
Carving: a novel method
of visibility preprocess-
ing for un-restricted
three-dimensional
environments

Yuong-Wei Lei, Ming Ouhyoung

Communications & Multimedia Laboratory, Depart-
ment of Computer Science and Information Engineer-
ing, National Taiwan University, 1, Sec. 4, Roosevelt
Road, Taipei, 106, Taiwan, R.O.C.
e-mail: f0506063@csie.ntu.edu.tw

ming@csie.ntu.edu.tw

We propose a novel idea, carving, for
visibility preprocessing of unrestricted
(nonaxial) models. It is different from vis-
ibility preprocessing applied directly to
nonaxial data. As a sculptor carves
a statue, carving splits the nonaxial por-
tion of a model, and results in a model
with only axial polygons and a set of cut-
tings. The visibility information of the
carved axial model can then be computed
with the cuttings as detail objects.

Key words: Visibility preprocessing — In-
teractive walkthrough — Virtual reality
— Constructive solid geometry

Correspondence to: M. Ouhyoung

1 Introduction

Interactive walkthroughs, first introduced by
Brooks (1986), simulate the sensory experience of
navigating through a complex three-dimensional
architectural environment. In the SpaceWalker
project — our plan to construct an interactive
walkthrough system (Lei 1997) — the target en-
vironment is the new building housing our com-
puter science department that is currently
partially completed. Our major challenge is that,
after the radiosity computation, even just a single
floor and unfurnished model will consist of 40 180
triangles. The whole building will require far more
than the currently available mid-range worksta-
tions to be rendered at an interactive frame rate.
However, in a densely occluded environment, es-
pecially in a building’s interior, observers can only
see a small fraction of the model from most view
points. Therefore, only the polygons that contrib-
ute to the resulting scene need be considered in
order to produce the correct scene. Since the rapid
identification of the visible portion of each frame
is very important, and since the architectural
model is not changed during a walkthrough, the
visibility information can be precomputed off-line
as much as possible. While developing the visibil-
ity preprocessing module, we encountered the
practical problem that our model was in general
unrestricted i.e., the polygons of the model were
not axial (short for axially aligned; in this paper
we say a polygon is axial if its normal and edges
are parallel to the x, y, or z-axis).
One of the characteristics of traditional Chinese
architectural design style is often demonstrated by
windows and passageways that are round, arched,
or of a polygonal shape such as an octagon. This
tradition, combined with architectural design
styles originating in the West, strongly influence
today’s campus buildings at our university, in
which there are many nonrectangular artifacts
like windows, arches, and passageways (Fig. 1).
For example, the obvious nonaxial constructions
in our department building are eight arch-shaped
windows in each floor, a large arch shaped win-
dow in the fifth floor, and an octant passageway in
the basement (Fig. 1, upper left and upper right).
While an efficient and effective method of visibil-
ity preprocessing for nonaxial models has been
proposed by Teller (1992b) and Teller and Han-
rahan (1993), a robust and practical implementa-
tion is still difficult. The complexity of generally
oriented polygons pose many problems both

The Visual Computer (1997) 13 :283—294 283(Springer-Verlag 1997

Fig. 1. Buildings at the National Taiwan University (NTU) campus with nonaxial components

conceptual and technical in nature. Based on the
observation that most polygons of an architecture
model are axial, in this paper we propose a new
idea called carving. Different from employing vis-
ibility preprocessing directly on nonaxial data,
carving works as follows.
Just as a sculptor carves a statue, carving splits
the nonaxial portion, resulting in a model with
only axial polygons and a set of cuttings. Then we
precompute the visibility information of the
carved axial model with the cuttings as detail
objects [here we use the terms in Teller 1992b]. By
carving we mean not only a classification of poly-
gons, but a variation of the boolean set SºB-
¹RAC¹ION operation of constructive solid
geometry to keep the resulting axial portion valid.
This paper is organized as follows. In Sect. 2 we

review the visibility preprocessing. Depending on
the geometry of models, we define three classes of
models and make two assumptions about input
data in Sect. 3. Section 4 presents the carving
operation and discusses each step of the opera-
tion, and at the end of the section, a pseudo-code
list is given. Practical applications of the carving
operation in the interactive walkthrough system
are given in Sect. 5 with some discussions.

