the footprint of an image rendered
by supersampling at a ratio N"4, from a 32]32
window. The figure illustrates the high-quality
sampling of area sampling as compared to that of
supersampling. Each sampled voxel is colored in
blue, while each unsampled voxel is colored in
red. The voxels hidden from the viewpoint are
colored in green. It should be observed that there
are many terrain voxels that are visible from the
viewpoint, but are not sampled, while area samp-
ling always covers all the visible voxels in the
image footprint.
In Fig. 12, we introduce a pseudo-C code for
the operations performed by the area-sampling

implementation upon hitting a voxel. The nota-
tion used in this code is similar to that used in the
code for implementing supersampling. As in the
implementation of supersampling, we precompute
the slope and height of ray R

i`1
at the beginning

of sampling pixel i. However, this time the height
of ray R

i`1
serves just as the ‘‘upper limit’’ when

rendering pixel i, since rays R
i`1

and R
i
bound its

footprint. The variables R
c
and R

w
hold the sum of

colors and the sum of weights, respectively.
Whenever the ray hits a voxel »

k
, the visible por-

tion of the voxel is computed by setting its weight
¼

k
to H @!H(R), where H @ is the minimum of the

voxel’s height H (»
k
) and the height of ray R

i`1
at

the hit point x
k
. The case where H @"H

k
is illus-

trated in Fig. 11. The value of ¼
k
is multiplied by

Sample (»
k
), the interpolated color of voxel »

k
.

In Sect. 7 we show that area-sampling implemen-
tation causes only a marginal increase in the cost
of the algorithm over supersampling, while the
main advantage of the technique is that it samples
all the visible voxels, and only those voxels that
are visible.

5 Spatiotemporal aliasing

We have seen that when the viewing angle is
small, the pixel’s footprint may become very long
and only a small portion of the visible voxels are
actually sampled. This is a typical spatial aliasing
scenario, where the high frequencies of the pixel’s
footprint are undersampled. Some degree of spa-
tial aliasing can be acceptable in a still image.
However, the same aliasing can cause stronger
visual artifacts in a real-time animated sequence
of images. Flickering is a typical temporal aliasing
effect. It exhibits itself by sudden changes in the
pixel colors that, irritate the eye.
When the footprint is correctly sampled, the pixel
color should not change sharply, since consecu-
tive footprints (in time) have a large portion
of overlapping. However, if the footprint is
undersampled, some visible voxels may contribute
to the footprint in one frame and not in the next.
Thus, some colors appear and disappear alterna-
tively, which causes the irritating flickering.
In order to investigate the flickering phenomenon
closely, an image of an enlarged pixel is produced,
visualizing the color components that contribute
to the final pixel color (Fig. 13). Each color

191

12

9

10

11

Fig. 9. The footprint of an image rendered from a 32]32
window and supersampled at a ratio of N"4. Sampled
voxels are colored in blue, unsampled voxels are colored
in red, and hidden voxels are colored in green

Fig. 10. After the ray hits the terrain, the next ray starts its
traversal from the top of the voxel, thus all the area visible
from the pixel is sampled

Fig. 11. Computing the weight ¼
k
of voxel »

k
by the

difference between the voxel’s height H(»
k
) and the height

of the ray at the hit point H (R)

Fig. 12. The implementation on a voxel hit in area sampling

component occupies an area proportional to its
weight. Note that supersampling uses an un-
weighted average. In fact, the image of the
enlarged pixel reflects the view seen from the
pixel window. A sequence of such enlarged pixels
shows the changes of the pixel’s color components

in the time domain. Figure 13 shows such se-
quences for area sampling and supersampling.
Note the smooth changes in the area sampling
and compare them to the rough changes in
the supersampling image. Obviously, the average
of these colors (the pixel color) is much more

192

a

b

13

14

a b

Fig. 13. The view ‘‘seen’’ from one pixel over
time, where the horizontal axis is time and the
vertical axis is the subpixel vertical coordinate:
a area sampling; b supersampling at a ratio of
N"4

Fig. 14. One column over time. Notice the
smoothness of transition in the area sampled
image (b) versus the supersampled image (a)

stable, but this behavior affects the amount of
flickering.
These sequences show how the footprint of
a given pixel changes in time. We can see that, in
area sampling, the amount of overlapping is large
and whenever new voxels are introduced they do

not contribute much, due to the weighted average
computation. In supersampling, an unweighted
average is computed, and new colors may cause
a drastic change in the average color. Thus, good
spatial sampling compensates for the simple point
sampling in the temporal domain.

