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Abstract: In this paper we examine the classes of graphs whose Kn-complements are

trees and quasi-threshold graphs and derive formulas for their number of spanning trees; for

a subgraph H of Kn, the Kn-complement of H is the graph Kn−H which is obtained from

Kn by removing the edges of H . Our proofs are based on the complement spanning-tree

matrix theorem, which expresses the number of spanning trees of a graph as a function of

the determinant of a matrix that can be easily constructed from the adjacency relation of

the graph. Our results generalize previous results and extend the family of graphs of the

form Kn −H admitting formulas for the number of their spanning trees.
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1 Introduction

We consider finite undirected graphs with no loops or multiple edges. Let G be such a graph on n

vertices. A spanning tree of G is an acyclic (n− 1)-edge subgraph; note that it is connected and spans

G. Let Kn denote the complete graph on n vertices. If H is a subgraph of Kn, then Kn − H is

defined to be the graph obtained from Kn by removing the edges of H ; the graph Kn − H is called

the Kn-complement of H . Note that, if H has n vertices, then Kn −H coincides with the graph H ,

the complement of H .

The problem of calculating the number of spanning trees of a graph is an important, well-studied

problem. Deriving formulas for different types of graphs can prove to be helpful in identifying those

graphs that contain the maximum number of spanning trees. Such an investigation has practical

consequences related to network reliability [2, 4, 13, 18].

Thus, for both theoretical and practical purposes, we are interested in deriving formulas for the

number of spanning trees of classes of graphs of the form Kn − H . Many cases have already been

examined. For example there exist formulas for the cases when H is a pairwise disjoint set of edges

[20], when it is a star [17], when it is a complete graph [1], when it is a path [5], when it is a cycle [5],

when it is a multi-star [3, 16, 22], and so on (see Berge [1] for an exposition of the main results).

The purpose of this paper is to derive formulas regarding the number of spanning trees of the

graph G = Kn −H in the cases where H is (i) a tree on k vertices, k ≤ n, and (ii) a quasi-threshold

graph (or QT-graph for short) on p vertices, p ≤ n. A QT-graph is a graph that contains no induced

subgraph isomorphic to P4 or C4, the path or cycle on four vertices [7, 12, 15, 21]. Our proofs are
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based on a classic result known as the complement spanning-tree matrix theorem [19], which expresses

the number of spanning trees of a graph G as a function of the determinant of a matrix that can be

easily constructed from the adjacency relation (adjacency matrix, adjacency lists, etc.) of the graph G.

Calculating the determinant of the complement spanning-tree matrix seems to be a promising approach

for computing the number of spanning trees of families of graphs of the form Kn−H , where H posses

an inherent symmetry (see [1, 3, 5, 16, 22, 23]). In our cases, since neither trees nor quasi-threshold

graphs possess any symmetry, we focus on their structural and algorithmic properties. Indeed, both

trees and quasi-threshold graphs possess properties that allow us to efficiently use the complement

spanning-tree matrix theorem; trees are characterized by simple structures and quasi-threshold graphs

are characterized by a unique tree representation [10, 15] (see Section 2). We compute the number

of spanning trees of these graphs using standard techniques from linear algebra and matrix theory on

their complement spanning-tree matrices.

Various important classes of graphs are trees, including paths, stars and multi-stars. Moreover, the

class of quasi-threshold graphs contains the classes of perfect graphs known as threshold graphs and

complete split (or, c-split) graphs (see Remark 4.1) [6, 8]. Thus, the results of this paper generalize

previous results and extend the family of graphs of the form Kn −H having formulas regarding the

number of spanning trees.

The paper is organized as follows. In Section 2 we establish the notation and related terminology

and we present background results. In particular, we show structural properties for the class of quasi-

threshold graphs and define a unique tree representation of such graphs. In Sections 3 and 4 we

present the results obtained for the graphs Kn − T and Kn −Q, respectively, where T is a tree and

Q is a quasi-threshold graph. Finally, in Section 5 we conclude the paper and discuss possible future

extensions.

2 Definitions and Background Results

We consider finite undirected graphs with no loops or multiple edges. Let G be such a graph; then

V (G) and E(G) denote the set of vertices and of edges of G respectively. The neighborhood N(x) of

a vertex x ∈ V (G) is the set of all the vertices of G that are adjacent to x. The closed neighborhood

of x is defined as N [x] := {x} ∪N(x).

