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Abstract. A graph is f-choosable if for every collection of lists with list sizes specified
by f there is a proper coloring using colors from the lists. We characterize f-choosable
functions for block graphs (graphs in which each block is a clique, including trees and
line graphs of trees).

The sum choice number is the minimum over all choosable functions f of the sum
of the sizes in f. The sum choice number of any graph is at most the number of vertices
plus the number of edges. We show that this bound is tight for block graphs.
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1. Introduction

List coloring has been well studied in recent years. See for example surveys in [2],
[6], [8], [10] or see texts such as [9]. The vertices of a graph (often a line graph)
are given color lists and we seek to determine if there is a proper coloring using
colors from the lists. Typically one seeks the minimum value k such that for every
choice of lists of size k there is a proper coloring. In this case we call the graph
k-choosable. More generally, a function f specifying the list size for each vertex
can be given. The graph is f-choosable if for every choice of lists with sizes given
by f there is a proper coloring. For block graphs we give necessary and sufficient
conditions for a graph to be f-choosable. We also describe an inductive test that
allows for an efficient algorithm to test f-choosability on block graphs.

The ordinary chromatic number of a graph arises from k-choosability if all lists
are restricted to be initial, of the form {1,2,...,k} for some k. The (ordinary)
chromatic sum of a graph is the minimum sum of colors needed in a proper
coloring. We consider the sum choice number of a graph. This is the minimum
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over all choosable functions f of the sum of the list sizes given by f. The chromatic
sum arises from the sum choice number if all lists are restricted to be initial.

Simple greedy coloring shows that the sum choice number of any graph is at
most the number of vertices plus the number of edges. Our characterization of
choosable f for block graphs allows us to show that this bound is tight for these
graphs. This includes as special cases trees and line graphs of trees.

In another paper [7] we show that the sum choice number for the cartesian
product of Ko with K, (the line graph of a complete bipartite graph with one
part of size 2) is n? + [5n/3].

We will consider the characterization problem for the special case that each
block of the graph is a clique (this contains trees and line graphs of trees). Results
on this family of graphs characterizing choosability in terms of given lists with
a condition like Hall’s Theorem are given in [4]. See also [3] and [5] for more
references to related work.

Consider graphs G with vertex set V(G) and edge set E(G) and a collection
C of lists C(v) for v € V(G). We say that G is C-colorable if there exists a
proper coloring with ¢, € C'(v) such that vw € E(G) = ¢, # ¢,. Consider a size
function f : V(G) — Z. We will say that G is f-choosable if for every C with
|C(v)| = f(v) for v € V, we have that G is C-colorable. For convenience we allow
f(v) <0. If any f(v) <0 then we will say that G is not f-choosable.

The general problem would be to characterize f such that G is f-choosable.
The list chromatic number (or choice number) of G is the smallest &k such that
G is f-choosable with the constant function f(v) = k for all v. We will call
> wev f(v) the size of f. The sum choice number xsc(G) is the minimum size
of a choosable f.

We will refer to greedy coloring with respect to a given ordering of the vertices
as the coloring obtained by sequentially coloring the vertices in the given order,
choosing the smallest color at each step that will not violate the conditions for
a proper list coloring. Observe that greedy coloring for given lists may fail to
produce a proper coloring.

We will use the elementary fact that greedy coloring does yield a proper
coloring for all lists if the list size for each vertex is strictly greater than the
number its neighbors that precede it in the greedy ordering. We will say that a
list is initial if it is of the form {1,2,...,k}.

From greedy coloring we get the following elementary results, which we
record as lemmas for reference later.

Lemma 1 For any graph G
xsc(G) < [V(G) + |E(G)].

Proof: Take any ordering of the vertices vy, vs,...,v, and let f(v;) be one
more than the number of vertices in {vy,vs,...,v;-1} adjacent to v;. Greedy
coloring with this ordering and these list sizes will produce a proper coloring for
any lists. O
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Lemma 2 Consider a list size function f on the vertices of K,,. If we order the
list sizes from f asty <to <.-- <t, then K,, is f-choosable if and only if t; > 1
for each i.

Proof: If the condition is satisfied, greedy coloring using the ordering given
by non-decreasing list sizes yields a coloring. If the condition is not satisfied, say
t; < i then using initial lists, fewer than ¢ colors are available to be used on the
i vertices corresponding to tq,ts,...,t;. So there is no coloring. O

A block graph is a graph for which each block is a clique. Let b(v) denote the
number of blocks containing vertex v. An end block is a block containing one
cut vertex. For block graphs we have that G is f-choosable if and only if we can
allocate f(v) + b(v) — 1 from each vertex to the cliques so that the condition of
Lemma 2 for complete graphs holds on each clique.