2 Visibility preprocessing
for interactive walkthroughs

In this section, we describe the visibility precompu-
tation briefly. More detailed descriptions can be
found in Teller (1992b) and Teller and Séquin (1991).

284

Since computing the exact visible portion for
every viewpoint and every direction is concep-
tually and computationally interactable, Teller
(1992b) and Teller and Séquin (1991) propose
a method to partition the model spatially into
convex cells, and then compute approximated vis-
ibility information of the cells off-line. Given this
potentially visible set (PVS) (Airey 1990; Airey et
al. 1990), which overestimates the set of exactly
visible polygons, modern, widely available, poly-
gon-rendering hardware can solve the hidden sur-
face problem. In Teller’s original assumption,
a building model is comprised of major occluders
and detail objects. The major occluders are large,
simple, structural elements — for example, walls,
floors, beams, and ceilings that generally cause
substantial occlusion. The detail objects are small,
complex things such as furnishings and utensils
that generally do not occlude much. With such an
assumption, the visibility information is construc-
ted and maintained in four stages.
Spatial subdivision. The geometric model is sub-
divided along occluders into convex polyhedral
cells that are of limited extent compared to the
entire model. Any spatial subdivision method
supporting a point location query (given a point,
find the cell containing the point), portal enumer-
ation on cell boundary, and neighbor finding, such
as the BSP tree (Fuchs et al. 1980), will satisfy the
need. We say that a spatial subdivision method
that supports such operations is conforming.
Portal enumeration and object population. The
portals, which are nonopaque portions of the cell
boundary, are enumerated and stored with each
leaf cell. Along with each portal is an identifier for
the neighboring cell to which the portal leads.
Thus the portals and the identifiers comprise a cell
adjacency graph over the subdivision leaf cells, in
which two cells are adjacent if and only if there is
a portal on the shared boundary.
Detail objects are then distributed into cells. De-
tail objects are treated differently from major oc-
cluders. A spatial cell is populated with an object if
the object, or the bounding volume of it, intersects
the cell. A critical operating assumption that all
detail objects are unoccluding means that detail
objects do not block the propagation of observers
sightlines.
»isibility propagation. The cell-to-cell visibility
information is then computed. A cell’s visibility is
the region to which an unobstructed sightline can

lead from some points inside the cell. In other
words, a given cell can see a neighbor only
through a shared portal, and into more distant
cells only through portal sequences. Therefore,
a given cell can see into distant cells only if there
are sightlines emanating from this cell intersec-
tion, or stab, the ordered lists of portals (Hoh-
meyer and Teller 1992; Pellegrini 1990; Teller
1992a). The portal sequences are generated in-
crementally by a depth-first search (DFS) of the
cell adjacency graph and terminated when a se-
quence no longer admits a sightline. A stab tree
for static visibility information is stored for each
leaf cell.
On-line culling. The cell-to-cell visibility is an
upper bound on the viewing capabilities of an
unconstrained observer, who is able to look si-
multaneously in all directions from all positions
inside the cell. However, the observer in a walk-
through is at a known point and has a limited
view cone. Therefore, the eye-to-cell visibility — the
set of cells partially or completely visible to an
observer with a specified view — is a subset of the
cell-to-cell visibility. Several methods for comput-
ing the eye-to-cell visibility, different in effec-
tiveness and complexity, are discussed by Teller
(1992b).

3 Classification of building models

Since the complexity of a robust visibility prepro-
cessing program depends on the geometrical char-
acteristics of polygons in a model, we classify
architectural models into three classes. In the
following definition, we focus on the major oc-
cluders, and we assume that the floor and the
ceiling are parallel to the x—y plane, i.e., perpen-
dicular to the z-axis. First we officially define three
types of occluders.