Let G be a graph on n vertices. The complement spanning-tree matrix A of the graph G is defined

as follows:

Ai,j =















1− di

n
if i = j,

1
n

if i 6= j and (i, j) is not an edge of G,

0 otherwise,

where di is the number of edges incident to vertex ui in the complement of G; that is, di is the degree

of the vertex ui in G. It has been shown [19] that the number of spanning trees τ(G) of G is given by

τ(G) = nn−2 det(A).

In the case where G = Kn, we have that det(A) = 1; Cayley’s tree formula [9] states that τ(Kn) =

nn−2.

We next provide characterizations and structural properties of QT-graphs and show that such a

graph has a unique tree representation. The following lemma follows immediately from the definition

of G[S] as the subgraph of G induced by the subset S of the vertex set V (G).
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Lemma 2.1 ([10, 15]). If G is a QT-graph, then for every subset S ⊆ V (G), G[S] is also a

QT-graph.

The following theorem provides important properties for the class of QT-graphs. For convenience,

we define

cent(G) = {x ∈ V (G) | N [x] = V (G)}.

Theorem 2.1 ([10, 15]). Let G be an undirected graph.

(i) G is a QT-graph if and only if every connected induced subgraph G[S], S ⊆ V (G), satisfies

cent(G[S]) 6= ∅.

(ii) G is a QT-graph if and only if G[V (G)− cent(G)] is a QT-graph.

(iii) Let G be a connected QT-graph. If V (G) − cent(G) 6= ∅, then G[V (G) − cent(G)] contains at

least two connected components.

Let G be a connected QT-graph. Then V1 := cent(G) is not an empty set by Theorem 2.1. Put

G1 := G, and G[V (G) − V1] = G2 ∪ G3 ∪ · · · ∪ Gr, where each Gi is a connected component of

G[V (G)−V1] and r ≥ 3. Then since each Gi is an induced subgraph of G, Gi is also a QT-graph, and

so let Vi := cent(Gi) 6= ∅ for 2 ≤ i ≤ r. Since each connected component of Gi[V (Gi) − cent(Gi)] is

also a QT-graph, we can continue this procedure until we get an empty graph. Then we finally obtain

the following partition of V (G):

V (G) = V1 + V2 + · · ·+ Vk, ßwhere Vi = cent(Gi).

Moreover we can define a partial order � on {V1, V2, . . . , Vk} as follows:

Vi � VjßifßVj ⊆ V (Gi).

It is easy to see that the above partition of V (G) possesses the following properties.

Theorem 2.2 ([10, 15]). Let G be a connected QT-graph, and let V (G) = V1 + V2 + · · ·+ Vk be the

partition defined above; in particular, V1 := cent(G). Then this partition and the partially ordered set

({Vi},�) have the following properties:

(P1) If Vi � Vj, then every vertex of Vi and every vertex of Vj are joined by an edge of G.

(P2) For every Vj , cent(G[{
⋃

Vi | Vi � Vj}]) = Vj .

(P3) For every two Vs and Vt such that Vs � Vt, G[{
⋃

Vi | Vs � Vi � Vt}] is a complete graph.

Moreover, for every maximal element Vt of ({Vi},�), G[{
⋃

Vi | V1 � Vi � Vt}] is a maximal

complete subgraph of G.

(P4) Every edge with both endpoints in Vi is a free edge; an edge (x, y) is called free if N [x] = N [y].

(P5) Every edge with one endpoint in Vi and the other endpoint in Vj , where Vi 6= Vj, is a semi-free

edge; an edge (x, y) is called semi-free if either N [x] ⊂ N [y] or N [x] ⊃ N [y].

The results of Theorem 2.2 provide structural properties for the class of QT-graphs. We shall refer

to the structure that meets the properties of Theorem 2.2 as the cent-tree of the graph G and denote

it by Tc(G). The cent-tree is a rooted tree with root V1; every node Vi of the tree Tc(G) is either a

leaf or has at least two children. Moreover, Vs ≤ Vt if and only if Vs is an ancestor of Vt in Tc(G).
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3 Trees

Let T be a tree on k vertices. In the following construction we view T as an ordered, rooted tree: one

vertex r ∈ V (T ) is specified as the root and the children of each vertex are given an ordering (the

root is not considered a leaf if it has one child). We partition the vertex set of the graph T , in the

following manner:

We set T1 := T and let leaves(T1) be the set of leaves of the tree T1. Then V1 := leaves(T1)

is not an empty set. We delete the leaves of the tree T1 and let T2 be the resulting tree. We set

V2 := leaves(T2) and we continue this procedure until we get an empty tree. Then, we finally obtain

the following partition of V (T ):

V (T ) = V1 + V2 + · · ·+ Vh,

where

Vi = leaves(Ti), ßTi+1 = Ti − leaves(Ti), ßandßT1 = T.

