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Conformal mappings are incorporated into
the self-organization model to represent im-
ages harmonically. This network is used to
partition an image into quadrilateral regions,
where each region contains similar features,
We then map each region to a correspond
ing square region to unify information rep-

resentation and facilitate computations. This
mapping is constructed to preserve spatial
information while complying with the con-

formal property of the network. An approxi-

mated image in each square region provides
us with an effective representation of the im-
age in both modeling and compression appli-
cations. This approach has been particularly
developed for large continues images.
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1 Introduction

Research in image representation has attempted to
construct an image system that models the essential
components, in spatial or transformed form, of an
image. Such a system explores the inherent relation-
ships among image data, perceives the redundancy
among them, and determines an appropriate organi-
zation for them. The need for general and effective
modeling has prompted much research into the neu-
ral network approach to explore representations for
various applications, including, for example, image
compression [1, 2], image segmentation [3], and sur-
face modeling [4]. In this work, a self-organizing
network (SON) [5] with conformal mapping tech-
nigues for images was studied.

SON has the ability to learn visual information from
an image and to form an ordered map that confor-
mally (harmonically) preserves the essential features
of the image [6]. This network usually acts as a vec-
tor quantizer to organize sensory inputs into ordered
clusters on a map. Such maps can provide descrip-
tions of the inputs in terms of a series of quan-
tized cluster centers or representations. Image data
usually have varying properties that are continuous
among neighboring pixels. This map can roughly
approximate continuous inputs in its clustering cen-
ters. This limits the application of SON in image
analysis.

We have devised an approach based on SON which
characterizes image data continuously with har-
monic representation. As shown in Fig. 1, this net-
work is utilized to place a partition for an image.
The spaces in this partition are adapted according
to the image data fed into this network. Based on
this, the image is partitioned into connected quadri-
lateral regions, each containing similar features. This
network conformally preserves the features of the
image data [6] in a global sense. To save neurons and
comply with this global property, we use conformal
mappings to transform these quadrilateral regions
into a square system, formed by square regions, to
expand the local details uniformly. A conformally
warped representation of the image in the square sys-
tem will be obtained. This kind of representation
provides us with a uniform and effective description
of the image and roughly equalizes the amount of
information in various regions. The representation
in the square system will facilitate further mapping
computations. Figure 1 shows application of the net-
work to image compression.

To transform the data in the quadrilateral regions into
datain a square system as in phase Il shownin Fig. 1,
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Fig.1. The self-organizing conformal net-
work (SOCN) applied to image representa-
X ) tion and image compression. Neurons are
reconstructed images for  |gcated at the nodal positions in the neuron
different resolutions mesh

we need to construct continuous mapping functionsions in the brain [8-10], for which image warp-

that preserve the image features. These mappingsg with conformal preservatiohas been proposed

must be one-to-one and analytic so that no inforto model the cortical representation of the image
mation will be lost. Considering the local isotropic formed on the retina. Experiments in the visual brain
property and the conformal property of SON, weuse regular shapes to display the mappings [9]. We
can construct conformal mappings (see, for examhave further designed a square system to simplify
ple, [7]) to map these quadrilateral regions to theimand unify the computations. In the proposed ap-
corresponding square regions. Conformal mappinggroach, conformal mapping technigues are used to
have been studied as models of image representeenstruct a harmonically warped representation in
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the square system. Effective numerical techniqueg Adaptively scaled partition system
are discussed for these mappings. for an image

During the adaptation process in phase I, the par-
tition configuration evolves continuously and con- . .
formally. The converged network provides a scaledZ-1 The image representation
partition for the input image. The feature contents
scale the partition. This network partitions the imag
into connected quadrilateral regions. Mappings fro : .
quadrilateral regions to square regions in phase [ [ &t a point coordinatg = (x,y) € P, P < R?

are devised so as to satisfy conformality conditionsg!V€S the intensity of the image at this point. The
A warped image representation in a square systeffnction f(p) may be either continuous along the
is obtained by means of such conformal mappingss.pat'al coordlnat@ordl_gltlzed spatially. T_he ampli-
Note that conformal mapping satisfies trermonic Equud:ng;;ép) may be either shaded continuously or
property[7,17] used in image processing. We ca " .

