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Conformal mappings are incorporated into
the self-organization model to represent im-
ages harmonically. This network is used to
partition an image into quadrilateral regions,
where each region contains similar features.
We then map each region to a correspond-
ing square region to unify information rep-
resentation and facilitate computations. This
mapping is constructed to preserve spatial
information while complying with the con-
formal property of the network. An approxi-
mated image in each square region provides
us with an effective representation of the im-
age in both modeling and compression appli-
cations. This approach has been particularly
developed for large continues images.
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Research in image representation has attempted to
construct an image system that models the essential
components, in spatial or transformed form, of an
image. Such a system explores the inherent relation-
ships among image data, perceives the redundancy
among them, and determines an appropriate organi-
zation for them. The need for general and effective
modeling has prompted much research into the neu-
ral network approach to explore representations for
various applications, including, for example, image
compression [1, 2], image segmentation [3], and sur-
face modeling [4]. In this work, a self-organizing
network (SON) [5] with conformal mapping tech-
niques for images was studied.
SON has the ability to learn visual information from
an image and to form an ordered map that confor-
mally (harmonically) preserves the essential features
of the image [6]. This network usually acts as a vec-
tor quantizer to organize sensory inputs into ordered
clusters on a map. Such maps can provide descrip-
tions of the inputs in terms of a series of quan-
tized cluster centers or representations. Image data
usually have varying properties that are continuous
among neighboring pixels. This map can roughly
approximate continuous inputs in its clustering cen-
ters. This limits the application of SON in image
analysis.
We have devised an approach based on SON which
characterizes image data continuously with har-
monic representation. As shown in Fig. 1, this net-
work is utilized to place a partition for an image.
The spaces in this partition are adapted according
to the image data fed into this network. Based on
this, the image is partitioned into connected quadri-
lateral regions, each containing similar features. This
network conformally preserves the features of the
image data [6] in a global sense. To save neurons and
comply with this global property, we use conformal
mappings to transform these quadrilateral regions
into a square system, formed by square regions, to
expand the local details uniformly. A conformally
warped representation of the image in the square sys-
tem will be obtained. This kind of representation
provides us with a uniform and effective description
of the image and roughly equalizes the amount of
information in various regions. The representation
in the square system will facilitate further mapping
computations. Figure 1 shows application of the net-
work to image compression.
To transform the data in the quadrilateral regions into
data in a square system as in phase II shown in Fig. 1,
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y Fig. 1. The self-organizing conformal net-
work (SOCN) applied to image representa-
tion and image compression. Neurons are
located at the nodal positions in the neuron
mesh

we need to construct continuous mapping functions
that preserve the image features. These mappings
must be one-to-one and analytic so that no infor-
mation will be lost. Considering the local isotropic
property and the conformal property of SON, we
can construct conformal mappings (see, for exam-
ple, [7]) to map these quadrilateral regions to their
corresponding square regions. Conformal mappings
have been studied as models of image representa-