193

In order to quantize the problem, we have gener-
ated sequence of column images displayed over-
time. In Fig. 14 we can see two images of one
column cut in time (a cross section image), one in
supersampling and the other in area sampling.
The abrupt changes in a pixel color over time are
reflected in the supersampling image, while the
area sampling technique gives a smooth transition
along the horizontal lines.
This shows the relation between the spatial do-
main and the flickering of the temporal domain.
The area sampling technique reduces flickering by
implementing an exact spatial antialiasing.

6 Cost analysis

All implementations of the algorithm traverse the
same set of voxels in the generation of one image
column. Thus, all antialiasing techniques have the
same cost for the basic ray traversal. The main
differences between the implementations of the
algorithm is the number of sampled voxels,
the number of ray-voxel hits, and the cost of the
operations executed following a hit (note the dis-
tinction between a sampled voxel and visible
voxel).
The cost for generating one image column in
a simple linear interpolation implementation,
without performing vertical supersampling, is
given by

a¸#bP#cM,

where ¸ is the number of voxels traversed
by the ray, and a¸ is the cost of the basic ray
traversal steps. P is the number of voxels from
which the terrain is visible, and bP is the cost of
computing a ray’s slope and the height of the
upper ray (Eqs. 2 and 3). M is the number of
voxels that are sampled in the generation of one
image column, and cM is the cost of the opera-
tions performed for each sampled voxel, which
includes sampling the two adjacent voxels’ colors
and performing a linear interpolation between
those colors (Eq. 4). Note that in the simple linear
interpolation implementation, the equality
M"P holds.
In the supersampling implementation, the opera-
tions represented by a¸ and bP have the same
cost as in the simple implementation of the algo-

rithm. However, as the supersampling rate N in-
creases, the number of voxels that are sampled in
the generation of one image column (M) usually
increases as well.
The supersampling implementation introduces an
extra overhead with the following operations. For
each hit between a ray and a voxel, the voxel’s
color is added to the sum of colors, and a vertical
increment within the current pixel is made for
each of its first N!1 samples. Denote the cost of
one execution of these two simple operations by d.
The number of ray-voxel hits is NP.
Thus, the cost of generating one image column is
given by

a¸#bP#cM#dNP.

The cost of supersampling goes up as the super-
sampling rate N increases, since the number
of sampled voxels M usually increases as a result
and the value of the term dNP increases linearly
in the supersampling rate. However, note that
¸'M, and for small values of N, ¸'NP.
Thus, the basic ray traversal still dominates
the execution of the algorithm, and increasing
the supersampling rate does not cause as
severe a degradation in the performance of
the algorithm as in common supersampling
implementation.
The main difference between area sampling and
supersampling implementations is the number of
ray-voxel hits in the generation of one image
column. In supersampling, this number is NP,
while in area sampling there are M @#P ray-voxel
hits, where M @ is the number voxels sampled in the
area sampling algorithm. This is because, whenever
the ray hits a voxel, the next ray traversal either
starts from the voxel’s top or from the ray emanat-
ing from the upper pixel. Thus, each voxel is hit
only once, except for a transition between pixels.
As can be seen in Figs. 8 and 12, the operations
performed upon a ray-voxel hit are slightly more
expensive in the area-sampling implementation.
Denote the cost of these operations by d @.
The cost of generating one image column in area
sampling is given by

a¸#b@P#cM @#d @ (M @#P),

where each pixel’s rendering requires a division
operation in area sampling, rather than a less

194

Table 1. The viewing parameters and the associated attributes of
the three tests cases

Figure Height
(H)

Pitch
(a)

Pixels
(P)

Voxels
(¸)

Visible
(»)

15 2800 40 400 847 847
16 1300 20 400 1350 1347
17 1000 5 324 4555 4217

expensive shift operation in supersampling. Thus
b@'b.
Since the area sampling implementation detects
all the visible voxels, M@'M. However, the value
of M increases with the supersampling rate N.
The most important factor in comparing the two
algorithms is the number of ray-voxel hits. It is
NP in supersampling and M @#P in area samp-
ling. These values depend on the viewing para-
meters and the supersampling rate N. The extra
overhead of the area sampling implementation
over the naive implementation of the algorithm is
not great, since ¸'M @, and thus the basic ray
traversal still dominates the algorithms perfor-
mance. In Sect. 7 it is shown that, for images
created with small pitch angle, the supersampling
rate N should be increased considerably to avoid
temporal aliasing artifacts. In such cases, super-
sampling is more expensive than area sampling,
but still not as accurate.

