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We present an algorithm for the aesthetic
drawing of basic hierarchical blob structures,
of the kind found in higraphs and statecharts
and in other diagrams in which hierarchy is
depicted as topological inclusion. Our work
could also be useful in Web page design,
window system dynamics, and possibly also
newspaper layout, etc. Several criteria for
aesthetics are formulated, and we discuss
their motivation, our methods of implemen-
tation and the algorithm’s performance.
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1 Introduction

1.1 Background and motivation

Graphics and diagrams play an important role in rep-
resenting data in various fields of science, engineer-
ing and visual interfaces. Since graphic elements are
usually intended to be comprehended by humans,
readability is often the prime target of a designer.

Achieving a clear, aesthetic picture of a given dia-
gram is not an easy task when carried out manually,
so layout algorithms are badly needed in these areas.

Several graphic standards or conventions have been
proposed for representing data of different nature.

“Classical” graphs are usually composed of nodes,
represented by dots or boxes, and edges, represented
by straight, polygonal or curved lines, which can be
either directed or non-directed. Trees play a special
role due to their ability to symbolize hierarchical
structures. Some less “classical” graphical notations
are Euler circles, Venn diagrams, hypergraphs and
higraphs.

A particular “non-classic” notation we are interested
in is that of higraphs [Harel 1988]. Higraphs con-
sist of blobs (rounded-corner rectilinear shapes —
but we shall concentrate on rectangles here), possi-
bly connected by edges. The blobs are arranged in
an inclusion hierarchy. In a general higraph, blobs
may intersect, and blobs of different hierarchy levels
may be connected. Different versions of higraphs are
suitable in a variety of cases, including sets and re-
lations, inclusion hierarchies, and specification lan-
guages such as statecharts [Harel 1987], used in the
design of complex reactive systems. Higraphs with
non-intersecting blobs and without edges are also
known in the literature as inclusion graphs or tree-
maps [Shneiderman 1990].

Our work focuses on developing and implementing
drawing algorithms for blob hierarchies, which are
edge-free and intersection-free higraphs, with an at-
tempt to produce the most aesthetic, and therefore
comprehensible, layouts.

The need for this arises in many applications in-
volving extensive interaction between computer and
human by means of diagrammatic languages. For ex-
ample, the user of STATEMATE [Harel et al. 1990,
Harel, Politi 1998], RHAPSODY [Harel 1988], or
some of the UML diagrams [OMG 1999] faces the
task of actually drawing statecharts, activity charts
and object diagrams. All these are actually inter-
preted variants of higraphs. Similar issues arise in
other software development tools that support encap-
sulated hierarchies. Automation of statechart layout,
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for example (at least in some limited way), would
help the user concentrate on the design and save
time spent on technicalities; it could also help the
viewer understand the system structure that is being
described. A good solution to the hierarchy layout
problem can be a starting point for such improve-
ments, but it would definitely need extending to the
case where edges are also present, as in the languages
supported by such tools.

Another possible application of a solution to this
problem is in window managers of graphical user
interfaces and in the design of Web pages. Many
existing interfaces of commercial applications sup-
ply options of automatic arrangement of windows
in a tile or in a cascade, as do many kinds of Web
pages. Usually, after the operation all the windows
are of the same size. None of these interfaces cares
for window contents or inner structure, and they ig-
nore any inclusion hierarchy. Integration of ideas
from our algorithms in such applications could make
it easier to improve the layout of window structure,
displaying the windows simultaneously and in ap-
pealing dimensions and locations. Other possible ap-
plications are in newspaper layout and similar design
tasks.

1.2 Related work

Motivation for the higraph formalism can be found
in [Harel 1988]. Several authors present applications
of them: [Harel 1987] starts a series of papers on
statecharts (see also [Harel, Gery 1997, Harel et al.
1990, Harel, Politi 1998]), which are used for the
specification and design of reactive systems, and
are also a central part of the UML standard [OMG
1999]. Higraphs can be used to visualize hierarchi-
cal systems, which have attracted quite a bit of at-
tention. A higraph-based description of file system
security constraints was proposed in [Maimone et
al. 1990]. Blob-like structures are used in [Shnei-
derman 1990] for the description of hierarchical in-
formation structures, such as directory trees [Turo,
Johnson 1992] or NBA basketball player statistics
[Turo 1994].

Despite all this, consulting the comprehensive sur-
vey [Di Battista et al. 1999], one notices that there
are almost no attempts to develop algorithms for
drawing higraph-like structures, although there is
strong motivation for visualizing hierarchical struc-
tures [Eades et al. 1993a, Eades et al. 1993b, Eades et
al. 1996, Eades, Feng 1996, Eades et al. 1998, Kant

et al. 1996, Metaxas et al. 1994]. Existing research
on higraph-like drawing addresses only limited ver-
sions of the problem. The algorithms presented in
[Eades et al. 1993a, Eades et al. 1993b] work on
inclusion relations defined by binary/ternary trees
(each blob has at most two or three sub-blobs in-
side). The algorithms presented in [Eades et al. 1998]
concentrate on planarity and edge layout problems
in clustered graphs. The space filling approach de-
scribed in [Shneiderman 1990, Turo 1994] appears
to be suitable only for describing resource alloca-
tion hierarchical distributions, where the most im-
portant visualized feature is the weight associated
with each blob. The problem of automatic layout of
a windows hierarchy is hardly addressed in existing
window managers. However, extensive work is being
done to improve the user’s manual control over the
layout (see, for example, [Kandogan, Shneiderman
1996)).

2 Criteria for aesthetics

The objective is to arrange an inclusion hierarchy of
non-overlapping blobs in a planar layout constituting
an aesthetic representation that achieves the best po-
sitioning of the involved blobs. The only constraint
here is to preserve the structure hierarchy. We are al-
lowed to move, resize and rearrange the blobs in any
possible way, as long as they stay rectangular and no
borders are ever crossed. To give a feeling for the
structures we are working with and the desired out-
puts, Fig. 1 contains the results of our algorithm run
on a nontrivial hierarchy containing seven genera-
tions of blobs.

This short and simple formulation of the problem
hides a great difficulty, the one behind the word
“best”. Thus, our goal is highly subjective.

We now discuss some general criteria for the quality
of a solution.