tions in the brain [8–10], for which image warp-
ing with conformal preservationhas been proposed
to model the cortical representation of the image
formed on the retina. Experiments in the visual brain
use regular shapes to display the mappings [9]. We
have further designed a square system to simplify
and unify the computations. In the proposed ap-
proach, conformal mapping techniques are used to
construct a harmonically warped representation in
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the square system. Effective numerical techniques
are discussed for these mappings.
During the adaptation process in phase I, the par-
tition configuration evolves continuously and con-
formally. The converged network provides a scaled
partition for the input image. The feature contents
scale the partition. This network partitions the image
into connected quadrilateral regions. Mappings from
quadrilateral regions to square regions in phase II
are devised so as to satisfy conformality conditions.
A warped image representation in a square system
is obtained by means of such conformal mappings.
Note that conformal mapping satisfies theharmonic
property [7, 17] used in image processing. We can
obtain visual information that effectively character-
izes an image and preserves its topological features
can be obtained using the network and mapping.
Conformality is achieved using SON and mappings
in both the global and local senses. Since it is costly
to build a network with dense neurons, we use ar-
rayed sparse neurons in the network and use confor-
mal mappings to fill the local detailed space.
Application of the network to image compression
is discussed in this work. Based on this approach,
image data are partitioned into neighboring quadri-
lateral regions by the network. Then, the image in
each region is mapped to a square region in a square
system. Image features within each square region
are similar and uniformly distributed. Approxima-
tions can be applied to remove the redundancy of
the image in each square region. The approximated
harmonic function, which satisfies the Laplace’s
equation and meets the boundary conditions of each
square region, is used as the reduced representation.
This function can be used to obtain reconstructed
images with arbitary resolutions. High compression
ratios for continuous images can be achieved. We
give simulation results to show the performance ob-
tained using this approach.
This work is organized as follows. In Sect. 2, a gen-
eral image model is defined. SON is employed to
place a scaled partition system on an image. Quadri-
lateral regions in this partition, square regions in the
square system, and the relationships between them
are illustrated. We also discuss self-organizing con-
formal network (SOCN) and analytic mappings. Nu-
merical mapping techniques are included. In Sect. 3,
this approach is applied to image compression. Sec-
tion 4 presents many simulations carried out to verify
the performance of this approach, and the results are
discussed.

2 Adaptively scaled partition system
for an image

2.1 The image representation

An image can be modeled as a 2D intensity function.
Let f(p) denote this function, in which the value
of f at a point coordinatep= (x, y) ∈ P, P⊆ R2

gives the intensity of the image at this point. The
function f(p) may be either continuous along the
spatial coordinatepor digitized spatially. The ampli-
tude of f(p) may be either shaded continuously or
quantized.
The coordinatep= (x, y) and the function f(p)
are usually sampled as inputs for further data pro-
cessing. Consider the input setX, X ⊆ R3 from
an image. The sample inputx= (p, f(p)) ∈ X is
the image feature vector at the coordinate(x, y).
The main concern in image processing is to explore
the relationships among these inputs and to deter-
mine good representations of these inputs for further
analyses.
Since the local image data in nearby pixels are of-
ten highly correlated, a whole image can be parti-
tioned into local regions with different center fea-
tures. Data in the various regions should be con-
tinuously decorrelated. This partition can be con-
structed adaptively according to the image data. To
construct this partition, we use SON as a partition
system with its adaptive ability to scale partition
spaces. This network has a 2D neuron array arranged
initially in a regular square topology. Each region
can be defined by linking four neighborhood neu-
rons as shown in Fig. 1. This region changes in shape
during the process of self-organizing adaptation and
evolves into a quadrilateral region. Each quadrilat-
eral region encloses a local image that contains sim-
ilar features. The boundaries of these regions consti-
tute a partition. The evolution of this partition is now
presented.

2.2 Partitioning the image using SON
in phase I

To partition the image, we apply SON to process
the inputs and to generate the partition. To pro-
cess the samples from input setX, a set of neu-
rons arranged in a 2D plane with regular rectan-
gular topology is used (see Fig. 1). The synapse
vector corresponding to the neuronj is denoted
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Fig. 2. aAfter training, the 3 components of the synapse
vectors are plotted in 3D space. Thex-y coordinates of
the neurons are the nodal positions in the mesh on the im-
age plane. The trained mesh constitutes the partition for
the image. All mesh holes have quadrilateral shapes.b
The mapping is from all the quadrilateral regions to their
corresponding square regions

by w j ∈W, whereW⊆ R3. The first two and the
third components ofw j are set to be adapted to the
coordinate and the intensity of the image input, re-
spectively. Learning can be done in the iterations of
the best-matching process and the synapse adapta-
tion process. For each iteration, an inputx ∈ X is
randomly selected. The best-matching process de-
termines the winning (or best-matching) neuronc
whose synapse vectorwc is the closest vector to
the inputx for all the vectors inW. In this process,
the euclidean distance measure is used to measure
the match between the input and the synapse vec-
tors. The best-matching neuron can be decided by

means of the minimum distance criterion as follows:

‖x−wc‖ = min
w j∈W

‖x−w j‖. (1)