obtain visual information that effectively characterr—]The coordinatep = (x, y) and the functionf(p)
izes an image and preserves its topological featured© usually sampled as inputs for f“”“gg data pro-
can be obtained using the network and mapping€SSing. Consider the input s&t, X ¢ R* from
Conformality is achieved using SON and mapping@n image. The sample input= (p, f(p)) € X is

in both the global and local senses. Since it is costif1€ IMmage feature vector at the coordingey).
to build a network with dense neurons, we use arJ '€ Main concem in image processing is to explore
’ Oli]je relationships among these inputs and to deter-

mal mappings to fill the local detailed space. mine good representations of these inputs for further

Application of the network to image compression21a!yses

is discussed in this work. Based on this approackfince the local image data in nearby pixels are of-

image data are partitioned into neighboring quadriten highly correlated, a whole image can be parti-

lateral regions by the network. Then, the image | ioned into local regions with different center fea-
each region is mapped to a square region in a squal res. Data in the various regions should be con-

system. Image features within each square regiofuously decorrelated. This partition can be con-
are similar and uniformly distributed. Approxima- Structed adaptively according to the image data. To

tions can be applied to remove the redundancy gfonstruct this partition, we use SON as a partition

the image in each square region. The approximate%yStem with its adaptive ability to scale partition

harmonic function, which satisfies the Laplace's>Paces: This network hasa 2D neuronarray arranged

equation and meets the boundary conditions of eadﬂitiagy Ic? ]‘:’.‘ reé;lélarl_sgyaref topolqg)r/].bEa}?h gegion
square region, is used as the reduced representatidii" °€ ﬁ'ne. g ml '_?% our _nelgh orhoo nr;eu-
This function can be used to obtain reconstructe®"S @S ShowninFig. 1. 1niS région changes in shape
images with arbitary resolutions. High compressiorf'uring the process of self-organizing adaptation and

ratios for continuous images can be achieved. ngolves into a quadrilateral region. Each quadrilat-

give simulation results to show the performance ob€r2l region encloses a local image that contains sim-

tained using this approach ilar features. The boundaries of these regions consti-
This work is organized as follows InSect. 2. a gen_tute a partition. The evolution of this patrtition is now

eral image model is defined. SON is employed tdresented.

place a scaled partition system on an image. Quadri- o ] )

lateral regions in this partition, square regions in the2-2 Partitioning the image using SON

square system, and the relationships between them jn phase |

are illustrated. We also discuss self-organizing con-

formal network (SOCN) and analytic mappings. Nu-To partition the image, we apply SON to process
merical mapping techniques are included. In Sect. 3he inputs and to generate the partition. To pro-
this approach is applied to image compression. Secess the samples from input s¥t a set of neu-
tion 4 presents many simulations carried out to verifyrons arranged in a 2D plane with regular rectan-
the performance of this approach, and the results agular topology is used (see Fig. 1). The synapse
discussed. vector corresponding to the neurdgnis denoted

n image can be modeled as a 2D intensity function.
et f(p) denote this function, in which the value
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Fig. 2. aAfter training, the 3 components of the synapg
vectors are plotted in 3D space. TRey coordinates of
the neurons are the nodal positions in the mesh on the
age plane. The trained mesh constitutes the partition

the image. All mesh holes have quadrilateral shapes.
The mapping is from all the quadrilateral regions to thei

corresponding square regions

im-
for

=

means of the minimum distance criterion as follows:

X —we| = min ||[X—wil. 1
I wel = min I~ w;| ®

After the winning neurort is found, the adaptation
process adjusts the synapse vectors of neurons with
varying amounts of updating by

wj(n+1) = wj(n) +a(n) x he j(n) (2
X [X=wjm)], wj;eW,

wheren is the time step or iteration numberjs the
learning rate, andi¢ j is the neighborhood function
for the neurong and j. Both« andh j are func-
tions of the time step. After iterations for different
sampled inputs, an ordered representation that ap-
proximates the input space can be obtained.

As shown in Fig. 2a, a converged network provides a
scaled partition of the image. Synapse vectors of the
network represent the feature centers of the image.
The first two components of neighboring synapse
vectors are the coordinates of the four vertices of a
corresponding quadrilateral region. During the self-
organizing process, the shapes of these regions are
varied, following the synapse adaptation. The con-
verged network partitions the image into a disjoint
collection of quadrilateral regions. Each region con-
tains similar features and roughly the same amount
of information. This partition completes the process
in phase |I. Note that many well-developed tech-
nigues are available to speed the convergence. We
use the formal algorithm.