We call this partition the st-partition of the tree T .

We consider the vertex sets V1, V2, . . . , Vh of the st-partition of a graph T as ordered sets; we here

adopt the left-to-right ordering within T . Denote by V −1
i (uj) the position of the vertex uj in the

ordered set Vi.

We label the vertices of T from 1 to k in the order that they appear in the ordered sets V1, V2, . . . , Vh.

More precisely, if ℓi and ℓj denote the labels of the vertices ui and uj, respectively, then ℓi < ℓj if

and only if either both vertices ui and uj belong to the same vertex set Vp and V −1
p (ui) < V −1

p (uj)

or vertices ui and uj belong to different vertex sets Vp and Vq, respectively, and p < q. This labeling

defines a vertex ordering of T ; we call it the st-labeling of T .

Let ℓ1, ℓ2, . . . , ℓk be the labels taken by the st-labeling of the tree T . For every vertex ui of T , we

define the vertex set ch(i) ⊆ V (T ) as follows:

ch(i) = {uj ∈ V (T )ß|ßuj ∈ N(ui)ßandßℓi > ℓj}.

Hereafter, we shall also use i to denote the vertex ui of T , 1 ≤ i ≤ k. Note that i ∈ V (T ) is a leaf if

and only if ch(i) = ∅. Given a rooted tree T , we recursively define the following function L on V (T ):

L(i) =























ai if i is a leaf,

ai − b2
∑

j∈ch(i)

1

L(j)
otherwise,

where ai = 1− dib and b = 1/n; recall that n ≥ k and di is the degree of the vertex i in T . We call L

the st-function of T ; hereafter, we use Li to denote L(i), 1 ≤ i ≤ k.

We consider the graph G = Kn −T , where T is a tree on k vertices. We first assign to each vertex

of the graph G a label from 1 to n so that the vertices with degree n − 1 obtain the smallest labels;

that is, we label the vertices with degree n − 1 from 1 to n− k. We label all the other vertices with

degree less than n− 1 from n− k + 1 to n according to the st-labeling of T . Notice that the vertices

with degree less than n− 1 induce the graph T (note that this is the complement of T in Kn[T ], not

in Kn).

Then, we form the complement spanning-tree matrix A of the graph G; it has the following form:

A =

[

In−k

B

]

,
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where the submatrix B concerns those vertices of the graph Kn − T that have degree less than n− 1;

throughout the paper, empty entries in matrices or determinants represent zeros. Let

V1 = (u1, u2, . . . , uℓ),

V2 = (uℓ+1, uℓ+2, . . . , us),

V3 = (us+1, us+2, . . . , ur),
...

Vh = (uk)

be the vertex sets of the st-partition of T ; recall that the vertices u1, u2, . . . , uk of Kn−T have degrees

less than n− 1. Thus, B is a k × k matrix having the following structure:

B =















































a1
. . .

aℓ
aℓ+1 (b)j,i

. . .

as
as+1

(b)i,j
. . .

ar
. . .

ak















































, (1)

where, according to the definition of the complement spanning-tree matrix, ai = 1−dib, and the entries

(b)i,j and (b)j,i of the off-diagonal positions (i, j) and (j, i) are both b if j ∈ ch(i) and 0 otherwise,

1 ≤ j ≤ i ≤ k. Note that b = 1/n and di is the degree of the vertex i in T .

Starting from the upper left part of the matrix, the first ℓ rows of the matrix correspond to the ℓ

vertices of the set V1; the next s− ℓ rows correspond to the vertices of the set V2, and so forth. The

last row corresponds to the root of T .

From the form of the matrix A, we see that det(A) = det(B). Thus, we focus on the computation

of the determinant of matrix B.

