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Exact k-Wise Intersection Theorems

Tibor Szabó1,* and V.H. Vu2,*
1Department of Computer Science, ETH, Zürich, 8092, Switzerland. e-mail:
szabo@inf.ethz.ch

2Department of Mathematics, UCSD, La Jolla, CA92093-0112, USA.
e-mail: vanvu@ucsd.edu

Abstract. A typical problem in extremal combinatorics is the following. Given a large
number n and a set L, find the maximum cardinality of a family of subsets of a ground set
of n elements such that the intersection of any two subsets has cardinality in L.
We investigate the generalization of this problem, where intersections of more than 2
subsets are considered. In particular, we prove that when k�1 is a power of 2, the size of the
extremal k-wise oddtown family is (k�1)(n� 2log2(k�1)). Tight bounds are also found in
several other basic cases.

1. Introduction

In this paper we study families F of subsets of an n-element ground set
½n� ¼ f1; 2; . . . ; ng, for which the size of the intersection of any k members of F is
in a prescribed set of integers. On the most general level our problem can be
formulated as follows.

Given a positive integer n, a set L of integers, and an integer k ¼ kðnÞ > 1 find
the maximum cardinality of a family of subsets of [n] such that the intersection of
any k of these subsets has a cardinality contained in L.

For k ¼ 2, these types of questions have been attacked successfully using linear
algebraic methods. The excellent monograph [2] by Babai and Frankl contains a
wide variety of results and applications. In the following we list some of the most
basic theorems. Sets of even (odd) cardinality are called even (odd). A condition
on the k-wise intersection is always about k pairwise distinct members of the
family.

*Research supported in part by NSF grant DMS 99-70270 and by the joint Berlin/Zurich
graduate program Combinatorics, Geometry, Computation, financed by the German
Science Foundation (DFG) and ETH Zürich
�Research supported in part by NSF grant DMS-0200357, by an NSF CAREER award
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Eventown Theorem (Berlekamp [5], Graver [11]). Let F � 2½n� be a family such that
the intersection of any two subsets in F is even. Then jFj � 2bn=2c þ dn, where
dn ¼ 1 if n is odd and 0 otherwise.
Oddtown Theorem (Berlekamp [5]). Let F � 2½n� be a family of odd subsets, such
that the intersection of any two subsets in F is even. Then jFj � n.
Nonuniform Fischer Inequality (Majumdar [14]). Let F � 2½n� be a family such that
the intersection of any two subsets in F has the same nonzero cardinality. Then
jFj � n.
Nonuniform Ray-Chaudhuri-Wilson Theorem (Frankl and Wilson [6]). Given a
subset L of s nonnegative integers, let F � 2½n� be a family such that the intersection
of any two members of F has a cardinality contained in L. Then jFj �

Ps
i¼0

n
i

� �
.

It is important to note that all the above bounds are best possible.
The generalization of these theorems from pairwise to k-wise intersections

seems completely natural, still the adaptation of the arguments poses some
nontrivial challenge. The reason for this difficulty lies exactly where the beauty
of the proofs for k ¼ 2 is. Arguments about pairwise intersections usually de-
pend on the basic fact that the size of the intersection of two sets is equal to the
inner product of the two corresponding characteristic vectors, hence the
machinery of linear algebra can be invoked. The intrinsic difficulty of the k-wise
case compared to the pairwise is the lack of algebraic concepts describing the
intersection of k sets when k > 2. In this paper we try to circumvent this obstacle
with additional combinatorial ideas while still making some use of linear algebra.

The general problem of investigating k-wise intersection restrictions on
families of sets for k � 3 was posed in [15] by V. T. Sós. Füredi [8] has
established a combinatorial connection between the pairwise and k-wise case
for t-uniform systems. He showed that for any fixed L, the order of magnitude
of the size of the extremal system for the pairwise and k-wise problem is the
same. His constants are very large, but depend only on k and t. The k-wise
variant of specific intersection problems were studied recently by the second
author [16,17], Grolmusz [12], and Grolmusz and Sudakov [13].

An important feature of the linear algebra method is that the obtained
results are often tight. There are, usually quite simple, matching constructions
complementing the algebraic upper bounds; not just up to a constant factor
or asymptotically, but precisely. Sharp results, just because of their scarcity,
are of particular interest in Extremal Combinatorics. In this paper we put
the emphasis on obtaining precise results for the k-wise version of some
of the classical pairwise intersection theorems, like the Oddtown Theorem, or
the Nonuniform Fischer Inequality.