Figure 2b displays the mapped image in the square
system. Using the conformal mapping techniques,
discussed in Sect. 2.3, representations in regularly
square regions can be obtained.

third components ofv; are set to be adapted to the
coordinate and the intensity of the image input, re-

quadrilateral regions and square

spectively. Learning can be done in the iterations of ~ regions in phase I
the best-matching process and the synapse adapta-

tion process. For each iteration, an inpug X is
randomly selected. The best-matching process dege in each quadrilateral region to its corresponding
termines the winning (or best-matching) neuron square region. We use conformal mapping functions
whose synapse vectaw. is the closest vector to to preserve the feature properties of the image data
the inputx for all the vectors inW. In this process, and to avoid information loss.

the euclidean distance measure is used to measufer a 2D image, we perform mapping using tech-

the match between the input and the synapse veoiques employed in complex analysis. We reformu-

tors. The best-matching neuron can be decided biate the spatial coordinatp = (x, y) € R? into its

To obtain a uniform representation, we map the im-
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Fig. 3. Conformal mapping between the quadrilateral reg®im theu-plane and the square regiann the v-plane

complex expressiofx +iy). Letthe conformal map- respectively. The Schwarz—Christoffel formula de-
ping from a quadrilateral regio@ to a square region fines the mapping frormtou as

L beKq,L, whereKg L :uv,ue Qandvel t g N P

are complex variables. With the functitt the one- |, — uc+le 1—[ (1_ _) dt’ )
to-one correspondence between these two regions el t]

can be defined. The Schwarz-Christoffel transforma- J

tion (see, for example, [11]) can be used to construct"d the mapping frotito v as

the mapping between quadrilaterals. Note that a b4 '\ Vi
square is also a quadrilateral. v= Uc+C2/ I1 (1— t_-> dt’, (5)
Consider a quadrilateraQ with vertices labeled j=1 J

uj, 1<u;j <4, in theu-plane and a squate with  \heret;, j =1... 4, are the designed points on the
vertices labeled;, j =1...4, in thev-plane. Fol-  poundary of the unit disk, an@y, Cy, uc, andv. are
|0W|ng the Schwarz—Christoffel tranSformauon, Wethe Comp|ex parameters of the mapping:sjs the
transform the boundar§Q of the quadrilateral re- center of the squar€, = v/2+i+/2, is a constantin
gion Q along \_Nlth' its vertices into the outer cir- thjs mapping. The pointg;, j = 1...4} are designed
cle of a unit disk in thet-plane and then transfer to match the four vertices of each region with com-
the circle to the boundar§L of the square region pytational efficiency. In all our simulations, we set
L. The unit disk in thet-plane is used as an in- t; — 1 t, =i, t3 = —1, andt, = —i.

termediate set to aid construction of the mappingin our simulations, we used the following formula
Figure 3 shows the mappings between the compleyy (4):

planes.

Two types of mappings are shown in Fig. 3. For the L4 '\ P

first type, we consider mappings from the unit disk u :uC+C1/ l_[ (1— —) dt’ (6)
in thet-plane to corresponding regions in tiplane = 4

andv-plane. Letgjr, —1 < Bj < 1, be the exterior Cut P

angle of the quadrilateral regidpatu;, and lety; N 1

—1<yj <1, be that of the squareJ regidn atJUj. MUc+ 2q Z Z Gk~ ficl (7)
For quadrilaterals, we have the relationships between k=11=1

Bjm andy;m, which are: fil =(1—yi) P +iyy)) 72 (8)