The criteria surveyed here resulted from considering
how a human would approach the problem and what
the basic constraints guiding him or her would be.
However, the final and exact definitions for each cri-
terion were arrived at after numerous attempts to en-
code and implement the criteria, and after applying
the algorithm to many problem instances of varying
complexity. Still, in many cases we found ourselves
having to make hard choices of layout selection, feel-
ing that a “right” choice depends on the viewer’s per-
sonal taste and application requirements. Therefore,
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Fig. 1. The algorithm’s result (with default parameters) on a depth-7 hierarchy
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Fig.2. A blob hierarchy layed out using three variants of our
algorithm

in our implementation we have made many of algo-
rithm’s parameters user-adjustable, with a set of de-
fault values that, in our subjective opinion, yield the
best results. Figure 2 presents an example of several
layouts produced by three versions of our algorithm
run on the same hierarchy. These versions approach

the problem of space utilization in different ways,
and each might be found suitable under particular
circumstances (see Sect. 2.6)

We illustrate the importance of the various criteria,
and describe the ways to formulate them algorithmi-
cally. Most of the examples presented in this section
are actual screen shots of our algorithm’s implemen-
tation.

One of the most intuitive ways to describe the input
hierarchy is by a tree describing the inclusion rela-
tion: for example, Fig. 3 shows the tree correspond-
ing to the hierarchies in Fig. 4. In this article we shall
freely use the common notions of root, leaves, par-
ents, offspring, siblings, generations, ancestors and
descendants.

2.1 Uniformity of blob dimensions

A rather intuitive requirement from an aesthetic lay-
out is for blobs of similar “importance” to have sim-
ilar size. Exact formulation of this criterion requires
the definition of these two terms:

Importance similarity

We define collections of siblings with similar in-
ner complexity as those of similar importance. Ev-
ery blob is assigned a weight, reflecting its inner
structure. The weight is evaluated by counting blobs’
descendants, which is done recursively, all the way
down to the leaves. Siblings of the same parent are
then divided into uniform weight groups and are
treated as blobs of similar importance. Sections 3.2.1
and 3.2.2 describe the process in detail.

Another blob collection, orthogonal to those de-
scribed above, is that of all the leaves. It was found
that imposing uniformity of leaf size contributes to
the clarity of the layout.

Perfect satisfaction of the two requirements of size
uniformity is usually hard to achieve simultaneously,
and we had to search for a reasonable compromise
between them. Figure 4 displays the improvement
achieved laying out a hierarchy according to these
criteria (layout b), opposed to a more simple ap-
proach of defining siblings to always have similar
importance (layout a).

Size similarity

Whenever possible, we try to achieve perfect size
similarity by choosing identical dimensions. Usually
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Fig. 3. Tree representation of a hierarchy

Fig.d4a,b. Uniformity of blob dimensions: a uniform size
siblings; b uniform size similar siblings and leaves

this is easy to do among siblings, but for the entire set
of all the leaves, we can only try to converge to some-
thing close to the best. This is why size similarity of
a non-identical group of blobs has to be measured
subject to some optimization.

Since the resource allocated by our algorithm is area,
the simplest formulation of size similarity is to re-
quire uniformity of the areas of blob collections of
similar importance. This can be done, for example,
by measuring the standard deviation of area values in
a given set. However, we found this to be unsatisfac-
tory, since shape has a strong influence on our judg-

ment of area. It is usually hard to accept a high and
narrow rectangle to be of the same size as a square,
even when their areas are equal.

Instead, we distinguish the group of longer edges
(i.e., the sides of the rectangles) and the group of
shorter ones and try to achieve uniformity in each
of these. The smaller the standard deviation of each
group is, the better our criterion is satisfied.

As already mentioned, size similarity of similarly
important siblings is one of the basic features of our
algorithm (excluding the special case of maximal
space utilization, described in Sect. 3.3.1, where we
compromise this criterion). Size similarity of leaves
is maximized at a later stage (see Sect. 3.4).

2.2 Connecting inner structure and size

The connection between the inner structure of blobs
and their size complements the discussion of blob di-
mensions of the previous section. Since we wish to
give similar size to similar blobs, we would also like
to use size to emphasize differences between blobs.
It sounds reasonable that blobs with more compli-
cated inner structure should be larger. A blob’s inner
structure complexity is evaluated by counting the de-
scendants, producing a weight.

We use the most intuitive recursive algorithm, which
usually works fine. However, some caution must be
taken when translating weight to size. We have found
that the connection between a blob’s weight and size
should not be too sensitive. Small changes in a blob’s
importance (weight) should rather produce identi-
cal results and not just similar ones. Obtaining large
identical size groups of blobs adds flexibility to the
algorithm and helps satisfy the symmetry criteria
discussed in Sect. 2.3. In order to achieve this we
modify simple weighting by the following: First, the
contribution of lower generations to the ancestor’s
weight is decreased by a constant factor. Second, the
computed weight is quantized, so that blobs of near
weights will actually receive the same size. The lay-
out of Fig. 5b looks more organized and clear than
that of Fig. 5a.

Utilization of the formulated principles in the al-
gorithm is described in detail in Sects. 3.2.1, 3.2.2
and 3.2.3.

2.3 Symmetry

Symmetry is possibly the most logical criterion for
aesthetics in an average human’s opinion. One type
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Fig.5a,b. Quantization in weighting: a without and
b with quantization

of symmetry that we would like to require of a good
layout is derived from the nature of the geometric
figures with which we deal. The layout, or at least
its portions, should be linear symmetric about both
axes, exactly like the rectangular blobs of which it
consists.

Since the entire layout may be composed of blobs of
different dimensions, it makes sense to request sym-
metry only in homogeneous portions of the entire
hierarchy. These are groups of identically sized sib-
lings, present in the layout in order to satisfy size uni-
formity and the inner structure criteria of Sects. 2.1
and 2.2.

2.4 Blob proportions

Humans have well-defined preferences for specific
proportions of rectangles, i.e., the ratio between the
edges. One agreed-upon “ideal” proportion is the
Golden Ratio [(1++/5)/2 = 1.618]. Other popular
shapes are the ratio -+/2 (which is the proportion of
the A paper format), and the square. We have chosen

the Golden Ratio as the ideal, but the choice could be
made to depend on personal taste and constraints of
the host application (such as screen ratio or printing
page size).

Obviously, we would like to measure the quality
of blob proportion according to how far it is from
the ideal value. The comparison is carried out on
a logarithmic scale rather than a linear one in or-
der to fix asymmetry between ratios larger than 1
(vertical shapes) and those smaller than 1 (hori-
zontal shapes): ||log(X/Y)| —log(IDEAL_PROP)|
measures the imperfectness of the shape. Here
IDEAL_PROP denotes the ideal blob proportion,
which is a parameter of the algorithm, satisfying
IDEAL_PROP > 1.