2. Results

In this section we will state basic results about sum list coloring block graphs.
All are closely related and follow from induction using basic lemmas about forced
colors and greedy coloring. Proofs will be given in the next section.

Let B be an end block of a graph G with cut vertex v such that B — {v} is
a component of G — {v}. Arrange the list sizes for vertices of B other than v in
nondecreasing order as ¢t < to < ---. Let force(f, B) be the largest subscript
i such that ¢; < i, if there is no such i let force(f, B) = 0. The idea is that
force(f, B) gives the number of colors that can be forced on B — {v} by an
appropriate choice of lists. With such lists these colors could not be used on v.

Lemma 3 A simple inductive procedure to test if G is f-choosable: Let G be a
graph for which each block is a clique and assume vertex list sizes f are given.
Let v be a cut vertex for which all except possibly one of the blocks containing it
are end blocks. Let By be the non-end block (if there are none let it be any block)
and let By, Bz, ... By, be the other blocks containing v. Arrange the list sizes
for vertices of B; other than v in nondecreasing order as tj1 <tjo < ---.

We have

(i) If t;; < i for some j € {2,3,...,b(v)} and for some i: Then G is not
f-choosable.

(i1) If t;; > 4 for all j € {2,3,...,b(v)} and i: Then let G' be the graph
obtained by deleting vertices of By, Bs, ..., By, other than v. Define f' on G’
by restricting [ to G' except that f'(v) = f(v) — Z;’(:Q) force(f,Bj). Then G is
f-choosable if and only if G’ is f’-choosable.

Let B; be a block of a graph G and recall that b(w) is the number of blocks
containing vertex w. Sizes f;(w) are called allocated sizes for block B; if f(w)+
b(w) —1 =) fj(w) where the sum is over the blocks containing w. Note that
non cut vertices are in exactly one maximal clique. So if w is a non cut vertex
and w € Bj then f(w) = fj(w). That is, the only non-trivial allocation occurs
on cut vertices u where we allocate f(u) + b(u) — 1 to the cliques containing wu.
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The idea for the next proposition is that for each cut vertex w we initially
increase the list size by b(w) — 1. Then we attempt to allocate the new sizes
for each cut vertex to the blocks containing it in such a way that each block is
choosable as in Lemma 2. The original graph is f-choosable if and only if we can
make such an allocation.

Proposition 4 A test for f-choosability: Let G be a graph for which each block
is a clique and assume vertex list sizes f are given. G is f-choosable if and
only if there exist allocated sizes f; for the mazimal cliques such that for each
maximal clique B; when the allocated sizes are listed in nondecreasing order as
tj1 <tjo <--- we have tj; > 1 for all j and i.

Using the choosability tests described above we can determine the sum choice
number for block graphs.

Theorem 5 A formula for the sum choice number of block graphs: Let G be a
block graph. Then
xsc(G) = [V(G)| + |E(G)|.

Note that trees T" are block graphs so this gives xsc(T) = |[V(T)| + |E(T)].
This was first observed by Mike Albertson [1] and can be proved directly by a
simple induction.

For sum list coloring edges rather than vertices we apply our results to line
graphs L(G). Line graphs of trees are block graphs. It is easy to check that
[(V(L(T))|+ |E(L(T))| can be described in terms of degrees to get the following.

Corollary 6 A formula for the sum edge choice number of trees: Let T be a tree
with vertezx degrees dy,ds, ... ,dy, and let L(T) be its line graph. Then
d?
L(T)) = =,
XSC'( ( )) Z D)

For sum list edge coloring trees the allocation from Proposition 4 is as follows.
For each non-leaf edge (which corresponds to a cut vertex in the line graph) add
one to the size specified by f and allocate this to the ends of the edge in such
a way that this list of sizes (in non-decreasing order) for edges incident at each

vertex is at least as large term by term as 1,2,3,...,d; (where d; is the vertex
degree).

3. Proofs

The following two basic lemmas are key to the induction for the proofs of the
other results. They are versions of elementary results about greedy coloring and
degrees in a form that will be useful for our proofs. Both Lemma 7 and Lemma
8 apply to arbitrary graphs.