x (L4 yn) P2 —iyi) P4,

4 4
t t t
pi=2 and Y yj=2, )y =+ b 9
,-2; le Mg g ©
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The interval[0, t] was divided intog subintervals. ary value problems with the broken exponefis
The value ofjy was setto 12. The lengthof the base andy;. Good solutions can be obtained with iterative
points by and weight factorg was set to 12. The evaluation[12].
Gauss rule for numerical integration was used to defhe conformal mappindq,( (u) can be obtained
termine the values df andgy, k=1... p. We set fromutot and fromt to v successively. The inverse
p=q=12in all our simulations. conformal mapplng<|_ (v) can be obtained simi-
The four parameters in (4) and (5) are determined asirly fromv tot and fromt to u.
follows. v is the center of the square. The mappingdVith this conformal mapping, the image in the
satisfy the complex conditions at the four points quadrilateral regiorQ can be mapped to a warped
image in the square regioh. Let the input be
e 4 ﬂj X = (u, f(u)) € Q, whereu is the point coordinate
Uk—Uec=C / H <1_ _> ,k=1...4,10) inthe complex plane and(u) is the intensity at.
- The corresponding mapped data= (v, f(u(v))) in
0 L can be obtained with conformal mapping frorto
v, i.e.,v = Kgq,(u) as already described.
Sinceu is continuous in the spatial coordinate, this
mapping can be applied to continuous images such
as photos from cameras or fine art paintings. We
no devise this technique particularly for those paint-
k_UC—CZ/ H (1__> dt’, k=1...4,(11) ings on curved surfaces in the projects. When we
use exact mappings, there is no distortion dur-
ing reconstruction of the original image from the
from t1, to, t3, andts to v1, v, v3, andvg, re-  warped image in the square regions. This approach
spectively. Note that the verticgsj, j = 1...4} and is capable of processing both digital and contin-
{vj, ] = 1...4} are known vertices. The integration in uous images. For a digital image, a point in the
each case is evaluated by means of the compoundplane may not correspond to a pixel point in
Gauss quadrature (see, for example, [13]). Then, thiae u-plane. We record all the coordinates that
other two parametersi§¢ andC;) can be estimated correspond to all the pixel point. We then inter-
from numerical solutions of (10) and (11). The map-polate the needed points in theplane, such as
pings from the disk to the squaie, or from the the grid points or the equal spaced points along
square. to the disk, can be prepared in advance (offthe boundarydL, of L. This interpolation is not
line preparation). necessary for continuous images. In all our simu-
For the second type of mappings (Fig. 3), we coniations, we interpolated points along the boundary
sider conformal mappings from the regions in theof L in the v-plane that were equally spaced along
u-plane andv-plane to the unit disk in the-plane. gL and included the four vertices af for discrete
These mappings can be solved with numerical methimages.
ods. Inverting the Schwarz—Christoffel formulas of

from tq, to, t3, andts to ug, Uy, us, andug, respec-
tively, and

(4) and (5), we obtain 2.4 The quadrilaterals with modulus one

a 12 t \ A For any two quadrilateral regions, a conformal map-

wo o <1— t_-) (12)  ping between them may not exist. If one does exist,

iz ! then these two quadrilaterals are conformally equiva-

lent and have the same modulus. A square region has

for the mapping fronu tot and amodulus of 1 by definition. To unify the conformal-
ity property, we limit all the quadrilateral regions in

dt 1 4 t\ Vi theu-plane to a modulus of 1.

— = ( — —> (13) To transform a quadrilateral region into a square re-

dv Gz j=1 tj gion with a modulus of 1, the quadrilateral must

have modulus 1. Consider the unit disk in the
for the mapping fromv to t. The numerical Runge- plane. The coordinates ¢f, j =1...4, are cho-
Kutta method can then be applied to these boundsen so as to equally divide up the unit circle, i.e.,
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t1=1, tp =i, t3=—1, andty = —i. We will now the quadrilateral inta’; by means of
show how to obtain quadrilaterals with a modulus .
of 1in SON. :
Because the regiob is a square, the mapping of (5) u'; = uc+01/ A-t)y Pr@a+ity P2a+t)
fromt to v can be simplified as follows: —Ba
0 x(1—ith ™dt (20)
| _1 Cutj P
v=vc+02/ (1-t*) "o (14) %uc+2—qZng- ficl, (21)
k=1 1=1
0 ~Br(1 vy ) P2 3
op P fir = Q=) X +iy) ™21+ Y1)
R e+ 2—2 Z Z Ok T, (15) x (1— iYK,I)im, (22)
k=11=1 g t]
==+ —by——, 23
) Yk a +2q K~ 2 (23)
fi) = (1— YK,I4) , (16) j=1...4, (24)
t t t wheret;, Bk, Uc, andC;, are obtained using the con-
Yk = —| +2—bk—2—, (17)  formal mapping process. The base poibisand
q q q weight factorsgk, k=1... p, are determined using
. the Gauss rule for numerical integration. We used
Co=v2+iv2. (18) p =12 andq = 12 in all our simulations. The Gauss
quadrature method is used to determine the values of

We setp=q = 12. The value of in (14) is the cen-

ter of the square. by andg.