This criterion was used in the algorithm, with a slight
change. We found that square-like shapes seem to
be more pleasing to the eye than long and narrow
or short and wide ones. More equally proportioned
shapes are also preferable for most applications.
Therefore, we have used the above criterion with dif-
ferent constant factors for disproportion of the two
kinds, giving priority to square- like shapes.

2.5 Gap uniformity

It seems reasonable to set the gaps between identi-
cal siblings located in proximity to be uniform. As
we observed, it is also important for gaps in both di-
rections to be equal too, although the blobs are not
square-shaped. Rather surprisingly, this also helps to
enforce equality, or at least similarity, of gaps be-
tween blobs in different generations.

The layout of Fig. 6b is a more successful version of
that of Fig. 6a. It was produced by imposing equality
of gaps in both axes and trying to make gaps in differ-
ent generations close, rather than naively choosing
them to be proportional to the parent blob’s size.
Satisfying the formulated criterion of gap equality
in different generations is maximized in the opti-
mization stage of the algorithm (see Sect. 3.4). The
amount of space to allocate for gaps and additional
details of the criterion satisfaction are described in
Sect. 3.2.6.

We have also found several special cases where
gap equality should be treated with care. Consider,
for example, the hierarchy presented in Fig. 7.
A “lighter” offspring of the hierarchy tree root seems
to look much better if freed from the equal gaps cri-
terion. Notice that in this case the gap uniformity
principle contradicts leaf size uniformity (Sect. 2.1),
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Fig.6a,b. Gap equality: a proportional gaps, different
gaps in different generations; b equal gaps in X and Y,
similar gaps in different generations

Fig.7. Special case of gap equality

and relaxing the gap uniformity contradicts the space
utilization (Sect. 2.6) criterion.

2.6 Space utilization

Space utilization is the last aesthetic criterion we
consider. It often contradicts other criteria we have
stated, and one is sometimes tempted to compromise
it. On the other hand, for most applications, the draw-
ing area is an expensive resource, which we would
like to utilize efficiently.

Contradiction with blob proportions

A simple hierarchy consisting of a root and 26 iden-
tical offspring leaves is presented in Fig. 8. Position-
ing the blobs on a 13 x 2 grid (layout a) utilizes the
parent area optimally; however, blob proportion is
unsatisfactory. Using a 6 x 5 grid (layout b) yields
the best proportion, but more than 10% of the parent
area is empty. A 9 x 3 grid (layout ¢) gives a reason-
able compromise.

Contradiction with dimension uniformity

An alternative to the compromise of Fig. &c is to
ease the blob dimension uniformity constraint. If we
allow similarly important siblings to have similar
dimensions, and not necessarily identical ones, we
might reach the solution presented in Fig. 8d. The
space is fully utilized, and the element proportions
are close to ideal. However, similarity of the siblings
is not emphasized as strongly as by the layouts of
Fig. 8a—c.

The layout of Fig. 8¢ presents another approach to
solving the problem. Size identity is compromised
even more, but the viewer has a stronger impression
of the identity of sibling importance.

Contradiction with gap uniformity

The existence of gaps is a contradiction to area uti-
lization. Clearly, some applications, such as window
managers, would prefer to work with zero gaps, and
use every available pixel of the screen. However,
other applications would prefer to give up some of
the valuable area for gaps to improve clarity of the
layout. In Sect. 2.5, we discussed the importance of
a good choice of gaps.

Conformance to symmetry

Unlike the previous three criteria, symmetry is bet-
ter suited to space utilization. A natural way to obtain
a symmetric, uniform and well-packed layout is to
use an ordered structure fitting a rectangular con-
tainer. This is why the central idea of our algorithm
is to divide blobs into uniform groups and to use
rectangular equally spaced grids as the basis for po-
sitioning identical offspring inside an area allocated
for them (see Sect. 3).
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Fig. 8a—e. Contradiction between space utilization and blob proportions: a good utilization, bad proportions; b bad utiliza-

The algorithm presented in Sect. 3.2 implements this
principle and tries to give the best compromise for
the discussed contradictions. Section 3.3 presents
two improvements to the basic algorithm, trying to
fulfill the space utilization perfectly.

3 The algorithm
3.1 General structure of the algorithm

The algorithm works in two stages. The aim of the
first stage is to produce a reasonable layout, which
will be the basis for consequent processing. We ex-

ecute several recursive procedures, starting from the
root and proceeding down to the leaves in a depth-
first manner. Due to the up-down non-iterative nature
of this stage, there is not much cooperation between
different branches of the tree. This is why it is rather
difficult to satisfy the aesthetic criteria that require
constraints to be global to the entire hierarchy, such
as leaf size uniformity. Therefore, the produced lay-
out mostly satisfies local requirements only. It sup-
plies input to the next stage, optimization.

In this stage, the obtained layout is used as a starting
point for a series of optimization rounds. We con-
verge to a solution that satisfies both local and global
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aesthetics criteria by varying several optimization
parameters that affect the entire layout. No signif-
icant topological changes are allowed at this stage,
so that perfect criteria satisfaction is rarely obtained.
The blobs may change size and move a little, but no
more complicated rearrangement is allowed. How-
ever, even so, most layouts yield significant aesthetic
improvement.

3.1.1 Reasonable positioning

We have decided to divide our description of the first
stage of the algorithm into two sections. In Sect. 3.2
we present most of this stage, for the time being

relaxing the space utilization criterion. Section 3.3

introduces two additional optional steps that try to

satisfy the latter criterion as well.

The following are the major steps of the first stage of

our algorithm:

e Weighting. Each blob is assigned a weight that
reflects its inner structure (“importance”). The
weight will help the subsequent steps of the algo-
rithm to assign it an appropriate area.

e Grouping. Blobs belonging to the same parent are
grouped according to their weights to produce sev-
eral uniform sized groups.

e Partitioning. Each blob divides the space it was
granted between the groups of its offspring.
A rectangular area is allocated for each group of
identically sized offspring.

e Grid dimension choice. For each area of identi-
cal sized siblings, the underlying grid dimension is
chosen.

e Positioning. Given a group of uniform weight
blobs and an area, the blobs are positioned in the
area on a chosen grid in a symmetric fashion, leav-
ing some grid slots empty.

e Gap computation. Before the blobs can be placed
in their positions on the grid, one has to define the
size of the empty gaps that will separate neighbor-
ing blobs.