After the winning neuronc is found, the adaptation
process adjusts the synapse vectors of neurons with
varying amounts of updating by

w j (n+1)= w j (n)+α(n)×hc, j (n) (2)
×[x−w j (n)], w j ∈W,

wheren is the time step or iteration number,α is the
learning rate, andhc, j is the neighborhood function
for the neuronsc and j . Both α andhc, j are func-
tions of the time stepn. After iterations for different
sampled inputs, an ordered representation that ap-
proximates the input space can be obtained.
As shown in Fig. 2a, a converged network provides a
scaled partition of the image. Synapse vectors of the
network represent the feature centers of the image.
The first two components of neighboring synapse
vectors are the coordinates of the four vertices of a
corresponding quadrilateral region. During the self-
organizing process, the shapes of these regions are
varied, following the synapse adaptation. The con-
verged network partitions the image into a disjoint
collection of quadrilateral regions. Each region con-
tains similar features and roughly the same amount
of information. This partition completes the process
in phase I. Note that many well-developed tech-
niques are available to speed the convergence. We
use the formal algorithm.
Figure 2b displays the mapped image in the square
system. Using the conformal mapping techniques,
discussed in Sect. 2.3, representations in regularly
square regions can be obtained.

2.3 Conformal mapping between
quadrilateral regions and square
regions in phase II

To obtain a uniform representation, we map the im-
age in each quadrilateral region to its corresponding
square region. We use conformal mapping functions
to preserve the feature properties of the image data
and to avoid information loss.
For a 2D image, we perform mapping using tech-
niques employed in complex analysis. We reformu-
late the spatial coordinatep= (x, y) ∈ R2 into its
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Fig. 3. Conformal mapping between the quadrilateral regionQ in theu-plane and the square regionL in thev-plane

complex expression(x+ iy). Let the conformal map-
ping from a quadrilateral regionQ to a square region
L be KQ,L , whereKQ,L : u 7→ v, u ∈ Q andv ∈ L
are complex variables. With the functionK , the one-
to-one correspondence between these two regions
can be defined. The Schwarz-Christoffel transforma-
tion (see, for example, [11]) can be used to construct
the mapping between quadrilaterals. Note that a
square is also a quadrilateral.
Consider a quadrilateralQ with vertices labeled
u j , 1≤ u j ≤ 4, in theu-plane and a squareL with
vertices labeledv j , j = 1 . . . 4, in thev-plane. Fol-
lowing the Schwarz–Christoffel transformation, we
transform the boundary∂Q of the quadrilateral re-
gion Q along with its vertices into the outer cir-
cle of a unit disk in thet-plane and then transfer
the circle to the boundary∂L of the square region
L. The unit disk in thet-plane is used as an in-
termediate set to aid construction of the mapping.
Figure 3 shows the mappings between the complex
planes.
Two types of mappings are shown in Fig. 3. For the
first type, we consider mappings from the unit disk
in thet-plane to corresponding regions in theu-plane
andv-plane. Letβ jπ, −1≤ β j < 1, be the exterior
angle of the quadrilateral regionQ atu j , and letγ jπ,
−1≤ γ j < 1, be that of the square regionL at v j .
For quadrilaterals, we have the relationships between
β jπ andγ jπ, which are:

4∑
j=1

β j = 2 and
4∑

j=1

γ j = 2, (3)

respectively. The Schwarz–Christoffel formula de-
fines the mapping fromt to u as

u= uc+C1

t∫
0

4∏
j=1

(
1− t′

t j

)−β j

dt′ (4)

and the mapping fromt tov as

v= vc+C2

t∫
0

4∏
j=1

(
1− t′

t j

)−γ j

dt′, (5)

wheret j , j = 1 . . . 4, are the designed points on the
boundary of the unit disk, andC1, C2, uc, andvc are
the complex parameters of the mappings.vc is the
center of the square.C2=