1.1 k-wise Results

A precise bound for the k-wise version of the Eventown Theorem was given by the
second author in an earlier paper [16]. Here we quote this result for the sake of
completeness.
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Theorem 1.1. There is a positive constant c such that the following holds. If
n � c log2 k and F � 2½n� is a family of maximum size such that the intersection of
every k subsets in F is even, then jFj ¼ 2bn=2c þ dk;n, where dk;n ¼ k � 1 if n is odd
and 0 otherwise.

We call a family F � 2½n� k-wise oddtown, if every member of F is odd and the
intersection of any k members is even. The following is conjectured to be the
optimal family if n is large enough compared to k.
Construction A. [16] Let us consider b ¼ dlog2ðk � 1Þe disjoint 2-element subsets
of ½n�, say Xi ¼ f2i� 1; 2ig for i ¼ 1; . . . ; b. By taking the unions of some of these
pairs, create k � 1 sets Y1; . . . ; Yk�1; say let Yi :¼ Xj1 [ � � � [ Xjir

, where j1; . . . ; jir
are the nonzero coordinates in the binary expansion of i� 1. Define

F ¼ fYi [ fxg : i ¼ 1; . . . ; k � 1; x ¼ 2bþ 1; . . . ; ng:

Then jFj ¼ ðk � 1Þðn� 2dlog2ðk � 1ÞeÞ and F is k-wise oddtown. Indeed, no
k-wise intersection contains anything from f2bþ 1; . . . ; ng, while points from ½2b�
come in pairs. (

In the following theorem we confirm that for an infinite sequence of k Con-
struction A is, indeed, extremal. We also obtain an almost tight bound for every k.

Theorem 1.2. Let k ¼ kðnÞ � 3 be an integer and F � 2½n� be a k-wise oddtown
family of maximum size. If k ¼ 2s þ 1 for some integer s, then for every
n � 3 k�1

k�2 log2ðk � 1Þ

jFj ¼ ðk � 1Þðn� 2 log2ðk � 1ÞÞ:

Moreover, for every k and n � 3ðk � 1Þ þ 2dlog2ðk � 1Þe � 2,

ðk � 1Þðn� 2dlog2ðk � 1ÞeÞ � jFj � ðk � 1Þðn� blog2ðk � 1Þc � dlog2ðk � 1ÞeÞ:

We consider Theorem 1.2 the main contribution of our paper. Previously the
asymptotics of the size of the maximum family was established [16] for fixed k, but
exact results were not known for any k > 2.

We also prove the following precise k-wise version of the Nonuniform Ray-
Chaudhuri-Wilson Theorem for jLj ¼1.

Theorem 1.3. Let F � 2½n� be a largest family such that the intersections of any
k=k(n) subsets in F has the same cardinality. If k � 1 > 2n�1, then jFj ¼ 2n.
Otherwise let s be the largest integer such that

Ps�1
i¼0

n�1
i

� �
� k � 1. Then

jFj ¼
Xs

i¼0

n
i

� �
þ k � 1�

Xs�1

i¼0

n� 1

i

� � !
n

sþ 1

$ %

: ð1Þ
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In particular for n � k, we have

jFj ¼ k
2

n
� �

þ 1:

This theorem improves on the earlier bound of ðk � 1Þðnþ 1Þ of Grolmusz and
Sudakov [13].

For pairwise intersections, the Nonuniform Ray-Chaudhuri-Wilson Theorem
is sharp only when L ¼ f0g. In case L 6¼ f0g, the Nonuniform Fischer Inequality
improves the upper bound nþ 1 to n. A similar phenomenon occurs here as well:
Theorem 1.3 is only sharp if all k-wise intersections are empty. The following
statement is a k-wise variant of the Nonuniform Fischer Inequality.

Theorem 1.4. Assume that F � 2X is a maximum size family such that the inter-
section of any k=k(n) members of F has the same nonzero cardinality. Then

jFj ¼ f ðk; n� 1Þ if k � 1 � 2n�2

k � 1 otherwise

	

where f(k,n) is the quantity on the right hand side of (1).

Further questions one may want to consider are the k-wise variants of the
famous modular intersection theorems of Frankl and Wilson. The uniform ver-
sion could be considered a far-reaching generalization of the Oddtown Theorem.
Here we discuss the nonuniform case.

Nonuniform Frankl-Wilson Theorem [6]. Let p be a prime and L be the set of s
residues modulo p. IfF � 2½n� is a family such that for every A 2F, jAj =2 Lðmod pÞ
and for every A;B 2F, jA \ Bj 2 Lðmod pÞ, then

jFj �
Xs

i¼0

n
i

� �
:

In a recent paper [13], Grolmusz and Sudakov proved the upper bound
ðk � 1Þ

Ps
i¼0

n
i

� �
for the k-wise version of the above statement. Using an idea from

the proof of Theorem 1.1, we can slightly improve their bound.