Two additional steps, described in Sect. 3.3, give two

ways to optimize space utilization:

e Group sub-division. This step is applied to an area
if none of the grids considered by the grid di-
mension choice were found to be satisfactory. The
blobs are divided into two sub-groups, despite the
fact that they have identical size. The partitioning
step is reapplied to the problematic area to pro-
duce two sub-areas. Each of the two areas contin-
ues executing the algorithm separately.

e Size adjustment. This step is optionally applied af-
ter gap computation. In order to cover the empty
grid cells, we adjust the dimension of blobs occu-
pying the neighbors of the empty cell.

3.1.2 Optimization

This second stage of the algorithm implements
a classical anti-gradient walk in the space of the opti-
mization parameters. The iteration is carried out with
gradually decreasing steps, up to convergence to a lo-
cal minimum, which we hope is close to the global
one. In Sect. 3.4, we discuss the details: the energy
function, the optimization parameters and the opti-
mization process.

3.2 Basic positioning

The notion of area is essential for the description of

our algorithm. We have already mentioned that area

is a sub-division of an inner space of a blob. The for-

mal definition is recursive:

e The “inside” of a blob is an area.

e Each area contains either two sub-areas or an arbi-
trary number of identically sized blobs placed on
a uniform spaced grid. If the area is the “inside” of
a blob, it may also be empty.

An example of an area tree for a three-level blob hier-

archy is shown in Fig. 9.

3.2.1 Blob weighting

The layout of a given hierarchy starts with the re-
cursive step of blob weighting (described here) and
sibling grouping (described in Sect. 3.2.2) executed
in depth-first order. After the procedure is finished,
every blob is assigned a Weight that will guide the
following steps for space allocation.

Upon accepting a request from the parent, a blob
asks all its offspring to weigh themselves and group
their successors recursively. After that the offspring
are grouped, and their weights are adjusted by the
grouping process (see Sect. 3.2.2). The obtained
weights are summed, and the total is multiplied by
a CHILD_WEIGHT factor. The blob’s own weight of
1.0 is then added. The final result is:

Weight = 1.0+ CHILD_WEIGHT

x 2

ChildeChildren

Child -weight.

The factor CHILD_WEIGHT is a parameter of our
algorithm. It reflects the relative contribution of an
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offspring to the weight of its parent. Setting its value
to 0.0 cancels the offspring’s influence, so that all
blobs belonging to the same generation get the same
Weight = 1.0 (and therefore the same size — as
in Fig. 4a). The value of 1.0 would make the al-
gorithm extremely sensitive to the inner structure
of a blob, which we found to be undesired (see
Sect. 2.2). The default value of 0.5 that we have
chosen was found to give good results for most
hierarchies.

3.2.2 Sibling grouping

The grouping step takes place in the recursive
weighting process right after the blob collects weight
values from all its offspring. After the grouping is
over, the offspring find themselves divided into iden-
tical weight groups. Later, each such group will get

an area of its own (see Sect. 3.2.3) for its members to
be placed inside on a grid (see Sects. 3.2.4 and 3.2.5).
Since offspring weights might have numerous dif-
ferent values, we face the dilemma of either making
small groups or correcting weights for the groups to
be of a reasonable size. According to the discussion
in Sect. 2.2, the latter option is preferable (see Fig. 5
for illustration).

The grouping process is carried out in the follow-
ing fashion: First, the offspring are ordered by their
weights. We then open the first group and start fill-
ing it up from the ordered list. We iterate through
the list until we encounter an offspring whose weight
differs from the weight of the first blob inserted into
the group by the constant factor GROUP_FACTOR
or more. Now, in order to achieve weight unifor-
mity, all the weights of the group members are up-
graded to the weight of the heaviest one. Then a new
group is opened, and the process continues until all
the offspring are processed. In Sect. 2.2 we referred
to this process as quantization, which actually is
logarithmic.

Consider, for example, grouping offspring with
weights {10.0, 7.75, 6.25, 6.25, 3.75, 2.5, 2.25, 2.0,
1.25, 1.0, 1.0}. The algorithm will produce three
groups of blobs: {4 x 10.0}, {4 x 3.75} and {3 x
1.25}, provided that GROUP_FACTOR = 2.0 (which
is our default).

Choosing GROUP_FACTOR to be too small (with
the extreme at 1.0) will cause the groups to in-
clude only identically weighted siblings, and to typ-
ically be small, producing results similar to those in
Fig. 5a. Large values might cause the opposite re-
sult, in which groups are too large and contain blobs
with very different inner complexity. The effect of
this is similar to choosing CHILD_WEIGHT to be
too low (see Sect. 3.2.1), with results such as those
in Fig. 4a.

3.2.3 Area partitioning

After the weighting and grouping recursion is over,
the root blob initiates another recursive procedure
that results in a layout, i.e., each blob is eventually
assigned its absolute coordinates. Each blob parti-
tions its area among the offspring groups (described
in this section), chooses grid dimensions for each
area (Sect. 3.2.4), positions each group’s members
on the grid (Sect. 3.2.5) and computes the gaps be-
tween the blobs (Sect. 3.2.6).

The goal of the current step is to divide the blob’s
area into several rectangular areas, one for each
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group. The size of each area will depend on the
weight of the elements that are to be placed in it. This
is done recursively, by repeatedly dividing an area
into two sub-areas. If all of the area’s offspring blobs
belong to a single group, its entire area (its “inside”)
is simply granted to this group. This is the escape-
clause of the recursion.
Given an area and a list of offspring organized into
groups, the recursive step will be to divide the list
into two sub-lists of weights as close as possible. Ob-
viously, the division is carried out on the basis of
whole groups only. After that, the area is split in two
by a straight line parallel to an area edge.
The division of offspring is carried out by a simple
greedy algorithm. We consider each group in the or-
dered list in turn and send it to one of the sub-lists,
depending on which causes the two sub-lists to have
closer weights.
After the blobs are divided into two sub-lists, the
algorithm splits the area into two rectangular sub-
areas: The total weights of the two sub-lists are com-
puted. The longer edge of the parent area is then cut
in two. We prefer to divide the longer edge of the
area in order to stay with square-like shapes, which
are more aesthetic (see Sect. 2.4) and give more
flexibility in choosing grid dimension (described in
Sect. 3.2.4). The process is somewhat reminiscent of
the Slice- and-Dice algorithm for treemaps that ap-
pears in {Turo, Johnson 1992].
The division is a function of the ratio of the weights
of the two sub-lists. In this way, the geometric ar-
eas of the two sub-areas will be controlled by their
weights. Denote by Edge the longer edge of the par-
ent area, by Edge_1 the first half of it that will
belong to the first sub-area, and by Weight_1 and
Weight 2 the weights of the two sub-lists, respec-
tively. Then the cut position is at
Weight_1x(1.0—MIN_AREAS_RATIO)
+Weight_ 2 xMIN_AREAS_RATIO

Weight_l+4+Weight_ 2

Weighting by MIN_AREAS_RATIO limits the cut
boundaries to be between

Edge_1 = Edge x

MIN_AREAS_RATIO X Edge and
(1.0 —MIN_AREAS_RATIO) x Edge.