For a graph G and a set of vertices S we will refer to the open neighborhood
N(S) as the set of vertices outside of S which are adjacent to some vertex in S.
We will say that all vertices in S have the same neighborhood N (S) outside S' if
x € S and y € N(S) implies zy € E(G).
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Lemma 7 Assume vertex list sizes f are given for G and for some k clique B
in G we have f(v) < k for every v € B. Assume also that all vertices in B have
the same neighborhood N(B) outside B. List the sizes assigned to vertices of B
in nondecreasing order t1 <to < --- <t < k. We have

(i) If t; < i for somei € {1,2,...,k}: Then G is not f-choosable

(i) If t; > i for all i € {1,2,...,k}: Then let G’ be the graph induced by
V(G) — B and assign list sizes to G’ as follows: f'(w) = f(w) for w & N(B)
and f'(w) = f(w) —k for w € N(B). Then G is f-choosable if and only if G' is
f'-choosable.

Proof:
(i): Label the vertices of B as v1,vs,...,v; so that f(v;) = t;. Assigning
initial lists to v1,ve,...,v; allows fewer than ¢ colors for this i clique so there is

no proper coloring in this case and G is not f-choosable.

(ii): Assume that G is f-choosable. Given lists C’ with sizes f/(v) for v €
V(G'), relabel so that the colors are all distinct from {1,2,...,%k}. Form lists
C with sizes f(v) for v € V(G) by taking C(v) initial of size f(v) for v € B,
Cw) = C'(w) for w € V(G') = N(B) and C(u) = C'(u) U {1,2,...,k} for
u € N(B). Since G is f-choosable, there is a proper C-coloring. In any such
coloring, colors 1,2, ..., k must be used on B (since B is a clique and since ¢; > i
for all 4 along with ¢, < k imply ¢ = k) and thus not used on N(B). So the
coloring restricted to G’ (after relabelling back to the original colors) is a proper
C’-coloring.

Conversely, assume that G’ is f’-choosable. Given lists C with sizes f(v) for
v € V(G) color the vertices of B using these lists. Greedy coloring using the
ordering given by non-decreasing list sizes in B will yield a coloring because of
the condition #; > i. Let A be the set of colors used on B. For v € V(G') form
lists ¢’ with C’(v) = C(v) — A. Then the sizes of the C’ lists are at least those
given by f’ and hence the remaining vertices (those of G’) are C’ colorable. Since
the colors in C” are distinct from A, the coloring of G’ along with that of B gives
a proper C-coloring. O

Lemma 8 Assume vertez list sizes [ are given for G. Let W be a subset of V(G)
such that all vertices have the same neighborhood N (W) outside W and let G’ be
the graph induced by V(G) —W and G" the graph induced by W. Define f' on G’
to be f restricted to V(G) — W and define f”" on W by f"(w) = f(w) — |[N(W)]
for allw € W. If G” is f"-choosable then G is f-choosable if and only if G' is
f'-choosable.

Proof: Since G’ is an induced subgraph of G and on G’ the list sizes f’ are the
same as f, any proper coloring of G using lists with sizes f gives a coloring of
G’ with lists with sizes f’. So if G is f-choosable then G’ is f’-choosable.
Conversely, assume that G’ is f’-choosable. Given lists C with sizes f(v) for
v € V(G) color the vertices of G’ using these lists. Let A be the set of colors used
on N(W) in the coloring of G’. For w € W form lists C” with C"(w) = C'(w) — A.
Then the sizes of the C” lists are at least those given by f” and hence the re-
maining vertices (those of W) are colorable. Since the colors in C” are distinct
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from A, the coloring of W along with that of V(G’) gives a proper C-coloring. O
Now the proofs of the propositions follow from applications of the lemmas.

Proof of Lemma 3: This follows from repeated application of Lemmas 7 and
8. Consider first By and assume vertices of By — {v} are labelled so that f(v;) =
to ;. If t5; < i for some i then Lemma 7 () applied to {v1,vo,...,v;} shows that
G is not f-choosable. Otherwise, let i be the largest subscript such that to; = ¢
(and if there are none let ¢ = 0). Apply Lemma 8 to W = v;11,v;42, ..., noting
that these vertices have a common neighborhood N (W) = {v, vy, vs,...,v;} with
size i+1. Our assumption gives f(v;y;) > i+I+1, 50 f"(vit1) = f(vigr)—(i+1) >
(i+141)—(i+1) = [ and by Lemma 2, W is f”-choosable. So it is enough to con-
sider the case where By —{v} has size i and ¢2 ; = i. In this case, force(f, B2) = 1.
Apply Lemma 7 with B = By — {v}, then it is enough to consider the graph G
with By — {v} deleted and with size function unchanged except that for v it is
equal to f(v)— force(f, B2). Repeating the arguments above for B3, By, ..., By,
yields the result. O

Proof of Proposition 4: We can consider components separately so we may
assume that G is connected. Use induction on the number of blocks. The base
case for induction is the case that G is a clique and allocation is trivial with
fi(v) = f(v) for all v as each vertex is in the only block B;. Then Lemma 2
covers this case.