An axial occluder is a rectangle with a normal and
edges parallel to the x, y or z-axis. Since axial
rectangles occur so often in architectural models,
they are worthy of special treatment.
A semiaxial occluder is not axial, but is a rectangle
with edges either parallel or perpendicular to the
floor plane (e.g., walls of a pentagonal room).
A nonaxial occluder is a generally oriented poly-
gon that is neither axial nor semiaxial.

285

2 4

3

a

a

b

b

c

Fig. 2. A sample of a semiaxial model

Fig. 3a,b. The problem with nonaxial models

Fig. 4a–c. An example of the carving operation

From the three types of occluders, we can further
define an axial model as one that contains only
axial occluders and a semiaxial model as one that
contains axial occluders and semiaxial occluders.
A nonaxial model contains at least one nonaxial
occluder.

3.1 Visibility preprocessing
of semiaxial models

The introduction of the semiaxial model is moti-
vated by the observation that, in architectural
models, most occluders that are not axial are
frequently semiaxial. Figure 2 shows a sample
semiaxial model. In this section we briefly discuss
extensions of the visibility preprocessing algo-
rithm for the semiaxial model.
The visibility preprocessing for axial models can
be enhanced for semiaxial models without much
loss of efficiency. When subdivision proceeds
along an occluder whose normal is parallel to the
z-axis and whose edges are not parallel to either
the x or y-axis, the portals are no longer rectilin-

ear. By adjusting the spatial subdivision strategy,
we can make the subdivision along such occluders
generate no portal. The strategy we use is to make
the subdivisions along axial occluders occur first.
In other words, axial occluders have a higher
priority to be the partition planes on the recursive
spatial subdivision. Vertical semiaxial occluders
(with normals parallel to the x—y plane) have
second priority. Up to this point, the portals are
always rectangles, so the portal enumeration is
tractable. Finally, when the model is partitioned
along horizontal semiaxial occluders (with nor-
mals parallel to the z-axis), there is no portal, so
the portal enumeration can be omitted. We use
this trick to handle semiaxial models, and in the
following discussion we focus on nonaxial models.

3.2 Assumption about input

Considering the input of our proposed method,
we have to make some basic assumptions. First,
we assume that axial polygons occur more fre-
quently than nonaxial polygons. Although there is

286

no critical restriction on the ratio of nonaxial
polygons to axial polygons, increasing this ratio
in effect increases the number of detail objects.
Second, we assume that nonaxial polygons are
aggregated in clusters in small numbers, such as
less than 100 polygons, and the clusters are dis-
tributed roughly evenly in the entire model. If
there is a large number of nonaxial polygons in
a single cluster, the rendering update rate de-
creases severely from some view points.

4 Carving operation

While there is no conceptual obstacle to extend-
ing visibility preprocessing for nonaxial models,
the implementation of a robust and practical con-
forming spatial subdivision is still difficult. Con-
sider the model of a section of wall that has
a window (Fig. 3a). When this model is subdivided
along the plane P, the portal on the subdivision
plane can be enumerated by a set difference opera-
tion on polygons, as demonstrated in Fig. 3b. In
other words, the portal enumeration is a subset of
the boolean mask problem (Lauther 1981), a non-
trivial problem in computational geometry, espe-
cially for nonaxial polygons. Airey (1990) suggests
that portal enumeration requires a robust pack-
age for constructive solid geometry operations on
planar polygons. One of the attacks on this diffi-
culty is to avoid portal enumeration. Portals are
treated as augmented polygons and are embedded
directly in the model’s representation (Luebke
et al. 1995).
This paper presents a different approach to deal
with nonaxial models. Instead of searching for
a more robust and simpler implementation, we
propose a novel idea. The philosophy of the pro-
posed idea is that, given the condition that most of
the occluders in a building model are axial, it
seems reasonable to look for a method that
modifies the model, in a constructive solid ge-
ometry manner, by splitting the portion of the
model that is not axial. Visibility preprocessing
for axial environments can then be used for the
modified model. Since this method modifies the
models just as a sculptor carves the sculpture, we
call it a carving operation. This idea can be stated
more clearly with the following example.
Figure 4a shows a polygon approximation of an
arch window. Obviously this model is nonaxial