Here MIN_AREAS_RATIO is a parameter of the al-
gorithm with 0.0 < MIN_AREAS_RATIO < 1.0. Its
default value is 0.1. This leaves both halves with rea-
sonable size and proportion, even for extreme weight
ratios.

3.2.4 Grid dimension choice

As mentioned in Sect. 2.6, each area positions its
blobs at the nodes of a rectangular grid, which is
evenly spaced. The following step of the algorithm
determines the grid dimensions: X_Dimand Y_Dim.
We also denote by Of f spring_Num the number of
blobs inside the area.

Clearly, we should only consider dimensions that
satisfy Of fspring Num < X_Dim x Y _Dim.
Achieving equality would be ideal for optimal
space utilization. However, Of fspring Num is
not guaranteed to factor conveniently, or might even
be a prime, which is why we also consider dimen-
sions leading to inequality.

The algorithm loops through all the possible grids
and evaluates their quality according to the aesthet-
ics criteria. Due to reasons discussed in Sect. 3.2.5,
two modes of work were defined for this step. In
the ARBITRARY mode all the values of the dimen-
sions are allowed, and in the ODD_ONLY mode even
dimensions are forbidden and are corrected to the
closest odd value.

The loop iterates through all the values of X_Dim
and Y_Dim between 1 and [/Of£spring_Num].
At each step,

Off spring_Num]
. and
X Dim

X _Dimx ’7

l'Offspring_Num

- XY _Dim
Y Dim

grids are considered. Figure 10 displays some of the
grids checked for an area containing 26 blobs.

For each grid, the algorithm computes a Penalty,
reflecting the degree of violation of the blob propor-
tion and space utilization criteria:

Penalty = PROP_WEIGHT x Prop_Penal ty
+ SPACE_WEIGHT X Space_Waste.

Here, the proportion deficiency is evaluated accord-
ing to Sect. 2.4 as follows:

) X_Edge/X_Dim
o
& Y_Edge/Y_Dim

Prop_Penalty =

—log(IDEAL_PROP)

In order to give priority to square-like shapes, this
value is multiplied by the DISPROP_WEIGHT pa-
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The space waste is computed as

Children_Num
X _Dimx Y Dim’

Space_Waste=1—

Both Penalty components are designed to be nor-
malized and independent of the blob size. Weight de-
faults are DISPROP_WEIGHT = 2.5, PROP_
WEIGHT = 1.0, and SPACE_WEIGHT = 3.0.

A grid with the minimal penalty is chosen and is
then passed on to further steps of the algorithm.
For the example of Fig. 10, the algorithm chooses
layout c¢ as the best. Out of the two Penalty
components, we found the space utilization to be
the more important one, so it was given a heavier
weight. This is why layout ¢ was preferred over lay-
outs e and f, even though the latter have better blob
proportions.

3.2.5 Positioning on the grid

The positioning algorithm step is responsible for
obtaining a symmetric structure over the grid cho-
sen in the previous section, similar to those shown
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in Fig. 10. Given Offspring_Num and a grid
X_Dim X Y_Dim, the algorithm chooses the grid po-
sitions that will stay unoccupied by the blobs.

As stated in Sect. 2.3, the basic requirement is
symmetry about both axes. Unfortunately, this con-
straint might be impossible to satisfy in certain cases.
Consider, for example, odd Of fspring_Num and
even grid dimensions. In a symmetric layout, one
of the blobs must be positioned in the center of the
grid, but in this case there is no such available grid
place.

Claim: If we restrict ourselves to grids of odd dimen-
sions only, it is always possible to layout any number
of blobs symmetrically (given that the grid is large
enough).

Proof (sketch): The proof is by induction.

In the case of Of fspring Num= 0 or 1, the blobs
are trivially placed in a symmetric fashion on any
odd dimension grid by either leaving it empty or al-
locating the central place.

At the inductive step we fill either the outer columns
or rows, or the entire grid border (if there are enough
blobs). Thus, the problem is reduced to placing
a smaller number of blobs on a smaller inner part of
grid still having odd dimensions. |

The positioning algorithm works recursively accord-
ing to the inductive framework of the proof. Given
N, X and Y, we choose one of the possibilities of re-
ducing the problem to a smaller grid, and make a re-
cursive call. Figure 11 demonstrates the steps as the
algorithm works on 29 blobs placed on 5 x 7 grid.

In fact, it is possible to achieve a symmetric layout
on even-dimension grids too (as in Fig. 10a,b,d-f),
so such grids should not be totally disregarded. The
described algorithm is capable of working with grids
of arbitrary dimensions, but it might fail to reach
the end of the recursion. Facing an odd number of
blobs to position, we try odd-dimension grids only.
An even number of blobs will cause the algorithm to
check all the possibilities, but certain grids will be
discarded after failing the positioning step.

Figure 12 demonstrates positioning outcomes for
certain numbers of siblings that do not factor nicely.

3.2.6 Gap computation

In Sect. 2.5 we discussed the importance of a good
choice of inter-blob gaps and mentioned the diffi-
culty of making the right choice in a non-iterative

manner. The current algorithm step takes care of the
reasonable choice of gaps in a single area without
taking into account the situation in the other areas.
We rely on the optimization step to fine-tune the lay-
out, although the results of the first basic step are
usually satisfactory.