. . When the network converges, the partition of the im-
During the self-organizing process, the shapes of thg o intq the quadrilateral regions with a modulus of
quadrilateral regions are dynamically reformed fol-1 oy he obtained approximately with this modifica-
lowing (1) and (2). These quadrilaterals may not b&;q, *nciuding (4) and (19) with (1) and (2) in each
conformally equivalent to a square whose moduluge ation, the algorithm not only adaptively explores
is 1. To obtain quadrilaterals with a modulus of 1 iny,q the features of the inputs, but also preserves the
the self-organizing process, we must further reform,,ntormal property in the network [6]. We name this
the quadrilaterals accordingly after each iteration,ayqrk SOCN. Since itis costly to include the mod-
We modify the first two components, which are theigicaiion of (19) from the beginning of the evolution,
coordinates of vertices and neurons, of all synapsge incjude modification during the later evolution

vectors separately to move the quadrilateral verticeg, ye 'Modification using (19) still mav not guaran-
We modify these coordinates for each quadriIatera?(;;‘gth'at the modulus wi?l (be )one. Weyadd g diago-

Q following (1) and (2). The current quadrilaterals 5| eqge to partition the quadrilateral into two trian-
are first used in (4) to estimatg andCy. The ver-  g65 \whenever this quadrilateral does not meet this
ticesu;j of a quadrilateralQ are modified or relaxed requirement. Mapping of two triangles can be ac-
by complished by modifying the quadrilateral mapping
shown in Fig. 3. This modification is done by merg-

y ing any two neighboring nodes of the quadrilateral

uj = uc+01/(1—t/)ﬂ1(1+it/)ﬂ2(l+t’)’33 into one node.
0
x (1—ithPd, j=1...4 9 3 Image compression in phases I,
IV, and V

Relaxation of the network configuration using (19) is

applied intensively during the final iterations to ob-This proposed image representation in the square re-
tain a good modulus. gions can be applied to differentimage analyses, par-
For a quadrilateral that contains we modify the ticularly image compression. We discuss phases lll,
verticesuj, j = 1...4,inthe complex expression, of 1V, and V in this section.
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Inimage compression, Kohonen’s SON has been ap-
plied with a great deal of success in the design Of compression
codebooks for vector quantization [1]. Instead, as a rate
vector quantizer, our approach is devised to approx
imate the image in a warped coordinate system. With 8o}
the conformal mappings, the warped image in the
square regions preserves the visual information af ggl
the original image and provides a generalized repre
sentation of the image.
The image portion in each square region has a similar
feature and uniform property. The redundant infor- N=10

mation in each region can be reduced. Considering 29| 1 /Nod
the continuity of the mapped image in a square re- % N=30
: : : / N=40
gion L, we use the Laplace equation to model the 0 c o = 20 N=50
mapped image irL. This is because the Laplace M
equation meets the conformality requirement. We _ _ ) _
can keep conformality consistence in all the apf Fig. 4. Compression ratios versus dlfferd\:htandM_values.
: . Note that the compression ratio decreases as eNt@mrM
proach. The image datgf(u(v)), wherev=v1+ivy, increases
ve L}, can be fitted or interpolated with a func-

tion ¢(v1, v2) ~ f(u(v)) that satisfies the Laplace

401

equation

26 924 For a network withN x N neurons, there arbl +
—+-—5=0inL, (25) N(N—-1)(2M —1) data in the compressed rep-
du®  dv2 resentation. In addition, there aréN8—1)2 and

and the boundary conditions 6h. Note thatalinear 4(N —1)? real data for the exterior angles of the
function of (v1, v2), which is usually used for linear quadrilateral regior® and for the complex parame-
interpolation (or filtering), satisfies the Laplace (25).ters,uc andCy, of the conformal mappings from the
Sinusoidal functions are special solutions of (25)u-plane to theé-plane, respectively. There are a total
These functions are the bases of most modern conof 2+ 2(N — 1)(MN + 3N — 3) real codes.

pression techniques. General solutions of (25) ar@he AN —1)2 and 4N — 1)? real parameters may
much richer and can provide many harmonic imagese reduced for computational efficiency. These pa-
We now describe a simple way to obtain an ap+ameters are not necessary, and they can be calcu-
proximated image in each regidn. To compress lated from the first two components of the synapses.
the data inL, we sample # points (including the These coordinate components haw?2real data.
four vertices) along the boundafl. with equally Thus, there are a total giN +1)2+ 2MN(N — 1)
spaced sampling. ThesdWpoints may be inter- codes for image compression with this method. The
polated from the mapped imadéu(v)). Note that compression ratio is higher than that of the previous
this interpolation is not necessary for continuous im-coding method. Figure 4 shows the compression ra-
ages. We can always find exact mapping points afios for differentN andM values. The choices of the
these M boundary points for a continuous image.N andM values depend on the level of difficulty of
The reason for using the boundary points at our disthe image. Actually, we design these values case by
posal is that we can partition a large painting intocase.