since some polygons are in a general position.
When the carving operation is applied to the
model to remove the arch part, the resulting
model (Fig. 4b) is an axial model with a cutting
(Fig. 4c). The cutting (Fig. 4c) can be treated as
a special detail object (since this object is unmov-
able during the walkthrough) of (Fig. 4b) in vis-
ibility preprocessing. Another point worthy of
mentioning in this example is the pasted dark
polygons in Fig. 4b. Since the removal of Fig. 4c
makes Fig. 4b no longer a 2-manifold (Mäntylä
1984; Requicha et al. 1983), corresponding poly-
gons must be pasted to sew the holes. In other
words, the carving operation is a variation of the
boolean set SºB¹RAC¹ION operation in con-
structive solid geometry.
The carving operation algorithm to be presented
can be broken into two parts. First is the auto-
matic determination of the volume that needs to
be split, i.e., the subtrahend. Then the model is
split by a modified boolean set SºB¹RAC¹ION
operation.

4.1 Determination of the carving volume

We first identify the portion of a model that needs
to be split, and then we can define the carving
volume from the result. In the identification pro-
cess, the focus is on generally oriented polygons
and the grouping of the identified polygons ac-
cording to edge-sharing information. For clarity
in the following discussion, we use the term axial
edge to denote an edge of a polygon that is paral-
lel to principle axes; otherwise it is a nonaxial
edge. Since only nonaxial polygons are relevant in
the identification stage, at first nonaxial polygons
are located and then grouping information is con-
structed according to the shared edges. Depend-
ing on the type of shared edges, two groupings are
defined.

A nonaxial element (NAE) is the set of non-axial
polygons connected by nonaxial edges.
A nonaxial cluster (NAC) is the set of connective
nonaxial polygons.

Figure 5 depicts the identification process of the
model in Fig. 4a. Figure 5a shows the nonaxial
polygons of the model. The bold lines represent
the nonaxial edges. When only nonaxial edges are

287

5

6

a b c

a b c d

Fig. 5a–c. Polygon classification of the
model in Fig. 4

Fig. 6a–d. The scale of carving volume
affects the shape of the carved model:
a only one carving volume; b three carving
volumes

considered, we have six nonaxial elements in
Fig. 5b. When all edges are taken into account,
there is only one nonaxial cluster, as shown in
Fig. 5c.
Once the polygon grouping is constructed,
nonaxial polygons are split to remove the
nonaxial portion. To do so, first a bounding box,
called the carving volume, along the principal axes
is constructed for the nonaxial edges of the
nonaxial cluster. Then a boolean set SºB¹RAC-
¹ION operation is performed on the model; the
carving is used as a subtrahend. Figure 6a and
b shows the carving processing of the model in
Fig. 5. It can be verified that the carving volume
determined in this step ensures that the residual
polygons of the carving operation are axial, and
we omit the detail of proof in this paper.
Since using the nonaxial cluster to determine the
carving volume (hereafter we call a set of such
polygons a carving unit) of the SºB¹RAC¹ION
operation generates a larger portal, we can use
nonaxial elements and their combinations as
a carving unit. In short, the nonaxial element
and the nonaxial cluster define the scope of the
carving unit, where ‘‘nonaxial element’’ stands for
the smallest carving unit, and no polygon in
a nonaxial element can be considered individ-
ually. For example, the three polygons in each
nonaxial element in Fig. 5b must be processed
simultaneously. In contrast, a nonaxial cluster is
the largest carving unit. Between the scale of