First, the gap computation step determines what part
of the parent’s dimensions is to be left for gaps. The
immediate result of the gap uniformity criterion is
to use the same predefined absolute size gap in all
the areas. However, this is impossible to implement,
since a dense- enough population of blobs in an area
can easily use up all the available space for gaps only.
The next natural attempt is to allocate total gap size
to be proportional to the area’s linear dimensions.
Unfortunately, the results of doing so were not satis-
factory: The gaps were too large in areas with small
grid dimensions, and were hardly seen in dense ar-
eas. The best results were achieved using the follow-
ing function for producing the relative space left for
the gaps (Gaps_Percent) depending on the num-
ber of gaps (Gaps_Number):

Gaps_Percent = ASYMP_GAP
1
L + (Gaps_Number —2) '

ASYMP_GAP—INIT_GAP

This function returns values between the two con-
stant parameters: INIT_GAP (for Gaps_Number=
2, asingle row or column) and ASYMP_GAP (Gaps_
Number — oc). The layouts in Fig. 12 demon-
strate the effect of the function, using default values
of INIT GAP =0.15 and ASYMP_GAP = 0.3. The
absolute gap size is slightly larger in areas with
a small number of offspring, reflecting the relatively
large size of offspring themselves. The gaps become
smaller as the number of blobs grows, but enough
space is still left between neighbors even in dense
populations (see Fig. 12i with 140 blobs).

The space allocated for gaps is distributed uniformly
across the grid. Special care is taken to deal properly
with the “side gaps”, i.e., the ones between the area
boundaries and the exterior columns and rows. In the
area of a full blob, these gaps should be as large as the
gaps between the neighboring offspring. However, in
an area that is an inner division of another area, this
gap should only be half the size. The right-hand area
of the root blob in Fig. 13 (the one containing 10
blobs) is of this kind.

The final correction to be made at this stage is to
make gaps in both directions equal. Whenever possi-
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Fig. 11a—e. Positioning 29 blobs on a 5 x 7 grid: a—e the five steps of the algorithm

ble, we cause the gaps to be equal to the larger one,

with the following exceptions:

o If the larger gap is too large for the other dimen-
sion, then by adopting it we might exceed the max-
imum: Gaps_Percent > ASYMP_GAP. In this
case the common-size gap is taken to be Edge x
ASYMP_GAP/Gaps_Number.

e Asmentionedin Sect. 2.5, the case of a leaf, which
is a single offspring in the parent area, should also
be handled with care. Gaps are not made equal if
the parent area is a sub-area (such as in Fig. 14a),
but if it is a blob’s “inside”, they are made equal
(Fig. 14b).

3.3 Maximal space utilization

This section describes two additions to the first stage
of the algorithm that were designed to improve uti-
lization of the space in the layout. The general se-
quence of weighting, division into uniform groups
and placement on a rectangular grid remains with-
out change, but now no grid point is allowed to stay
unoccupied.

3.3.1 Group sub-division

The group sub-division solution changes the grid
dimension choice step (see Sect. 3.2.4) and dis-
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cards any grid that cannot be filled perfectly, i.e., if
Offspring Num < X_Dim x Y_Dim. Certainly,
this narrows the space of possible solutions, and the
best solution might be unsatisfactory.

The chosen solution Penalty is checked against
the MAX_PENALTY constant threshold. If the cho-
sen grid fails the test, the algorithm returns to the area
partitioning step (see Sect. 3.2.3), in an attempt to
partition the area into two and to divide the offspring
between the two sub-areas, trying to find better grids
for them both.

Since now all the blobs to be partitioned are of the
same size, we are free to choose the sub-group cardi-
nalities arbitrarily. The algorithm checks all the pos-
sibilities of partition between

(1,0ffspring Num—1) and

([Chi ldren_NumJ IVChi ldren_Num_D
2 ’ 2 '

For each division, we check blob dimensions in the
two sub-areas (X;/Y; and X, /Y, respectively). We
try to satisfy the blob dimension uniformity and blob
proportion criteria that are compromised by this ap-
proach. The two blob proportions are compared to
each other and to the IDEAL_ PROP, by computing:

X
log (Y—l) ’ —log(IDEAL_PROP)
1

+

X
log (Y—z) } —log(IDEAL_PROP)
2

ox ()] e 52

The lowest value wins.

Figure 15 shows the sub-divisions considered by the
algorithm in an attempt to lay out 11 blobs. The best
configuration found was layout b. Notice that we dis-
allow recursive sub-divisions; these could have im-
proved, for example, layouts d and e. We found that
such attempts usually only make things worse, by vi-
olating the uniformity criteria even more; they are
also highly time- consuming.

+

3.3.2 Size adjustment

The size adjustment portion of the algorithm tries
to address the same space utilization problem as
group sub-division, by allowing blob resize. An ad-
ditional step is added after blob positioning (see
Sect. 3.2.5). Logically, the blobs stay in the grid

nodes they were assigned to, but their boundaries are
moved in order to cover all the unoccupied squares.
Figure 16 demonstrates the improvement to several
of the layouts of Fig. 12, which had space utilization
problems.

The algorithm loops through all the empty places
on the grid and chooses blobs from the same row
or column to participate in filling the space. Ac-
tually, it is enough to check a quarter of the area
only and then rely on symmetry. Blobs in the cho-
sen group are “blown up” in the appropriate direction
(in a column vertically, and in a row horizontally).
We found that it is best to do this gradually, so that
the row or column blobs that are further from the
empty space grow less, and the closer ones grow
more.

Figure 17 contrasts this approach with two other
less successful attempts. Figure 17a blows up only
the neighbors adjacent to the empty space. If we
consider the blow-up amount to be a function of
the blob’s distance from the empty space, this ap-
proach yields a step function. In Fig. 17b, the entire
row is enlarged uniformly, and the blow-up func-
tion is a constant. Figure 17c demonstrates the op-
tion we have preferred, where the blow-up func-
tion is linear and blow-up factors form an arithmetic
progression.