√
2+ i
√

2, is a constant in
this mapping. The points{t j , j = 1...4} are designed
to match the four vertices of each region with com-
putational efficiency. In all our simulations, we set
t1= 1, t2= i, t3=−1, andt4=−i.
In our simulations, we used the following formula
for (4):

u=uc+C1

t∫
0

4∏
j=1

(
1− t′

t j

)−β j

dt′ (6)

≈uc+ C1t

2q

p∑
k=1

q∑
l=1

gk · fk,l , (7)

fk,l =(1− yk,l)
−β1(1+ iyk,l )

−β2 (8)

× (1+ yk,l)
−β3(1− iyk,l )

−β4,

yk,l = t

q
l + t

2q
bk− t

2q
. (9)
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The interval[0, t] was divided intoq subintervals.
The value ofq was set to 12. The lengthpof the base
pointsbk and weight factorsgk was set to 12. The
Gauss rule for numerical integration was used to de-
termine the values ofbk andgk, k= 1 . . . p. We set
p= q= 12 in all our simulations.
The four parameters in (4) and (5) are determined as
follows.vc is the center of the square. The mappings
satisfy the complex conditions at the four points

uk−uc=C1

tk∫
0

4∏
j=1

(
1− t′

t j

)−β j

dt′, k= 1 . . . 4,(10)

from t1, t2, t3, andt4 to u1, u2, u3, andu4, respec-
tively, and

vk−vc=C2

tk∫
0

4∏
j=1

(
1− t′

t j

)−γ j

dt′, k= 1 . . . 4,(11)

from t1, t2, t3, and t4 to v1, v2, v3, and v4, re-
spectively. Note that the vertices{u j , j = 1...4} and
{v j , j = 1...4} are known vertices. The integration in
each case is evaluated by means of the compound
Gauss quadrature (see, for example, [13]). Then, the
other two parameters (uc andC1) can be estimated
from numerical solutions of (10) and (11). The map-
pings from the disk to the squareL, or from the
squareL to the disk, can be prepared in advance (off-
line preparation).
For the second type of mappings (Fig. 3), we con-
sider conformal mappings from the regions in the
u-plane andv-plane to the unit disk in thet-plane.
These mappings can be solved with numerical meth-
ods. Inverting the Schwarz–Christoffel formulas of
(4) and (5), we obtain

dt

du
= 1

C1

4∏
j=1

(
1− t

t j

)+β j

(12)

for the mapping fromu to t and

dt

dv
= 1

C2

4∏
j=1

(
1− t

t j

)+γ j

(13)

for the mapping fromv to t. The numerical Runge-
Kutta method can then be applied to these bound-

ary value problems with the broken exponentsβ j
andγ j . Good solutions can be obtained with iterative
evaluation [12].
The conformal mappingKQ,L(u) can be obtained
from u to t and fromt to v successively. The inverse
conformal mappingK−1

L,Q(v) can be obtained simi-
larly from v to t and fromt to u.
With this conformal mapping, the image in the
quadrilateral regionQ can be mapped to a warped
image in the square regionL. Let the input be
x= (u, f(u)) ∈ Q, whereu is the point coordinate
in the complex plane andf(u) is the intensity atu.
The corresponding mapped datax′ = (v, f(u(v))) in
L can be obtained with conformal mapping fromu to
v, i.e.,v= KQ,L(u) as already described.
Sinceu is continuous in the spatial coordinate, this
mapping can be applied to continuous images such
as photos from cameras or fine art paintings. We
devise this technique particularly for those paint-
ings on curved surfaces in the projects. When we
use exact mappings, there is no distortion dur-
ing reconstruction of the original image from the
warped image in the square regions. This approach
is capable of processing both digital and contin-
uous images. For a digital image, a point in the
v-plane may not correspond to a pixel point in
the u-plane. We record all thev coordinates that
correspond to all the pixel point. We then inter-
polate the needed points in thev-plane, such as
the grid points or the equal spaced points along
the boundary,∂L, of L. This interpolation is not
necessary for continuous images. In all our simu-
lations, we interpolated points along the boundary
of L in the v-plane that were equally spaced along
∂L and included the four vertices ofL for discrete
images.