In order to compute the determinant det(B), we start by multiplying each column i, 1 ≤ i ≤ ℓ, of

the matrix B by −b/ai and adding it to the column j if (b)i,j = b (i < j ≤ k). This makes all the

strictly upper-diagonal entries (b)i,j , that is, for i < j ≤ ℓ, into zeros. Now expand in terms of rows

1, 2, . . . , ℓ, getting

det(B) =

ℓ
∏

i=1

Li

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f ℓ
ℓ+1

. . .

f ℓ
s (b)j,i

f ℓ
s+1

. . .

(b)i,j f ℓ
r

. . .

f ℓ
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ß = ß

ℓ
∏

i=1

Li det(B′),

where
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Li = ai, for 1 ≤ i ≤ ℓ, since the vertices 1, 2, . . . , ℓ are leaves of T , and

f ℓ
t = at − b2

∑

i∈ch(t)
1≤i≤ℓ

1

Li

, for ℓ+ 1 ≤ t ≤ k.

We observe that the (k− ℓ)× (k− ℓ) matrix B′ has a structure similar to that of the initial matrix B;

see Eq. (1). Thus, for the computation of its determinant det(B′), we follow a similar simplification;

that is, we start by multiplying each column i, 1 ≤ i ≤ s− ℓ, of the matrix B′ by −b/f ℓ
i and adding

it to the column j if (b)i,j = b (s < j ≤ k). Then, we obtain

det(B) =

ℓ
∏

i=1

Li

s
∏

i=ℓ+1

Li

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f s
s+1

. . . (b)j,i
f s
r

(b)i,j
. . .

f s
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ß = ß

s
∏

i=1

Li det(B′′),

where

Li = f ℓ
i , for ℓ+ 1 ≤ i ≤ s, and

f s
t = at − b2

∑

i∈ch(t)
1≤i≤s

1

Li

, for s+ 1 ≤ t ≤ k.

The matrix B′′ also has structure similar to that of the initial matrix B; see Eq. (1). It differs only

on the smaller size and on the diagonal values. Thus, continuing in the same fashion we can finally

show that

det(B) =

k
∏

i=1

Li,

where L is the st-function of T and k is the number of vertices of T .

Thus, based on the formula that gives the number τ(G) of the spanning trees of the graph G =

Kn − T and the fact that det(A) = det(B), we obtain the following result.

Theorem 3.1. Let T be a tree on k vertices, k ≤ n, and let L be the st-function on T . The number

of spanning trees of the graph G = Kn − T is equal to

τ(G) = nn−2
k
∏

i=1

Li.

Remark 3.1. We point out that Theorem 3.1 provides a simple linear-time algorithm for computing

the number of spanning trees of the graph G = Kn − T , where T is a tree on k vertices, k ≤ n; that

is, for a graph on n vertices and m edges the algorithm runs in O(n +m) time. Note that the time

complexity is measured according to the uniform cost criterion; under the uniform cost criterion each

instruction requires one unit of time and each register requires one unit of space. ✷
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4 Quasi-threshold Graphs

In this section, we derive a formula for the number of the spanning trees of the graph Kn −Q, where

Q is a quasi-threshold graph.

Let Q be a QT-graph on p vertices and let V1, V2, . . . , Vk be the nodes of its cent-tree Tc(Q)

containing p1, p2, . . . , pk vertices, respectively. We let di denote the degree of an arbitrary vertex of

the node Vi. Recall that all the vertices u ∈ V (Q) of a node Vi have the same degree. In Figure 1 we

show a cent-tree of a QT-graph on 12 vertices. Nodes V3 and V10 contain two vertices, while all the

other contain one vertex. The degree of a vertex in node V3 is 4.

 

V1 

V2 

V8 

V9 V10 

V7 

V3 

V4 V5 V6 

Figure 1: A cent-tree Tc(Q) of a QT-graph on 12 vertices.

We next form the submatrix B of the complement spanning-tree matrix A for the graph Kn−Q based

on the structure of the cent-tree Tc(Q), as well as on the st-partition of Tc(Q).

Let V ′
1 , V

′
2 , . . . , V

′
h be the node sets of the st-partition of Tc(Q). More precisely, the nodes of the

Tc(Q) are partitioned in the following sets:

V ′
1 = V1, . . . , Vℓ,

V ′
2 = Vℓ+1, . . . , Vs,

...