The algorithm works in the following fashion: For
each empty place, we count the number of continu-
ously placed blobs in the same row or column in each
direction, that have not yet been used for space fillup;
call these numbers Up_Exist, Down_Exist,
Left_Exist and Right_Exist, respectively.
If there are unoccupied neighboring places, the
length of the unoccupied area is counted too; call
these Up_Empty, Down_Empty, Left_Empty
and Right_Empty, respectively. The entire area
will be covered in a single move. In an attempt
to minimize the impact on the size of the neigh-
bors, we check how much space is to be cov-
ered relative to the number of blobs that will con-
tribute to the job. The following values are thus
computed:

Up_Exist+ Down_Exist

Up_Empty + Down_Empty’
Left_Exist+Right_Exist
Left_Emptyv-+ Right Empty’

The column is chosen if the first value was found to
be smaller, and the row is chosen otherwise.
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Fig. 15a—e. Group sub-division for 11 blobs:a 1+10; b249;¢34-8;d4+7;e5+6

Now suppose, without loss of generality, that the
horizontal direction (row) was chosen. The column
case is symmetric. The total of Left_Empty+
Right_Empty grid cells are divided between the
left Left_Exist and the right Right_Exist
neighbors in the row, proportionally:

Left_Fill = (Left_Empty+Right_Empty)
Right_Exist
% Left_Exist+Right_Exist’
Right_Fill=(Left_Empty+Right_Empty)
Left_Exist
¥ Left_Exist+ Right_Exist’

The following resizing sequence moves and enlarges
the space covered by the left Left_Exist blobs
by the total of Left_Fi11 grid cells. Foreach I in
[1...Left_Exist], the Ith left blob’s left bound-
ary moves to the right by (I — 1)/Left_Total of
the grid step, and its right boundary by I/Left_
Total. Here, Left_Total denotes

Left_Exist x (Left_Exist+1)
Left_Fillx?2

9

the sum of the arithmetic progression. Symmetri-
cally, Right_Fill grid cells are filled up by the
right half of the row.
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3.4 Optimization

The second main step of the hierarchy layout al-
gorithm, optimization, receives the layout obtained

from the first step (described in Sects. 3.2 and 3.3)
and performs fine-tuning in order to perfect it. The
input layout partially satisfies the aesthetic criteria
that are of a “local” nature: blob dimension unifor-
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mity between siblings (Sect. 2.1), the connection
between inner structure and size (Sect. 2.2), sym-
metry (Sect. 2.3), blob proportions (Sect. 2.4), gap
uniformity between siblings (Sect. 2.5) and space
utilization (Sect. 2.6). The optimization step also
tries to satisfy the global criteria: blob dimension
uniformity between leaves (Sect. 2.1) and global gap
uniformity (Sect. 2.5).

3.4.1 Parameter choice

The optimization step preserves the layout topology

and adjusts the following parameters only:

e For areas containing two sub-areas, the division
ratio of the longer edge.

e For areas containing blobs, the gaps in both direc-
tions.

Changes in these values may result in the resizing

of an entire area, causing appropriate proportional

resizing of its inside, and also a less significant re-

sizing of identically sized siblings in a single area.

The first kind of adjustment fixes global deficiencies

that occurred at higher levels of the hierarchy tree;

the second one makes local corrections.

All the optimization parameters are stored in a vec-

tor Parameters = (Py, Py, ..., P,). For a layout

corresponding to the Parameters value we define

Energy to be a measure of layout quality:

Energy =GAP_WEIGHT X Gap_Var
+ SIZE_WEIGHT x (Short_Edge_Var
+ Long_Edge_Var).
Here, Gap_Var, Short_Edge_Var and Long_
Edge_Var are normalized variances of the set of

all the gaps in the layout, and the short and the long
edges of all the leaves, respectively:

o[{X_Gaps, Y_Gaps}]
pl{X_Gaps, Y_Gaps}]’

Gap_Var =

and Short_Edge_Var and Long_Edge_Var
are similarly defined. i and ¢ denote the mean and
the standard deviation of a set. Normalization of the
Energy function components makes them indepen-
dent of the layout’s actual size. GAP_WEIGHT and
SIZE_WEIGHT are weighting factors with the de-
faults of 10 and 1, respectively (clearly, only the ratio
is important).

3.4.2 Optimization process

We have implemented the classical anti-gradient
walk in the solution space. Starting at the Param-

eters point corresponding to the input layout, we
compute the normalized Gradient vector using
astep size Delta:

Gradient = (G, Gy, ..., Gpy),

where

JEnergy(P|,Py,...,Pn)
)=

Energy(Pi,...,P;+Delta/2,...,Py)
—Energy(Py,...,Pi—Delta/2,...,Pp)
~ Delta

The Parameters vector is then adjusted by
a Delta step in the direction opposite to that of the
Gradient:

G =

Parameters = Parameters
—Delta-Gradient.

Note that all the parameters are equally normalized,
so that the same Delta can be used for all the
Parameters coordinates.

This computation is executed in a loop until no fur-
ther improvement in Energy can be achieved. Then
Delta is decreased by half and the loop is re-
run. In our implementation we start with Delta =
OPT_INIT STEP = 0.05, and perform OPT_
ROUNDS = 8 decrements.

It is important to remember that this algorithm does
not necessarily reach a global minimal Energy. It
might very well get caught in a local minimum, pro-
ducing a layout that is better than the initial one, but
not the best one. Still, as can be seen in Fig. 18,
the optimization step usually provides significant im-
provement of the layout aesthetics.

As discussed earlier, fully satisfying all the criteria of
Sect. 2 is usually impossible, and even if we were to
always find a global minimum of the Energy func-
tion, it would not necessarily satisfy them all. We do
leave to the user, however, the option of manually
running an additional optimization round, as well as
that of skipping optimization entirely.

3.5 Complexity

We estimate the time complexity of the algorithm as
a function of n, the total number of blobs, and d, the
maximal number of siblings of a single blob (i.e., the
degree of the inclusion hierarchy tree).
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3.5.1 Reasonable positioning

Weighting. The consumed time is that of standard
depth-first search: O(n).

Grouping. The grouping process is carried out by
each of n blobs. It involves sorting up to d off-
spring and a sequential pass over the ordered list.
The total time is O (n x 4 x log(d)).

Partitioning. Each of the n blobs recursively parti-
tions up to d groups of offspring; recursion depth
is O (log(d)). At each recursion level, all the off-
spring’s sub-lists are considered sequentially by
the greedy algorithm. The total time is as before:
0 (n x d x log(d)).

Grid dimension choice. The grid dimension is
chosen by each of the O(n) leaf areas. The car-
dinality of each area is O(d). For each leaf area,
0(+/d) possible grids are checked, by a constant
time quality estimation. The total time is thus
o(n x V/d).

Positioning. Each of the O(n) leaf areas applies
a recursive algorithm to an O(d) x 0(d) grid. At
each step, at least one of the grid dimensions is de-
creased by O(1), so the recursion depth is O(d).
Each step involves a constant time decision. The
total time is therefore O(n x d).

Gap computation. Each of the O(n) leaf areas
evaluates a constant time function. The total time
is O(n).