2.4 The quadrilaterals with modulus one

For any two quadrilateral regions, a conformal map-
ping between them may not exist. If one does exist,
then these two quadrilaterals are conformally equiva-
lent and have the same modulus. A square region has
a modulus of 1 by definition. To unify the conformal-
ity property, we limit all the quadrilateral regions in
theu-plane to a modulus of 1.
To transform a quadrilateral region into a square re-
gion with a modulus of 1, the quadrilateral must
have modulus 1. Consider the unit disk in thet-
plane. The coordinates oft j , j = 1 . . .4, are cho-
sen so as to equally divide up the unit circle, i.e.,
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t1= 1, t2= i, t3=−1, and t4=−i. We will now
show how to obtain quadrilaterals with a modulus
of 1 in SON.
Because the regionL is a square, the mapping of (5)
from t tov can be simplified as follows:

v= vc+C2

t∫
0

(
1− t′4

)− 1
2

dt′ (14)

≈ vc+ C2t

2q

p∑
k=1

q∑
l=1

gk · fk,l , (15)

fk,l =
(

1− yk,l
4
)− 1

2
, (16)

yk,l = t

q
l + t

2q
bk− t

2q
, (17)

C2=
√

2+ i
√

2. (18)

We setp= q= 12. The value ofvc in (14) is the cen-
ter of the square.
During the self-organizing process, the shapes of the
quadrilateral regions are dynamically reformed fol-
lowing (1) and (2). These quadrilaterals may not be
conformally equivalent to a square whose modulus
is 1. To obtain quadrilaterals with a modulus of 1 in
the self-organizing process, we must further reform
the quadrilaterals accordingly after each iteration.
We modify the first two components, which are the
coordinates of vertices and neurons, of all synapse
vectors separately to move the quadrilateral vertices.
We modify these coordinates for each quadrilateral
Q following (1) and (2). The current quadrilaterals
are first used in (4) to estimateuc andC1. The ver-
ticesu j of a quadrilateralQ are modified or relaxed
by

u′j = uc+C1

t j∫
0

(1− t′)−β1(1+ it ′)−β2(1+ t′)−β3

× (1− it ′)−β4 dt′, j = 1 . . .4. (19)

Relaxation of the network configuration using (19) is
applied intensively during the final iterations to ob-
tain a good modulus.
For a quadrilateral that containsx, we modify the
verticesu j , j = 1 . . . 4, in the complex expression, of

the quadrilateral intou′ j by means of

u′ j = uc+C1

t j∫
0

(1− t′)−β1(1+ it′)−β2(1+ t′)−β3

× (1− it′)−β4 dt′ (20)

≈ uc+ C1t j

2q

p∑
k=1

q∑
l=1

gk · fk,l , (21)

fk,l = (1− yk,l)
−β1(1+ iyk,l)

−β2(1+ yk,l)
−β3

× (1− iyk,l )
−β4, (22)

yk,l = t j

q
l + t j

2q
bk− t j

2q
, (23)

j = 1 . . . 4, (24)

wheret j , βk, uc, andC1 are obtained using the con-
formal mapping process. The base pointsbk and
weight factorsgk, k= 1 . . . p, are determined using
the Gauss rule for numerical integration. We used
p= 12 andq= 12 in all our simulations. The Gauss
quadrature method is used to determine the values of
bk andgk.
When the network converges, the partition of the im-
age into the quadrilateral regions with a modulus of
1 can be obtained approximately with this modifica-
tion. Including (4) and (19) with (1) and (2) in each
iteration, the algorithm not only adaptively explores
the the features of the inputs, but also preserves the
conformal property in the network [6]. We name this
network SOCN. Since it is costly to include the mod-
ification of (19) from the beginning of the evolution,
we include modification during the later evolution
stage. Modification using (19) still may not guaran-
tee that the modulus will be one. We add a diago-
nal edge to partition the quadrilateral into two trian-
gles whenever this quadrilateral does not meet this
requirement. Mapping of two triangles can be ac-
complished by modifying the quadrilateral mapping
shown in Fig. 3. This modification is done by merg-
ing any two neighboring nodes of the quadrilateral
into one node.