V ′
h = Vk.

Then, we label the vertices of the graph Q from n− p+ 1 to n as follows: First, we label the vertices

in V1 from (n − p) + 1 to (n − p) + p1; next, we label the vertices in V2 from (n − p) + p1 + 1 to

(n− p) + p1 + p2; finally, we label the vertices in Vk.

Thus, based on the above labeling of the vertices of the QT-graph Q, we can easily construct the

matrix B of the graph Kn −Q; it is a p× p matrix and has the following form:
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B =















































M1

. . .

Mℓ

Mℓ+1 [b]j,i
. . .

Ms

Ms+1

[b]i,j
. . .

Mr

. . .

Mk















































, (2)

where Mi is a pi × pi submatrix of the form

Mi =











ai b · · · b

b ai · · · b
...

...
. . .

...

b b · · · ai











,

and the entries [b]i,j and [b]j,i of the off-diagonal positions (i, j) and (j, i), respectively, of matrix B

correspond to pi × pj and pj × pi submatrices with all their elements b′s if node Vj is a descendant of

node Vi in Tc(Q) and zeros otherwise, 1 ≤ j ≤ i ≤ k. Recall that ai = 1− dib, where di is the degree

of an arbitrary vertex in node Vi of Tc(Q), and b = 1/n.

In order to compute the determinant of the matrix B we first simplify the determinants of the

matrices Mi, 1 ≤ i ≤ k. We multiply the last row of the matrix Mi by −1 and add it to the first pi− 1

rows of the matrix Mi, 1 ≤ i ≤ k. Then we add the first pi − 1 columns of the matrix Mi to the last

column of the matrix Mi, 1 ≤ i ≤ k, and we obtain

det(Mi) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

ai − b

ai − b
. . .

b b ai − b+ pib

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (ai − b)pi−1(ai − (1− pi)b).

It now suffices to substitute the above value in the determinant of matrix B. We point out that after

simplifying the determinant of matrices Mi only the diagonal and the last row of each matrix Mi have

nonzero entries; the diagonal has nonzero entries since di < n− 1. Thus, we have

det(B) =

k
∏

i=1

pi(ai − b)pi−1 det(D), (3)

where
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D =















































σ1

. . .

σℓ

σℓ+1 (b)j,i
. . .

σs

σs+1

(b)i,j
. . .

σr

. . .

σk















































(4)

is a k × k matrix with diagonal elements σi =
ai−(1−pi)b

pi
, 1 ≤ i ≤ k, and the entry (b)i,j of the off-

diagonal position (i, j) is b if node Vj is a descendant of node Vi in Tc(Q) and 0 otherwise, 1 ≤ j ≤ i ≤ k.

We observe that if we set pi = 1 in matrix D, 1 ≤ i ≤ k, then D is equal to the submatrix B of

the graph Kn −Q, where Q is a graph of a special type; it is a QT-graph on k vertices possessing the

property that each node of its cent-tree Tc(Q) contains a single vertex; see Figure 2.

 

u2 u1 

u6 u5 u4 u3 
u7 

u8 u9 

u10 

Figure 2: A QT-graph Q on 10 vertices. Every node Vi of the cent-tree Tc(Q)

contains exactly one vertex.

It is easy to see that, if we form the submatrix B of the complement spanning-tree matrix A

of Kn − Q, where Q is the QT-graph of Figure 2, using an appropriate vertex labeling, that is,

ℓ2 = n− 9, ℓ1 = n− 8, . . . , ℓ10 = n, then we obtain D = B. The idea now is to transform the k × k

matrix D into a form similar to that of the k × k matrix B of a tree T on k vertices; see Eq. (1) in

Section 3. We proceed as follows:

We first apply the following operations to each row i = 1, 2, . . . , k of the matrix D:

• We find the minimum index j such that i < j ≤ k and Di,j 6= 0, and then

• we multiply the jth column by −1 and add it to the ℓth column, if Di,ℓ = Di,j and j+1 ≤ ℓ ≤ k.

Next, we apply similar operations to each column j = 1, 2, . . . , k of the matrix D:

9



• We find the minimum index i such that 1 ≤ j < i and Di,j 6= 0, and then

• we multiply the ith row by −1 and add it to the ℓth row, if Dℓ,j = Di,j and i+ 1 ≤ ℓ ≤ k.