Let v, By, By, ..., By, be as in Lemma 3. If for some j € {2,3,...,b(v)} and
i when we order the sizes f for vertices of B; other than v we have ¢;; < i then
by part (i) of Lemma 3 we have that G is not f-choosable. But in this case there
are at least i vertices w other than v in B;j with f(w) < i. These are non cut
vertices so their allocated sizes are f;(w) = f(w) and no matter how we allocate
fj(v), when we order the allocated sizes f; for vertices of B; (including v) we
will have tj,i < 1.

So we may assume that when we order the sizes f for vertices of B; other
than v we have t;; > i for j € {2,3,...,b(v)}. Then, by Lemma 3 (i), G is
f-choosable if and only if G’ is f’-choosable where for vertices w other than v
we have f'(w) = f(w) and f'(v) = f(v) — Zg(:v; force(f, Bj). So by induction
it is enough to show that there are allocated sizes f] in G’ for the maximal
cliques such that for each maximal clique B; when the allocated sizes are listed
in nondecreasing order as ¢ ; <t , < --- we have i < ¢, for all i if and only
if there are allocated sizes f; in G for the maximal cliques such that for each
maximal clique when the allocated sizes for each maximal clique B; are listed in
nondecreasing order as t;1 < tj2 < --- we have ¢ < ¢;; for all 1.

If G has allocated sizes f; satisfying the conditions then for j > 2, from
the definition of force(f, B;) we must have f;(v) > force(f,B;). So f(v) +

b(v) = 1= fi(0) + T30 f5(0) = fi(v) + ;05 (foree(f, B) +1) and so fi(v) <
(f(v) - Zb»(”) foree(f, Bj)) = f'(v). In G’, v is in only one block so we must

Jj=2
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allocate f{(v) = f'(v) > f1(v). For vertices w in G’ other than v we have f/(w) =
f(w) and that the number of blocks containing w is the same in G and G’. For
these vertices let fi(w) = f;j(w). Then the new allocations satisfy the conditions
in G’ since they satisfied it in G and they are identical except for fi(v) > f1(v).

Now assume G’ has allocated sizes fj' satisfying the conditions. Since v is only
in one block By of G, fi(v) = f'(v) = f(v) — Zs(:v% force(f, Bj). For vertices w
in G’ other than v let f;(w) = fj(w). (We can do this since f'(w) = f(w) for
these vertices and they are in the same number of blocks in G and G'.) In G
allocate f1(v) = f{(v) and for j = 2,3,...,b(v) allocate f;(v) = force(f, Bj)+1.

Then - f;(v) = (f(v) = S50 force(f, By) ) + S50 (Force(f, By)+1) = f(v)+
b(v) — 1. Vertices u other than v in Ba, Bs, . .. By, are in only one block (by the
choice of v) and we must allocate f;(u) = f(u) (where B; is the block containing

Recall that we have assumed that when we order the sizes f for vertices
of Bj; other than v we have t;; > 7 and in addition we have ¢;; > i for
i > force(f, Bj) by the definition of force(f, B;). Thus in B; with f;(u) = f(u)
and f;j(v) = force(f,B;) + 1 when we order the vertices of B; (including v)
as tj1 < tjo--- (note that for i > force(f, B;) these t's are shifted by one
from those of the first sentence) we have t;; > i. For blocks of G other than
By, B3, ... By, the allocated sizes are the same as in G’ and so the condition
holds in G also. O

We can now prove Theorem 5.

Proof of Theorem 5: Consider a choosable f. By Proposition 4 we can
allocate f(v) + b(v) — 1 so that on each clique B; the allocated values listed in
nondecreasing order as t; 1 < t;o < --- satisfy ¢ <t;;. Hence ) (f(v)+b(v)—1) >
>-(14+2+---4|Bj|) where the first sum is over vertices and the second is over
blocks. This gives 3 £(v) > 3 [ Bil(Bil +1)/2 - X(b(v) — 1) = [V (G)| + | E(G)|
as a lower bound. The last equality can easily be checked. The upper bound
follows from Lemma 1. O

We have shown that xsc(G) = |V(G)| + |E(G)| for block graphs. It would
be interesting to determine if there are other classes for which this holds.
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