3 Image compression in phases III,
IV, and V

This proposed image representation in the square re-
gions can be applied to different image analyses, par-
ticularly image compression. We discuss phases III,
IV, and V in this section.
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In image compression, Kohonen’s SON has been ap-
plied with a great deal of success in the design of
codebooks for vector quantization [1]. Instead, as a
vector quantizer, our approach is devised to approx-
imate the image in a warped coordinate system. With
the conformal mappings, the warped image in the
square regions preserves the visual information of
the original image and provides a generalized repre-
sentation of the image.
The image portion in each square region has a similar
feature and uniform property. The redundant infor-
mation in each region can be reduced. Considering
the continuity of the mapped image in a square re-
gion L, we use the Laplace equation to model the
mapped image inL. This is because the Laplace
equation meets the conformality requirement. We
can keep conformality consistence in all the ap-
proach. The image data,{ f(u(v)), wherev=v1+ iv2,
v ∈ L}, can be fitted or interpolated with a func-
tion φ(v1, v2)≈ f(u(v)) that satisfies the Laplace
equation

∂2φ

∂v1
2
+ ∂2φ

∂v2
2
= 0 in L, (25)

and the boundary conditions on∂L. Note that a linear
function of(v1, v2), which is usually used for linear
interpolation (or filtering), satisfies the Laplace (25).
Sinusoidal functions are special solutions of (25).
These functions are the bases of most modern com-
pression techniques. General solutions of (25) are
much richer and can provide many harmonic images.
We now describe a simple way to obtain an ap-
proximated image in each regionL. To compress
the data inL, we sample 4M points (including the
four vertices) along the boundary∂L with equally
spaced sampling. These 4M points may be inter-
polated from the mapped imagef(u(v)). Note that
this interpolation is not necessary for continuous im-
ages. We can always find exact mapping points of
these 4M boundary points for a continuous image.
The reason for using the boundary points at our dis-
posal is that we can partition a large painting into
subfarmes. Then, we compress each subframe. We
connect the decompressed subframes to recover the
original painting. This kind of compression requires
an algorithm with seamless excellence. We require
each subframe to match these boundary points ex-
actly along the partition border. This requirement
will guarantee seamless compression. To our knowl-
edge, there exists no other exact seamless approach
for partitioned images.

5 10 15 20
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20

40

60

80 N=5

N=10

compression
rate

N=15
N=20
N=30
N=40
N=50

M

Fig. 4. Compression ratios versus differentN andM values.
Note that the compression ratio decreases as eitherN or M
increases

For a network withN× N neurons, there areN+
N(N− 1)(2M− 1) data in the compressed rep-
resentation. In addition, there are 3(N−1)2 and
4(N−1)2 real data for the exterior angles of the
quadrilateral regionQ and for the complex parame-
ters,uc andC1, of the conformal mappings from the
u-plane to thet-plane, respectively. There are a total
of 2+2(N−1)(MN+3N−3) real codes.
The 3(N−1)2 and 4(N−1)2 real parameters may
be reduced for computational efficiency. These pa-
rameters are not necessary, and they can be calcu-
lated from the first two components of the synapses.
These coordinate components have 2N2 real data.
Thus, there are a total of(N+1)2+2MN(N−1)
codes for image compression with this method. The
compression ratio is higher than that of the previous
coding method. Figure 4 shows the compression ra-
tios for differentN andM values. The choices of the
N andM values depend on the level of difficulty of
the image. Actually, we design these values case by
case.
When a high resolution or continuous image is re-
constructed with this approach, the value ofM may
be large. 4M boundary samples are used to recon-
struct the(M+1)2 grid points within a square re-
gion. Thus, the compression ratio is roughly equal
to (M+1)2

4M , which is linearly proportional to the
value of M. M can be as high as we want for
a continuous image. Usually, we setM greater
than 255.
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Fig. 5. a The mapped image in a square region. 40(= 4M = 4×10) intensity values along the boundary of a square
region are sampled.b Approximated image where the boundary conditions and the governing equation are satisfied