subfarmes. Then, we compress each subframe. VW¢hen a high resolution or continuous image is re-
connect the decompressed subframes to recover thenstructed with this approach, the valueMbfmay
original painting. This kind of compression requiresbe large. M boundary samples are used to recon-
an algorithm with seamless excellence. We requirstruct the(M + 1)? grid points within a square re-
each subframe to match these boundary points extion. Thys, the compression ratio is roughly equal
actly along the partition border. This requirementto MED” *which is linearly proportional to the
will guarantee seamless compression. To our knowlalue of M. M can be as high as we want for
edge, there exists no other exact seamless approaghcontinuous image. Usually, we s&i greater
for partitioned images. than 255.
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top view

top view

Fig.5. aThe mapped image in a square region(=4@M = 4 x 10) intensity values along the boundary of a square
region are sampledh Approximated image where the boundary conditions and the governing equation are satisfied

To reconstruct the image from these codes, we usarengths of these sources and sinks are deter-
numerical techniques described in [14] to solve thignined through approximation of(u(v)) such that
boundary value problem. We obtain an approxitheir combined potential fieldj(vy, v2), is close to
mated image in each square regibnthat satis- f(u(v)) within L. This results in fine reconstruc-
fies the governing (25) and has thél4bound- tions. The computation cost is highly dependent
ary values. Figure 5 shows an example in whiclon the algorithm used to obtain an approximated
M = 10 and the approximated image is solved tap(v1, v2). We do not discuss this kind algorithm
satisfy the boundary values. Note that there ar@ere. This completes the phase Il operations. With
many alternative ways to obtaif(vy, v2). A del- the conformal mappind, 1Q from the v-plane to
icate method is to place sources and sinks [15jhe u-plane, the original image contained in the
within L. The potential fields of both sources andquadrilateral regions can be recovered in phases IV
sinks satisfy the governing (25). The locations andand V.
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b C

Fig. 6. aThe original image from the photograph of Lehalhe mapped image representation in the square regions.
¢ Reconstructed image from the mapped imagde without compression

4 Simulations and discussion pability. Two-dimensional gray-scale images with
256 x 256 8-bit pixels were used in the tests. Since
Since our approach is designed for continuousur approach is designed for continuous images,
images, simulation on a common digital imagesimulation on a common digital image will give
gives a sense of the approach’s compression ca sense on the approach’s compression capabil-
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Fig. 7a,b. Sampled intensity data along the square regions’ boundaries tfoe photograph withtVl = 3 andb the
photograph withM = 10. The samples are plotted in the square system

Fig. 8a,b.Reconstruction of the images in square regions from the sampled data on the square regions’ boundaries for
athe photograph wittM = 3 andb the photograph wittM = 10

ity. The initial configuration of the network was A photograph of Lena was tested. The results are
a 20x 20 (N = 20) square grid pattern, regularly shown in Fig. 6. Figure 6a shows the original image,

arranged in the image space. Training parameteend Fig. 6b shows the corresponding image repre-
were the same for all the simulations. We set thesentation in the square regions. Figure 6¢ shows the
total iteration number to 2000, the learning ratereconstructed images obtained without compression
a(n) = 0.001"/2000 and the neighborhood func- by means of inverse conformal mappings of the im-

tion he j(n) = exp(—d(c, )2/(a(n) x 20)%), where age in Fig. 6b. Note that we did not apply any data

d(c, )) Is the distance metric between the win-reduction techniques to obtain Fig. 6c, which shows

ning neuronc and the neuronj in the network thatthe representation in Fig. 6b is a feasible and ef-
plane. fective representation.
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) Vi
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Fig.9a,b. The reconstructed images farthe photograph witiM = 3, andb the photograph wittMi =10 by the
conformal mappings

Fig. 10. aThe term siimzv1 /M) sinh(—mzmv2/M), b the term sitimzvy /M) sinh(mzvp/ M), ¢ the term sitimzvy /M)
sinh(—mmv1 /M), andd the term sitimzvo/ M) sinh(imrvy /M) in (v1, v2) plane, wheren/M = 2
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Fig. 11.The terms ofs(v1, vp) with different values om/M =2, 4, 8, and 16