Two additional steps of space utilization affect the

complexity estimate:

e Group sub-division. Every one of the O(n) leaf ar-
eas may potentially cause problems during grid
dimension choice. In each such case, 0(d) sub- di-
visions of O(d) area members will be checked by
rerunning the grid dimension stage. The total time
of partitioning and grid dimension step will now
be O(n x d?).

e Size adjustment. Each of n blobs optionally re-
computes its coordinates in constant time. This
does not change the complexity of the positioning
step.

3.5.2 Optimization

As’already mentioned, there are O(n) leaf areas. The
sub-tree of areas in each inner blob is binary; there-
fore the number of inner areas is also O(n). The
optimization process is performed with O(n) vari-
ables. The energy function is evaluated by a depth-
first search in the blobs and areas tree, consuming
constant time for each tree node. We thus have a total

of O(n).

e Gradient evaluation. Each of the O(n) compo-
nents of the gradient vector requires two compu-
tations of the energy function. The total time of
a single computation is O(n?).

e Optimization round. A single round evaluates the
gradient vector and then updates the value of each
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of the O(n) values of the position vector, taking
time O(n). The total time is thus O(n?).

e Optimization process. The entire process takes
several optimization rounds, performed with de-
creasing step value. The exact number of these
rounds resulting in a convergence up to a given
precision depends strongly on the energy function
topology, the initial position, and the step decre-
ment scheme. In the algorithm, optimization runs
as long as improvement in the energy function
value is observed. We noticed that the number of
optimization rounds grows slowly for larger hier-
archies, and seems to depend on the number of
nodes by some sub-linear function.

3.5.3 Summary

Without optimization and space filling, the total time
is O (n x d x log(d)). This does not change for space
fill by size adjustment, but grows to O (n x &2) for
space fill by group sub- division.

We do not have a fixed, precise estimate for the
complexity of the optimization process, because of
the unknown number of optimization rounds needed.
However, it will be at least £2(n?), and could possibly
reach o(n?).

4 Conclusions

We have developed and implemented an algorithm
for drawing edgeless higraph-like structures. The al-
gorithm employs many criteria for aesthetics, which
we identified, formalized, refined, and tested. The
resulting algorithm was implemented in a way in-
tended for research and demonstration. With some
adjustment, the code could probably be used in a host
application.

As mentioned in Sect. 1.1, the layout of higraph-like

structures has many applications but is completely

undeveloped. Hence, many possible continuations of
this work come to mind. The following directions
seem to us to be particularly interesting:

e Adding edges and hyper-edges to the layout.
Adding more complicated features, such as Carte-
sian products, to extend the layout to deal with
statechart-like languages.

e Improving the optimization step. We used
a straightforward anti-gradient walk algorithm
that does not necessarily converge to the global
minimum. It might be possible to improve both its
complexity and the quality of the result.

¢ Extending the problem to three dimensions. This
would involve specifying the interface (the ways
to input and display 3D structures) and, of course,
generalizing the aesthetics criteria and the algo-
rithms.
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A new system for the construction of highly realis-
tic models of real free-form 3D objects is proposed,
based on the integration of several techniques (au-
tomatic 3D scanning, inverse illumination, inverse
texture-mapping and textured 3D graphics). Our sys-
tem improves the quality of a 3D model (e.g. ac-
quired with a range scanning device) by adding color
detail and, if required, high-frequency shape detail.
Detail is obtained by processing a set of digital pho-
tographs of the object. This is carried out by perform-
ing several subtasks: to compute camera calibration
and position, to remove illumination effects obtain-
ing both illumination-invariant reflectance properties
and a high-resolution surface normal field, and finally
to blend and stitch the acquired detail on the triangle
mesh via standard texture mapping. In particular, the
smooth join between different images that map on ad-
jacent sections of the surface is obtained by applying
an accurate piecewise local registration of the original
images and by blending textures. For each mesh face
which is on the adjacency border between different
observed images, a corresponding triangular texture
patch can also be resampled as a weighted blend of
the corresponding adjacent image sections. Examples
of the results obtained with sample works of art are
presented and discussed.

Key words: 3D scanning — Image process-
ing — Inverse illumination — Texture_to_geo-
metry registration — Texture mapping
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1 Introduction

Many applications require an accurate digital rep-
resentation of both the shape and the surface at-
tributes (e.g. the color) of an object of interest.
An example is the representation and visualiza-
tion of Cultural Heritage artifacts, which often re-
quire such high accuracy that the standard CAD
modeling approach cannot be adopted (Levoy et
al. 2000). The ideal situation would be to have
an automatic 3D digital reproduction system capa-
ble of quickly and inexpensively building a very
accurate and high-resolution model from the real
artifact (hereafter, we assume that shape is repre-
sented by a standard triangle mesh encoding). Un-
fortunately, this only partially applies to the current
situation. Among the many automatic acquisition
technologies proposed (Petrov et al. 1998), opti-
cal range scanners provide the accuracy required
by highly demanding applications and are fortu-
nately becoming slightly cheaper, but performing
a 3D scan of a complex object is still neither sim-
ple nor fast. Models with a complex topology are
generally acquired with multiple scans, which have
to be integrated into a single mesh (Levoy et al
2000). The resolution of the acquisition device di-
rectly determines the complexity of the triangle
mesh or points cloud produced. Mesh simplifica-
tion tools (Garland and Heckbert 1997; Cignoni
et al. 1999b) are generally adopted to reduce the
shape redundancy of the output produced, and to
support simple management of the models even on
a portable computer. One critical question is how
to acquire the surface attributes and how to link
them to the shape description (Baribeau et al. 1992;
Kay and Caelli 1994; Lu and Little 1995; Debevec
et al. 1996; Sato and Ikeuchi 1996; Soucy et al.
1996; Sato et al. 1997; Pulli et al. 1997; Rush-
meier et al. 1998; Yu and Malik 1998; Marshner
1998). The term “surface attributes” can be used
to represent different concepts: from the color tex-
ture observed on the object surface, which very
much depends on the lighting conditions, to the
illumination-invariant surface reflectance proper-
ties (also called albedo), computed by removing
highlights and diffuse shading or even by comput-
ing a bidirectional reflectance distribution function
(BRDF). In this paper we focus mainly on the ac-
quisition and management of surface attributes, and
in particular on how we can acquire, blend and map
on a standard textured mesh the detail contained
in a set of images taken from different viewpoints
(see Fig. 1).
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