7 Results

In order to test and master the algorithm’s perfor-
mance, we specify a few viewing parameters and
render scenes according to these specifications. If
the pitch angle is small, the image footprint can
contain a huge number of voxels. Thus, to stimu-
late a real-life scenario, we create a mirror image
of the original DTM by which we generate an
infinite terrain. This enables us to specify viewing
parameters, so that an image column footprint
contains up to 5000 voxels.
We give detailed results of three test cases, using
different viewing parameters for each test. Each
test case is characterized by the height of the view
point and the pitch angle. Table 1 contains at-
tributes of the three tests. The height of the view-
ing point is denoted by H and the pitch angle is
denoted by a. P denotes the average number of
pixels in one column through which the terrain is
visible. ¸ denotes the average number of voxels in
a column footprint (ignoring the voxels traversed
until the first ray-terrain hit), and » denotes the
average number of visible voxels in one column
footprint.
Each of the viewing specifications uses a field of
view of 10 degrees and a 400]400 screen resolu-
tion. The height of each viewing specification was
chosen to fit the width of the pixel footprint at the

first terrain hit point to one voxel. Thus, the
view-point gets higher as the pitch angle
gets larger.
The three test cases are shown in Figs. 15—17.
Tables 2—4 summarize values of the parameters
needed to compare the different implementations
of the algorithm. The column AS denotes area
sampling, PS denotes point sampling and SS

idenotes supersampling at a ratio i . The values
considered are M, NP, and M/», which is the
ratio between the number of voxels that are sam-
pled and the number of visible voxels. This cover-
age values serves as an indication of the
algorithm’s accuracy and of the image quality.
Note that the area-sampling technique always
samples all the visible voxels (a full coverage),
that is, M"».
As already explained in Sect. 6, the dominating
factor in determining the algorithm’s efficiency is
the number of ray-voxel hits. Thus, the value of
M at the area sampling column should be added
to P and then compared with the value NP in
a supersampling column. If the the values are
approximately equal, then both implementations
have about the same cost.
It can be seen from Table 4 that for an image
rendered with a pitch angle of 5 degrees, even
a very high supersampling rate N"32, achieves
only a relatively small coverage ratio (0.67), while
supersampling at the rate N"16 is already as
expensive as the area-sampling implementation,
but achieves only a small coverage ratio 0.61.
Table 5 summarizes the relation between the
supersampling rate and the coverage ratio. It
shows the supersampling rate needed for achiev-
ing a given coverage ratio.
It can be seen from these examples that, as the
pitch angle gets smaller, the area sampling imple-
mentation gets more expensive, since it samples
all the visible voxels. Supersampling at a low rate

195

15 17

16

Fig. 15. An image created with a pitch angle of 40 degrees

Fig. 16. An image created with a pitch angle of 20 degrees

Fig. 17. An image created with a pitch angle of 5 degrees

can be more efficient than area sampling, but since
the basic ray traversal still dominates the algo-
rithm’s cost, the effective cost difference is quite
small. As the pitch angle gets smaller, images
created with supersampling at a low rate have
a low quality due to the low coverage ratio. In-
creasing the supersampling rate slowly increases

the coverage ratio, as seen in Table 4. Thus, the
area-sampling implementation becomes more at-
tractive as the pitch angle gets smaller.
In Sect. 5, we claim that, although we sample
a simple point in the time domain, an accurate
sampling in the spatial domain improves the
quality of an animated sequence. Thus, another

196

Table 2. An analysis of the algorithm’s operations when generat-
ing an image with a pitch angle of 40 degrees