To reconstruct the image from these codes, we use
numerical techniques described in [14] to solve this
boundary value problem. We obtain an approxi-
mated image in each square regionL that satis-
fies the governing (25) and has the 4M bound-
ary values. Figure 5 shows an example in which
M = 10 and the approximated image is solved to
satisfy the boundary values. Note that there are
many alternative ways to obtainφ(v1, v2). A del-
icate method is to place sources and sinks [15]
within L. The potential fields of both sources and
sinks satisfy the governing (25). The locations and

strengths of these sources and sinks are deter-
mined through approximation off(u(v)) such that
their combined potential field,φ(v1, v2), is close to
f(u(v)) within L. This results in fine reconstruc-
tions. The computation cost is highly dependent
on the algorithm used to obtain an approximated
φ(v1, v2). We do not discuss this kind algorithm
here. This completes the phase III operations. With
the conformal mappingK−1

L,Q from the v-plane to
the u-plane, the original image contained in the
quadrilateral regions can be recovered in phases IV
and V.
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a

  

b c

Fig. 6. a The original image from the photograph of Lena.b The mapped image representation in the square regions.
c Reconstructed image from the mapped image inb without compression

4 Simulations and discussion

Since our approach is designed for continuous
images, simulation on a common digital image
gives a sense of the approach’s compression ca-

pability. Two-dimensional gray-scale images with
256×256 8-bit pixels were used in the tests. Since
our approach is designed for continuous images,
simulation on a common digital image will give
a sense on the approach’s compression capabil-
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8a 8b

Fig. 7a,b. Sampled intensity data along the square regions’ boundaries fora the photograph withM = 3 andb the
photograph withM = 10. The samples are plotted in the square system

Fig. 8a,b.Reconstruction of the images in square regions from the sampled data on the square regions’ boundaries for
a the photograph withM = 3 andb the photograph withM = 10

ity. The initial configuration of the network was
a 20×20 (N = 20) square grid pattern, regularly
arranged in the image space. Training parameters
were the same for all the simulations. We set the
total iteration number to 2000, the learning rate
α(n)= 0.001n/2000, and the neighborhood func-
tion hc, j (n)= exp(−d(c, j)2/(α(n)×20)2), where
d(c, j) is the distance metric between the win-
ning neuronc and the neuronj in the network
plane.

A photograph of Lena was tested. The results are
shown in Fig. 6. Figure 6a shows the original image,
and Fig. 6b shows the corresponding image repre-
sentation in the square regions. Figure 6c shows the
reconstructed images obtained without compression
by means of inverse conformal mappings of the im-
age in Fig. 6b. Note that we did not apply any data
reduction techniques to obtain Fig. 6c, which shows
that the representation in Fig. 6b is a feasible and ef-
fective representation.
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Fig. 10. aThe term sin(mπv1/M) sinh(−mπv2/M), b the term sin(mπv1/M) sinh(mπv2/M), c the term sin(mπv2/M)
sinh(−mπv1/M), andd the term sin(mπv2/M) sinh(mπv1/M) in (v1, v2) plane, wherem/M = 2

Fig. 9a,b. The reconstructed images fora the photograph withM = 3, andb the photograph withM = 10 by the
conformal mappings
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Fig. 11.The terms ofφ(v1, v2) with different values ofm/M = 2, 4,8, and 16

Based on this representation, we applied the dis-
cussed encoding methods to compress the mapped
data and reconstruct the image from the codes. Fig-
ure 7a and b display the sampled boundary data
along the square regions’ boundaries withM = 3 and
M = 10. Figures 8 and 9 display the correspond-
ing approximated images in square regions and de-
coded images, respectively, using the encoded sam-
ples shown in Fig. 7. To compress the data with
a higher compression ratio, we first setM = 3 for
this case, i.e., sampling 12 points along the bound-
ary of each square region. The codes were sam-
pled along the boundary of each square region. For
a network with 20×20 neurons, the compression
ratio was 256×256/2721= 24.09. For finer com-
pression withM = 10, the compression ratio was