a nonaxial element and a nonaxial cluster, any
nonaxial elements that are connected by edges
can be used as a carving unit. According to this
rule, any segments of adjacent nonaxial elements
in Fig. 5b can be combined as a carving unit.
When six nonaxial elements are linked together,
the result is in fact the nonaxial cluster. The algo-
rithm for determining the carving volume auto-
matically is given in Sect. 4.4.
Figure 6 shows how the combination of nonaxial
elements affect the convexity and size of the por-
tals. When the nonaxial cluster is used as a carv-
ing unit, as in Fig. 6a, there is only one resulting
portal (Fig. 6b). On the contrary, if the six
nonaxial elements are divided into three carving
units, as shown in Fig. 6c, the resulting concave
portal must be decomposed into at least two por-
tals, but with smaller areas (Fig. 6d). It is a trade-
off between the portal number and the portal
area. In our implementation, we prefer to
minimize the number of portals in order to min-
imize stab-tree traversal time, so only one heuris-
tic is used, making the carving unit as large as
possible.

4.2 Carving

The carving operation is implemented as a simpli-
fied boolean set SºB¹RAC¹ION operation,
since one of the operands is convex axial object.

288

9

7

8

a b

Fig. 7a, b. Boundary classification of two intersecting blocks

Fig. 8. The difference between carving and SºB¹RAC¹ION

Fig. 9a–c. Computing BinA directly from the cutting

We use the idea of boundary classification from
Mäntylä (1986). Consider the splitting of a poly-
hedron A according to a reference polyhedron B:
the three objects resulting from the splitting op-
eration are denoted by AinB (for the part of A in-
side B), AonB (for the part of A on the boundary
of B) and AoutB (for the part of A outside B).
Given two polyhedra A and B, the collection of six
objects AinB, AonB, AoutB, BinA, BonA, and
BoutA formed by splitting A against B and sym-
metrically B against A is called the boundary clas-
sification of A and B. For example, Fig. 7a depicts
two intersecting blocks with coplanar front and
back polygons (the intersection region is indicated
with dashed lines). The boundary classification of
the two blocks is shown in Fig. 7b.

Let us set the model as A and the carving vol-
ume as B. From the boundary classification of
A and B, the carving operation is readily
computed:

A carve B"AoutB & (BinA)~1, (1)

Cutting"AinB & AonB"A!AoutB, (2)

where ‘‘&’’ denotes the ‘‘gluing’’ of two boundary
surfaces, ‘‘!’’ denotes the difference of two surfa-
ces, and ‘‘()~1’’ denotes inverting the normal vec-
tor of all polygons of the surface. Since the cutting
is the complement of AoutB with respect to A, we
are only concerned with the computation of
AoutB and BinA.

289

4.2.1 Computing AoutB

To compute AoutB, the first step is to split the
model so that the polygons in the model do not
intersect the polygons of the carving volume.
Since the carving volume is always a rectangular
box, the splitting can be implemented as a series of
spatial partitions along the six polygons of the
box, i.e., the bounding polygons of the carving
volume. Once the polygons in A have been split,
each polygon in A is classified as lying OUTSIDE
of carving volume or OTHERWISE (in our im-
plementation, we do not classify AinB and AonB).
Again, since object B is convex, this classifying is
straightforward and uses the normal vectors of
bounding polygons.
While this method is similar to a typical imple-
mentation of a boolean set operation, there is
a major difference: the splitting should be control-
led in the local region. For example, Fig. 8 depicts
a two-dimensional case in which segment ab is
carved and the carving volume is indicated with
a dashed box. Although segment cd and the other
two segments intersect the carving volume, these
three segments should not be split. To confine
splitting to the local region, the polygons that are
taken into consideration must form a single
connected component, starting from a polygon of
the carving unit (the set of polygons that define
carving volume), each polygon of which has a
nonempty intersection with carving volume.
Assume that it can be recognized whether a poly-
gon belongs to the carving unit. The procedure
ComputeAoutB() listed here computes AoutB
with model M as object A and carving volume C»

as object B is presented. In this procedure, the
normal vectors of the carving volume are assumed
to face inward.