Parameter AS PS SS
2

SS
4

SS
3

SS
16

SS
32

M 847 400 751 844 847 847 847
NP — — 800 1600 3200 6400 12 800
M/» 1 0.47 0.88 0.99 1 1 1

Table 3. An analysis of the algorithm’s operations when generat-
ing an image with a pitch angle of 20 degrees

Parameter AS PS SS
2

SS
4

SS
3

SS
16

SS
32

M 1347 400 799 1151 1244 1272 1283
NP — — 800 1600 3200 6400 12 800
M/» 1 0.3 0.59 0.85 0.92 0.94 0.94

Table 4. An analysis of the algorithm’s operations when generat-
ing an image with a pitch angle of 5 degrees

Parameter AS PS SS
2

SS
4

SS
8

SS
16

SS
32

M 4271 328 654 1298 2110 2630 2900
NP — — 648 1296 2592 5184 10 368
M/» 1 0.07 0.15 0.3 0.49 0.61 0.67

Table 5. The supersampling rate needed in order to achieve
a given coverage ratio (CR)

CR Figure 15 Figure 16 Figure 17

0.3 1 1 4
0.5 1 2 8
0.7 2 4 32
0.9 2 8 256

Table 6. Changes in pixel colors

Change AS PS SS
8

SS
16

0 32 183 28 903 23 827 23 283
1 14 933 11 287 14 070 18 346
2 1725 912 5614 4985
3 362 708 2842 1721
4 99 659 1368 630
5 46 599 726 232
6—60 52 5432 953 203

way to analyze the accuracy of the sampling
is by rendering a sequence of images from a
flying viewpoint, and considering a cut-in-time
image of one column. The image smoothness
corresponds to the accuracy of the rendering
algorithm.
We consider a cut-in-time image created by
rendering a sequence of 400 consecutive images.
The initial viewing parameters are the same as
in Fig. 17. Each consecutive image was created
by moving the camera position 0.5 meter
horizontally.
The image displayed in Fig. 17 is rendered with
a pitch angle of 5 degrees, and the column foot-
print contains an average number of 4271 voxels.
This image serves as a good example for showing
the superiority of the area-sampling algorithm
over supersampling, by pointing out that, in order
to achieve good coverage ratio, the supersampling

rate must be huge, as can be seen in Table 5.
Supersampling with a rate of N"16 is as costly
as area sampling, while the coverage ratio is only
0.61. Such voxel undersampling yields flickering
in the time domain.
A cut-in-time image helps in visualizing signifi-
cant changes in pixels colors between consecutive
images. A slight change made in the camera posi-
tion should cause a slight change in the pixel’s
color. In order to measure the accuracy of a tem-
poral antialiasing technique, we measure how
many pixels changed their color by a given
value. Such a histogram analysis is shown in
Table 6. Each entry in that table counts the
number of pixels that change their value by the
range specified in the left column, accumulating
the pixels of one image column, over 400 con-
secutive frames. The superiority of the area-samp-
ling technique over point sampling is evident from
this table. Note that the significant changes that
cause the flickering are those of the last row. As
the supersampling rate increases, the changes in
the pixels colors diminish. For N"16, the cha-
nges in the pixels colors are almost as mild as in
the area-sampling implementation, but still, the
superiority of area sampling is evident, since the
number of pixels with a relatively significant
change (6—60) is four times larger than in area
sampling.

197

8 Conclusions

In this paper we presented an area-sampling
antialiasing technique for a terrain with dense
textures. The technique is incorporated in a ray-
casting algorithm, and performs an exact area
sampling of the terrain model that considers all
and only the visible area. All previous antialiasing
algorithms for terrain rendering are either inaccu-
rate or too expensive. Existing efficient algorithms
for antialiasing of texture mapping do not perform
visibility tests, thus causing temporal aliasing.
We introduced an implementation of supersamp-
ling and showed that the varying topography of
the terrain can result in undersampling for large
footprints and oversampling at steep hills, where
footprints are short. Area sampling is imple-
mented by making a slight change to the super-
sampling implementation. For each image pixel,
its entire footprint is traced, and a weighted aver-
age of its visible voxels is computed. The area-
sampling technique treats the voxels along one
dimension, and a linear interpolation filters along
the orthogonal dimension, together forming
a wider support than a single pixel.
We have shown that good precision of sampling
in the spatial domain eliminates temporal aliasing
artifacts, despite the simple point sampling in the
temporal domain. This feature is emphasized and
can only be perceived in a real-time animated
sequence of images.
We consider this antialiasing technique as exact in
the sense that all, and only, the visible portion
contributes to the area sampling. There is one
reservation to be made, since along the ‘‘horizon-
tal’’ axis the sampling is naive, while the accuracy
of the technique is mainly along the rays. How-
ever, the assumption is that the rays emanating
from a horizontal row of pixels are dense enough;
that is, the field of view is small. Recall that we use
a hierarchy of voxels so that at a distance the
divergent rays sample larger voxels. All the visible
area (including near the horizon) is guaranteed to
be sampled.