Thus, we obtain

det(D) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a′1
. . .

a′ℓ (b′j)j,i
a′ℓ+1

. . .

a′s
(b′j)i,j a′s+1

. . .

a′r
. . .

a′k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where

a′i =























σi if Vi is a leaf of Tc(Q),

σi +
∑

j∈ch(i)
ℓ+1≤j≤k

(σj − 2b) otherwise,
(5)

and

b′i =















b if Vi is a leaf of Tc(Q),

b− σi otherwise.

(6)

Note that the entry (b′j)i,j in the off-diagonal position (i, j) is b′j if node Vj is a descendant of node

Vi in Tc(Q) and 0 otherwise, 1 ≤ j ≤ i ≤ k. Recall that σi = ai−(1−pi)b
pi

; in the case where each

node of the cent-tree Tc(Q) contains a single vertex, we have σi = ai (in this case pi = 1, for every

i = 1, 2, . . . , k).

It is easy to see that the structure of the resulting k × k matrix D is similar to that of the k × k

matrix B of a tree; see Eq. (1) in Section 3. Thus, for the computation of the determinant det(D),

we can use similar techniques.

We next define the following function φ on the nodes on the cent-tree of a QT-graph Q:

φ(i) =























a′i if i ∈ Vi and Vi is a leaf of Tc(Q),

a′i −
∑

j∈ch(i)

(b′j)
2

φ(j)
otherwise,

where a′i and b′i are defined in Eq. (5) and Eq. (6), respectively. We call the function φ the cent-

function of the graph Q or, equivalently, the cent-function of the cent-tree Tc(Q); hereafter, we use φi

to denote φ(i), 1 ≤ i ≤ k.
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Following the same elimination scheme as that for the computation of the determinant of the

matrix B in Section 3, we obtain

det(D) =

k
∏

i=1

φi. (7)

Thus, the results of this section are summarized in the following theorem.

Theorem 4.1. Let Q be a quasi-threshold graph on p vertices and let V1, V2, . . . , Vk be the nodes of

the cent-tree of Q. Let φ be the cent-function of the graph Q. Then, the number of spanning trees of

the graph G = Kn −Q is equal to

τ(G) = nn+k−p−2
k
∏

i=1

pi(n− di − 1)pi−1φi,

where pi is the number of vertices of the node Vi and di is the degree of an arbitrary vertex in node

Vi, 1 ≤ i ≤ k.

Proof. As mentioned in Section 3, the complement spanning-tree matrix A of a graph Kn −Q can be

represented by

A =

[

In−p

B

]

,

where the submatrix B concerns those vertices of the graph Kn −Q that have degree less than n− 1;

these vertices induce the graph Q. Since ai = 1− dib and b = 1/n, from Eq. (3) we have

det(B) = nk−p

k
∏

i=1

pi(n− di − 1)pi−1 det(D).

From the above equality and Eq. (7), we obtain

det(B) = nk−p

k
∏

i=1

pi(n− di − 1)pi−1φi.

The number of spanning trees τ(G) of the graph G is equal to nn−2 det(A). Thus, since det(A) =

det(B), the theorem follows.

Theorem 4.1 coupled with Theorem 3.1 implies a simple linear-time algorithm for computing the

number of spanning trees of the graph G = Kn −Q, where Q is a quasi-threshold graph on p vertices,

p ≤ n (see also Remark 3.1).

Remark 4.1. As mentioned in the introduction, the class of quasi-threshold graphs contains the class

of c-split graphs (complete split graphs); recall that a graph is defined to be a c-split graph if there is

a partition of its vertex set into a stable set S and a complete set K and every vertex in S is adjacent

to all the vertices in K [6].

Thus, the cent-tree of a c-split graph H consists of |S| + 1 nodes V1, V2, . . . , V|S|+1 such that

V1 = K and the nodes V2, V3, . . . , V|S|+1 are children of the root V1; each child contains exactly one

vertex u ∈ S.

Let H be a c-split graph on p vertices and let V (H) = K + S be the partition of its vertex set.