procedure ComputeAoutB
(Input: model M, carving volume C»

Output: AoutB, cutting C)
Move polygons in M that belongs to carving unit
to PolyPool
C"0, AoutB"0
for each polygon in PolyPool do

if polygon and polygon do INTERSECT then
AoutB"AoutBX(polygonWC»)
// put axial portion to AoutB
C"CX(polygonWC»`)

// put nonaxial portion to C
Move polygons in M that share edge with
polygon to PolyPool

else if polygonLC»~ then
AoutB"AoutBXpolygon
// put axial polygon to AoutB

else
C"CXpolygon
Move polygons in M that share edge with
polygon to PolyPool

end if
end for
AoutB"AoutBXM
// the rest polygons must be AoutB

4.2.2 Computing BinA

For BinA, an approach different from splitting is
employed. If we try to split B (the carving volume)
so that the polygons in B do not intersect the
polygons in A (the model), since there are more
than six polygons and the arrangement of poly-
gons is not predefined, the program would be time
consuming and complicated. Instead, BinA is
computed directly from the cuttings. We intro-
duce the concept of external edges and external
polygons. We say an edge in a cutting is external if
it is owned by only one polygon. Since dangling
edges only occur along a split plane for a 2-mani-
fold polyhedron, it is obvious that external edges
must lie on the bounding polygons of carving
volume. For example, Fig. 9a depicts a model of
the octagonal arch in the upper right of Fig. 1
where the bold line box represents the carving
volume. This carving operation generates the cut-
ting shown in Fig. 9b and the axial model shown
in Fig. 9c. (The external edges are indicated in
bold lines in Fig. 9b.) Since BinA is generated
from the bounding polygons, the computation of
BinA can be reduced to the two-dimensional
boolean mask problem on the bounding polygons
as follows.
For each bounding polygon, if there are any ex-
ternal edges that lie within the interior of the
bounding polygon, such as the bounding polygon
abcd in Fig. 9b, BinA on the bounding polygon
are either the polygons generated from this ex-
ternal edges chain (together with part of the edges
of the bounding polygon) or the complement of the
generated polygons, depending on the orientation

290

of the vertices in the external edges chain. The
BinA polygons generated from bounding polygon
abdc are shown as dashed lines in Fig. 9c. How-
ever, if all external edges lie on the boundary of
the bounding polygon (the bounding polygon abfe
in Fig. 9b), or there is no external edge lying on
the bounding polygon, the bounding polygon is
a BinA polygon, or there is no BinA on this
bounding polygon. The three BinA type polygons
in Fig. 4b (the darkened polygons) belong to this
category. The decision depends on whether the
bounding polygon is in the interior or exterior of
the model, and a routine based on raycasting
(Laidlaw and Hughes 1986) is used. As a result,
BinA on a bounding polygon (BP) with cutting
C can be found with the procedure:

procedure ComputeBinA
(Input: bounding polygon BP, cutting C
Output: BinA)
if external edges of C lie in the interior of BP
then

E"external edges of C lying in the interior of
BP// Find associated edges
P"polygons generated from E
// A edges connectivity traversal will
// find the polygons set
nv"normal of P
if nv · normal of BP"1 then

BinA"P
else

BinA"BP!P
end if

else
Shoot a ray from center of BP in the direction
of normal vector (inward)
Find the first intersecting polygon polygon in C
If no such polygon found then

BinA"0
else

if the center of BP does not lie on the plane of
polygon then

if the normal of polygon points toward BP
then

BinA"0 // this BP is outside the model
else

BinA"BP
end if

else
if the normal of polygon points outward
then

BinA"0 // this BP is outside the model
else

BinA"BP
end if

end if
end if

end if

4.4 Pseudo-code

To sum up the discussion in the preceding section,
we present a filter procedure CarveIt() that re-
ceives a model and outputs an axial model and
a set of cuttings:

procedure CarveIt
(Input: model M
Output: axial model A, cuttings C)