Acknowledgements. The author thanks E. Rich, whose ideals led
to many of the results in this paper. He also thanks Y. Nardi,
O. Gabbay and G. Tal for implementing the algorithms and
producing the images, Y. Shapira of Imatrix for providing the
terrain data, A. Solomovici, A. Shaked and E. Carmel for review-
ing early drafts of this paper. Figure 2 is by courtesy of Tiltan
System Engineering.

References
1. Akeley A (1993) Reality engine graphics. Comput Graph

27:109—116
2. Arganov G, Gotsman C (1995) A parallel system for rendering

realistic terrain image sequences. Vis Comput 11:455—464
3. Carpenter L (1984) The A-buffer, an antialiased hidden sur-

face method. Comput Graph 18:103—108
4. Catmull (1978) A hidden-surface algorithm with anti-alias-

ing. Computer Graphics, (Proceeding of SIGGRAPH ’78)
12(3):6—11

5. Cohen D, Shaked A (1993) Photo-realistic imaging of digital
terrains. Comput Graph Forum 12:363—373

6. Cohen-Or D, Rich E, Lerner U, Shenker V (1996) A real-
time photo-realistic visual flythrough. IEEE Trans Vis Com-
put Graph 2:255—265

7. Cook RL (1986) Stochastic sampling in computer graphics.
ACM Trans Comput Graph 5:51—72

8. Coquillart S, Gangnet M (1984) Shaded display of digital
maps. IEEE Comput Graph Appl 4:35—52

9. Lee C, Shin YG (1995) An efficient ray tracing method for
terrain rendering. Proceedings of the Third Pacific Confer-
ence on Computer Graphics and Applications, Pacific
Graphics ’95, 180—193, Seoul, Korea, 21—24 August 1995.
Shin SY, Kunii TL (eds), World Scientific

10. Musgrave KF (1991) Grid tracing: fast ray tracing for height
fields. Technical Report RR-639, Department of Mathemat-
ics, Yale University, New Haven, USA

11. Paglieroni DW, Petersen SM (1994) Height distributional
distance transform methods for height field ray tracing.
ACM Transactions on Graphics 13(4):376—399

12. Schilling A (1991) A new simple and efficient antialiasing
withy subpixel masks. Comput Graph 25:133—141

13. Watt A, Watt M (1992) Advanced animation and rendering
techniques: theory and practice. Addison-Wesley, New York

14. Williams L (1983) Pyramidal parametrics. Comput Graph
17:1—11

15. Wright J, Hsieh J (1992) A voxel-based, forward projection
algorithm for rendering surface and volumetric data. In:
Kaufman AE, Nelson GM (eds) Proceedings of Visualization
’92, IEEE Computer Society Press, Boston, pp 340—348

DANIEL COHEN-OR is a
Senior Lecturer at the Depart-
ment of Computer Science in
Tel-Aviv University. His re-
search interests include render-
ing techniques, virtual reality,
morphing and blending tech-
niques, architectures and algo-
rithms for voxel-based graphics.
He received a BSc Cum Laude in
both Mathematics and Com-
puter Science (1985), an MSc
Cum Laude in Computer
Science (1986) from Ben-Gurion
University, and a PhD from
the Department of Computer

Science (1991) at State University of New York at Stony Brook.
In 1992—1993, Dr. Cohen-Or designed a real-time flythrough at
Tiltan System Engineerng. In 1994—1995, he worked on the
development of a new parallel architecture at Terra Computer,
and recently he has been working wih MedSim on the develop-
ment of an ultrasound simulator.

198