Then, by Theorem 4.1, we obtain that the number of spanning trees of the graph G = Kn−H is given

by the following closed formula:

τ(G) = nn−p−1(n− |K|)|S|−1(n− p)|K|,

where p = |K|+ |S| and p ≤ n. ✷
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5 Concluding Remarks

It is well known that the classes of quasi-threshold and threshold graphs are perfect graphs. Thus, it

is reasonable to ask whether the complement spanning-tree matrix theorem can be efficiently used for

deriving formulas, regarding the number of spanning trees, for other classes of perfect graphs [6].

It has been shown that the classes of perfect graphs, namely complement reducible graphs, or so-

called cographs, and permutation graphs, have nice structural and algorithmic properties: a cograph

admits a unique tree representation, up to isomorphism, called a cotree [11] (note that the class of

cographs contain the classes of quasi-threshold and threshold graphs), while a permutation graph

G[π] can be transformed into a directed acyclic graph and, then, into a rooted tree by exploiting the

inversion relation on the elements of the permutation π [14].

Based on these properties, one can work towards the investigation whether the classes of cographs

and permutation graphs belong to the family of graphs that admit formulas for the number of their

spanning trees.

References

[1] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.

[2] T.J.N. Brown, R.B. Mallion, P. Pollak and A. Roth, Some methods for counting the spanning

trees in labelled molecular graphs, examined in relation to certain fullerenes, Discrete Appl. Math.

67, 51–66, 1996.

[3] K-L. Chung and W-M. Yan, On the number of spanning trees of a multi-complete/star related

graph, Inform. Process. Lett. 76, 113–119, 2000.

[4] C.J. Colbourn, The Combinatorics of Network Reliability, Oxford University Press, New York,

1987.

[5] B. Gilbert and W. Myrvold, Maximizing spanning trees in almost complete graphs, Networks 30,

23–30, 1997.

[6] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.

[7] M.C. Golumbic, Trivially perfect graphs, Discrete Math. 24, 105–107, 1978.

[8] P.L. Hammer and A.K. Kelmans, Laplacian spectra and spanning trees of threshold graphs,

Discrete Appl. Math. 65, 255–273, 1996.

[9] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.

[10] M. Kano and S.D. Nikolopoulos, On the structure of A-free graphs: Part II, Tech. Report TR-25-

99, Department of Computer Science, University of Ioannina, 1999.

[11] H. Lerchs, On cliques and kernels, Department of Computer Science, University of Toronto, March

1971.

[12] S. Ma, W.D. Wallis and J. Wu, Optimization problems on quasi-threshold graphs, J. Comb.

Inform. and Syst. Sciences. 14, 105–110, 1989.

[13] W. Myrvold, K.H. Cheung, L.B. Page, and J.E. Perry, Uniformly-most reliable networks do not

always exist, Networks 21, 417–419, 1991.

12



[14] S.D. Nikolopoulos, Coloring permutation graphs in parallel, Discrete Appl. Math. 120, 165–195,

2002.

[15] S.D. Nikolopoulos, Hamiltonian cycles in quasi-threshold graphs, Proc. CTW’01, Cologne, Ger-

many, 2001. In: Electronic Notes in Discrete Math. 8, 2001.

[16] S.D. Nikolopoulos and P. Rondogiannis, On the number of spanning trees of multi-star related

graphs, Inform. Process. Lett. 65, 183–188, 1998.

[17] P.V. O’Neil, The number of trees in a certain network, Notices Amer. Math. Soc. 10, 569, 1963.

[18] L. Petingi, F. Boesch and C. Suffel, On the characterization of graphs with maximum number of

spanning trees, Discrete Math. 179, 155–166, 1998.

[19] H.N.V. Temperley, On the mutual cancellation of cluster integrals in Mayer’s fugacity series, Proc.

Phys. Soc. 83, 3–16, 1964.

[20] L. Weinberg, Number of trees in a graph, Proc. IRE. 46, 1954–1955, 1958.

[21] J-H. Yan, J-J. Chen, and G.J. Chang, Quasi-threshold graphs, Discrete Appl. Math. 69, 247–255,

1996.

[22] W-M. Yan, W. Myrnold and K-L. Chung, A formula for the number of spanning trees of a

multi-star related graph, Inform. Process. Lett. 68, 295–298, 1998.

[23] Y. Zhang, X. Yong and M.J. Golin, The number of spanning trees in circulant graphs, Discrete

Math. 223, 337–350, 2000.

13


	Introduction
	Definitions and Background Results
	Trees
	Quasi-threshold Graphs
	Concluding Remarks