//Step 1. Determine carving volume
Classify polygons in M as axial set I and generally
oriented set G
Construct edges connectivity information CI of G
According to connectivity information CI, group-
ing nonaxial clusters set NACluster

and nonaxial elements set NAElement of each
nonaxial cluster

C"0 // cuttings set
P"0 //BinA set

//Step 2. Carving
for each nonaxial cluster nacluster in NACluster
do

Determine carving unit set Cº of nacluster
for each carving unit cu in Cº do

Construct carving volume C»

ComputeAoutB(M, C») to obtain output
AoutB and c
M"AoutB
C"CXc
for each bounding polygon bp of carving vol-
ume C» do

ComputeBinA(bp, c) to obtain output BinA
end for
P"PXBinA

end for
end for
A"MXP

291

Fig. 10. a The corridor. b A snapshot of the walkthrough system

Fig. 11. a Close view of a arch window. b Rendered image of the arch window. c The same
arch window without cutting

Fig. 12. The equipment of the SpaceWalker interactive building walkthrough system

292

5 Results

In this section, several practical applications of
the carving operation in our interactive building
walkthrough system are presented. The target en-
vironment is our new department building. Cur-
rently we have constructed the major structure
(without furnishings) of the fifth floor in AutoCad.
The original model comprises 3104 polygons, of
which there are eight nonaxial clusters, the eight
arch windows in the hallway. The software of the
walkthrough system, mainly divided into four
modules — format converter, conforming BSP tree
constructor, static and dynamic visibility proces-
sor and virtual environment effect editor — are all
designed from scratch.
In the visibility preprocessing phase, we imple-
mented the carving-based visibility preprocessing
program on a SUN SparcStation10 Model 41.
The carving operation requires less than 3 CPU s,
and results in 3040 axial polygons, 24 BinA type
polygons and 192 nonaxial polygons belonging to
eight special detail objects. Constructing the BSP
tree requires about 20 s. The resulting BSP tree
contains 1249 internal cells and 1250 external
cells, and it increases the model size to 3531 poly-
gons. The visibility preprocessing takes about
1900 s. At the last stage, the polygons are diced
into 40 180 triangles and run through a radiosity
computation program.
In the walkthrough phase, our interactive walk-
through system was developed on an SGI Indigo2
Extreme graphics workstation. Since the system is
still being developed, we have not assessed the
performance precisely. Currently, the average ren-
dering frame rate is about 20 frames/s in 640]480
window resolution. A view of the corridor on the
fifth floor of the real building is shown in Fig. 10a.
Figure 10b shows a snapshot of the walkthrough
system in a similar view direction. From this view
direction we can also see the arch shaped windows
that are not axial. Figure 11a shows a close view
of one arch window. Figure 11b shows a rendered
image of the arch window. Figure 11c shows the
same arch window without the cutting.
Figure 12 shows a user immersed in our interac-
tive walkthrough system. The user wears a head-
mounted display and walks on a treadmill to
simulate the perception of navigating through
a building. Two buttons attached on the handle of
the treadmill are used for controlling the walking

direction, and one shaft encoder linked to the
computer reports the walking speed.

6 Conclusion

We have described a novel operation for visibility
preprocessing of unrestricted (semiaxial and
nonaxial) three-dimensional building environ-
ments. We have demonstrated the application of
the proposed carving operation in a complex en-
vironment. The carving operation was used in an
interactive walkthrough system based on our new
computer science department building; within the
building there are eight arch windows that are not
axial in each floor.