Based on this representation, we applied the di256x 256/8041= 8.15. The decompressed results
cussed encoding methods to compress the mappettained with these codes are shown in Fig. 8aand b.
data and reconstruct the image from the codes. Figrigure 9a and b show the reconstructed images in the
ure 7a and b display the sampled boundary datquadrilateral regions obtained by means of inverse
along the square regions’ boundarieswWith=3 and conformal mappings. No significant seam distortion
M = 10. Figures 8 and 9 display the correspondexists between any two connected quadrilateral re-
ing approximated images in square regions and degions in these reconstructed images.

coded images, respectively, using the encoded sarfie evaluate the quality of the reconstructed images,
ples shown in Fig. 7. To compress the data withone type of the signal-to-noise ratio (SNR) was cal-
a higher compression ratio, we first 9dt=3 for  culated as

this case, i.e., sampling 12 points along the bound- S (Fx ¥))2

ary of each square region. The codes were sanBNR= 10log;, X =y ’ 5. (26)
pled along the boundary of each square region. For fox. v) — F(x

a network with 20x 20 neurons, the compression 2x Zy( * ¥ =1 ,y))

ratio was 256« 256/2721= 24.09. For finer com- where f(x, y) is the original intensity value at the
pression withM = 10, the compression ratio was point (X, y), and f(x, y) is the reconstructed inten-
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sity value at the same poili, y). In Fig. 9a and b, arydL. 4M points were equally spaced alofl in
the SNRs ar@2.32 dBand20.26 dB, respectively. our simulations.

From the simulation results, we observe that datd\fter applying superposition and separation of vari-
near the edges of the images were lost by SON. Sexbles [18], the solution af(v1, v2) has the form:

rious distortion has also appeared in the edge neu-
rons. This phenomenon is called the boundary ef(jj(v1 Vp) =
fect [16] in SON. In our simulations, we could easily ’

add boundary regions along the edges to fix the lost ™ sin(mm1> (Am sinh(mn(M_U2>>
portions. Links between boundary neurons and their = M M
closest points on the edges of the image constitute

partitions for the boundary regions. We can also ex- 4B sinh(mﬂv2> )

pand the distribution of image data beyond the edges

to allow the network to cover the original image.

The expanded data will be discarded from the recon- . /Nmuy ) nz(M —vq)
structed image. +Zsm<v) <C” smh(—)
This approach provides techniques for an adaptive n

partitioning of the image, conformal transformation _/nmuy

for harmonic representation, and sampling in the + Dn smh(T)), (29)
mapped domain. This approach is particularly de-

signed for compression of paintings and works of

fine art on both planes and 3D surfaces. The comhere

putational cost of our approach is much higher than

that of existing compression methods. Many othera,,, = a,cschimrn)
compression techniques can be combined with oug:m — byeschimo),
techniques. A scalar quantizer can also be employe

to further reduce the number of bits. Data in differ- ©n = CnCSCN7),

ent regions may require different numbers of bits. InDn = dncschinn), (30)
addition, the entropy coding techniques, for exam-

ple, the Huffman coding, can be used to code the biinda,,, by, ¢y, andd, are the expanded coefficients

stream for higher compression ratios. Since this isn the Fourier sine series fdm, by, b, andbg, re-
a totally new technique, many interesting issues argpectively, i.e.,

currently being studied in the project.

Finally, we discuss the solution of the Laplace equa- _

tion in a square regioh and its boundaryL to ob- b1 (v) = Z amsin

serve the basic difference between our approach and m

the sinusoidal function based compression approacla.z(v) _ Z by Sin
m

’

<

m7T>

To find the solutiorb(v1, v2), M
¢ Py ba(y) — _nmy g
— L " _0inL 3(v) = ) CpsSin , an
vq2 + dvp2 nt. Xn: < M )
L={(1.1)0<v1=M, 0=wv2=M}.  (27) p, =Y dn sin(%). (31)
the boundary conditions di., n
¢(v1, 0) = b1(v1), Figure 10a—d shows the four terms that comprise the
d(v1, M) = bo(vy), expanded expression (29) fo¢v1, v2). Figure 11a—
#(0, vp) = bg(vp), and d shows_ fou_r examples for the terms ¢fv, vo)
in (29) with different values ain/M.
H(M, v3) = ba(v5), gy "9 /
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