256×256/8041= 8.15. The decompressed results
obtained with these codes are shown in Fig. 8a and b.
Figure 9a and b show the reconstructed images in the
quadrilateral regions obtained by means of inverse
conformal mappings. No significant seam distortion
exists between any two connected quadrilateral re-
gions in these reconstructed images.
To evaluate the quality of the reconstructed images,
one type of the signal-to-noise ratio (SNR) was cal-
culated as

SNR= 10 log10

∑
x
∑

y ( f(x, y))2∑
x
∑

y

(
f(x, y)− f̂ (x, y)

)2
, (26)

where f(x, y) is the original intensity value at the
point (x, y), and f̂ (x, y) is the reconstructed inten-
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sity value at the same point(x, y). In Fig. 9a and b,
the SNRs are22.32 dBand20.26 dB, respectively.
From the simulation results, we observe that data
near the edges of the images were lost by SON. Se-
rious distortion has also appeared in the edge neu-
rons. This phenomenon is called the boundary ef-
fect [16] in SON. In our simulations, we could easily
add boundary regions along the edges to fix the lost
portions. Links between boundary neurons and their
closest points on the edges of the image constitute
partitions for the boundary regions. We can also ex-
pand the distribution of image data beyond the edges
to allow the network to cover the original image.
The expanded data will be discarded from the recon-
structed image.
This approach provides techniques for an adaptive
partitioning of the image, conformal transformation
for harmonic representation, and sampling in the
mapped domain. This approach is particularly de-
signed for compression of paintings and works of
fine art on both planes and 3D surfaces. The com-
putational cost of our approach is much higher than
that of existing compression methods. Many other
compression techniques can be combined with our
techniques. A scalar quantizer can also be employed
to further reduce the number of bits. Data in differ-
ent regions may require different numbers of bits. In
addition, the entropy coding techniques, for exam-
ple, the Huffman coding, can be used to code the bit
stream for higher compression ratios. Since this is
a totally new technique, many interesting issues are
currently being studied in the project.
Finally, we discuss the solution of the Laplace equa-
tion in a square regionL and its boundary∂L to ob-
serve the basic difference between our approach and
the sinusoidal function based compression approach.
To find the solutionφ(v1, v2),

∂2φ

∂v1
2
+ ∂2φ

∂v2
2
= 0 in L,

L = {(v1, v2)|0≤ v1≤ M, 0≤ v2 ≤ M}, (27)

the boundary conditions on∂L,

φ(v1,0)= b1(v1),

φ(v1,M)= b2(v1),

φ(0, v2)= b3(v2), and
φ(M, v2)= b4(v2), (28)

are considered. The functionsb1, b2, b3, andb4 de-
note the known boundary functions along the bound-

ary ∂L. 4M points were equally spaced along∂L in
our simulations.
After applying superposition and separation of vari-
ables [18], the solution ofφ(v1, v2) has the form:

φ(v1, v2)=∑
m

sin
(mπv1

M

)(
Am sinh

(
mπ(M−v2)

M

)

+ Bm sinh
(mπv2

M

))

+
∑

n

sin
(nπv2

M

)(
Cn sinh

(
nπ(M−v1)

M

)

+Dn sinh
(nπv1

M

))
, (29)

where

Am= amcsch(mπ),
Bm= bmcsch(mπ),
Cn = cncsch(nπ),
Dn = dncsch(nπ), (30)

andam, bm, cn, anddn are the expanded coefficients
in the Fourier sine series forb1, b2, b3, andb4, re-
spectively, i.e.,

b1(v)=
∑
m

am sin
(mπv

M

)
,

b2(v)=
∑
m

bm sin
(mπv

M

)
,

b3(v)=
∑

n

cn sin
(nπv

M

)
, and

b4(v)=
∑

n

dn sin
(nπv

M

)
. (31)

Figure 10a–d shows the four terms that comprise the
expanded expression (29) forφ(v1, v2). Figure 11a–
d shows four examples for the terms ofφ(v1, v2)
in (29) with different values ofm/M.
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