References

1. Airey JM (1990) Increasing update rates in the building
walkthrough system with automatic model-space subdivi-
sion and potentially visible set calculations. PhD Thesis,
Department of Computer Science, University of North
Carolina, Chapel Hill, NC

2. Airey JM, Rohlf JH, Brooks FP Jr. (1990) Towards image
realism with interactive update rates in complex virtual
building environments. ACM SIGGRAPH Special Issue
1990 Symposium on Interactive 3D Graphics 24:41—50

3. Brooks FP Jr. (1986) Walkthrough — a dynamic graphics
system for simulating virtual buildings. Proceedings of the
1986 Workshop on Interactive Computer Graphics, Chapel
Hill, NC, pp 9—20

4. Fuchs H, Kedem Z, Naylor B (1980) On visible surface
generation by a priori tree structures. Comput Graph (Pro-
ceedings of SIGGRAPH’80) 14:124—133

5. Hohmeyer ME, Teller SJ (1992) Stabbing isothetic rect-
angles and boxes in O(n lg n) time. Comput Geom Theory
Appl 4:201—207

6. Laidlaw DH, Hughes JF (1986) Constructive solid geometry
for polyhedral objects. Comput Graph (Proceedings of SIG-
GRAPH’86) 20:161—170

7. Lauther U (1981) An (N log N) algorithm for boolean mask
operations. Proceedings of the 18th Design Automation
Conference, Nashville, IEEE, pp 555—562

8. Lei YW (1997) The SpaceWalker walkthrough system for
unrestricted three-dimensional polygon environments. PhD
Thesis, Department of Computer Science and Information
Engineering, National Taiwan University, Taipei, Taiwan

9. Luebke D, Georges C (1995) Portals and mirrors: simple, fast
evaluation of potentially visible sets. Proceedings of the
1995 Symposium on Interactive 3D Graphics, Monterey,
CA, ACM SIGGRAPH, pp 105—106

10. Mäntylä M (1984) A note on the modeling space of Euler
operators. Comput Vision Graph Image Process 26:45—60

11. Mäntylä M (1986) Boolean operations of 2-manifolds
through vertex neighborhood classification. ACM Trans
Graph 5:1—29

293

12. Pellegrini M (1990) Stabbing and ray-shooting in 3-dimen-
sional space. Proceedings of the 6th ACM Symposium on
Computational Geometry, Berkeley, CA, pp 177—186

13. Requicha AAG, Voelcker HB (1983) Solid modeling: current
status and research directions. IEEE Comput Graph Appl
3:25—37

14. Teller SJ (1992a) Computing the antipenumbra cast by an
area light source. Comput Graph (Proceedings of SIG-
GRAPH’92) 26:139—148

15. Teller SJ (1992b) Visibility computations in densely occluded
polyhedral environments. PhD Thesis, Computer Science
Department, University of California at Berkeley, Berkeley,
CA

16. Teller SJ, Hanrahan P (1993) Global visibility algorithms for
illumination computations. Comput Graph (Proceedings of
SIGGRAPH’93) pp 239—246

17. Teller SJ, Séquin CH (1991) Visibility preprocessing for
interactive walkthroughs. Comput Graph (Proceedings of
SIGGRAPH’91) 25:61—69

MING OUHYOUNG recei-
ved his BS and MS degrees in
Electrical Engineering from the
National Taiwan University,
Taipei, in 1981 and 1985, respec-
tively. He received his PhD de-
gree in Computer Science from
the University of North
Carolina at Chapel Hill in 1990.
He was a member of the tech-
nical staff at AT&T Bell Labor-
atories, Middletown, during
1990 and 1991. Since August
1991, he has been an Associate
Professor in the Computer
Science and Information Engi-
neering Department, National

Taiwan University. He has published more than 40 technical
papers on computer graphics, virtual reality, and multimedia
systems. He is a member of the ACM and IEEE.

YUONG-WEI LEI received
his BS and PhD degrees in Com-
puter Science and Information
Engineering from the National
Taiwan University, Taipei, in
1991 and 1997, respectively. He
is currently on the research staff
in the Communications and
Multimedia Laboratory. His re-
search interests include com-
puter graphics, computer
animation, model-based image
coding, graphical user interfaces
and multimedia systems.

.

294