Proposition 1.5. Let p be a prime and L be a set of s residues modulo p. Suppose
F � 2½n� is a family, such that for every A 2F, jAj =2 Lðmod pÞ and for every
A1; . . . ;Ak 2F, j \k

I¼1 Aij 2 Lðmod pÞ. If
Ps

i¼0
n
i

� �
� blogpðk � 1Þc, then

jFj � ðk � 1Þ
�Xs

i¼0

n
i

� �
� blogpðk � 1Þc þ 1

�
:

The rest of the paper is organized as follows. In the next section, we describe
some useful ideas for the proof of Theorem 1.2 and prove Proposition 1.5. The
proof of Theorem 1.2 follows in Section 3. In Section 4 we prove Theorems 1.3 and
1.4, while the last section contains several concluding remarks and open questions.
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Notation. The degree degFðxÞ of a point x in a family F is the number of
members of F containing x.

In Sections 2 and 3 we use the language of linear algebra. For each subset A of
½n�, the characteristic vector of A is the binary vector vA of length n, whose ith

coordinate is 1 if i belongs to A and 0 otherwise. The vector space generated by the
characteristic vectors of the elements of F over the two-element field GF (2) is
denoted by V ðFÞ.

2. Warm-up

In this section, we describe some ideas which will be used in the proof of Theorem
1.2. First we discuss a weaker upper bound, proved by the second author as a
lemma to the proof of Theorem 1.1 ([Lemma 6,16]; see also [17, Lemma 3.2.4] for
a more general statement). Then, we modify the proof of this weaker bound to
prove Proposition 1.5.

2.1. A Weaker Bound for the Oddtown Problem

Lemma 2.1. [16] If F � 2½n� is a k-wise oddtown family and dim V ðFÞ ¼
d > blog2ðk � 1Þc then,

jFj � ðk � 1Þðd � blog2ðk � 1ÞcÞ:

Proof. We use induction on d. The base case d ¼ blog2ðk � 1Þc þ 1 is immediate,
since in any finite dimensional vector space over GF ð2Þ at most half of the vectors
have odd weight, thus

jFj � 1

2
jV ðFÞj ¼ 2d�1 � ðk � 1Þ:

Assume now that d > blog2ðk � 1Þc þ 1. Let t be the largest integer such that
there are t members A1; . . . ;At of F having an odd intersection A ¼ \t

i¼1Ai.
Clearly t � k � 1. Then for every i ¼ 1; . . . ; t,

vAi vA ¼ jAi \ Aj ¼ jAj � 1ðmod 2Þ:

Due to the maximality of t, for any set B 2F0 ¼FnfA1; . . . ;Atg

vBvA ¼ jB \ Aj � 0ðmod 2Þ:

It thus follows that the vectors vAi are not contained in the space V ðF0Þ generated
by the family F0 ¼FnfA1; . . . ;Atg. Thus the dimension of V ðF0Þ � d � 1 and
this, together with the induction hypothesis, yields
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jFj¼ tþjF0j�ðk�1Þþðk�1Þððd�1Þ�blog2ðk�1ÞcÞÞ¼ðk�1Þðd�blog2ðk�1ÞcÞ;

completing the proof. (

Corollary 2.2. [16] Let F be a k-wise oddtown family on n > blog2ðk � 1Þc points.
Then jFj � ðk � 1Þðn� blog2ðk � 1ÞcÞ.

Proof. It is clear that dim V ðFÞ � n. (

The consideration of the dimension of V ðFÞ turns out to be a very useful
concept and will play a crucial role in the proof of Theorem 1.2. But first let us use
the previous idea to show Proposition 1.5.

2.2. Proof of Proposition 1.5

Consider a family F as in Proposition 1.5. We mimic the method of Alon, Babai
and Suzuki [1] for the proof of the Frankl-Wilson Theorem and combine it with
the ideas in the previous argument. Let W be the vector space of all polynomials
generated by the set f

Q
i2S xijS � f1; 2; . . . ; ng; jSj � sg over the field GF ðpÞ. It is

easy to see that the generating set forms a basis as well, thus the dimension of W isPs
i¼0

n
i

� �
.

To each set A � X , assign a polynomial ~fAðxÞ ¼
Q

l2Lðx � vA � lÞ, where x de-
notes a vector in GF nðpÞ. Let fAðxÞ be the multilinear polynomial we obtain from
~fAðxÞ by replacing all powers xq

i by the first power xi. Clearly fAðyÞ ¼ ~fAðyÞ for any 0-
1-vector y. Let d denote the dimension of the subspace (of W ) spanned by the
polynomials fB;B 2F.We shall prove, by induction on d, that if d � blogpðk � 1Þc,
then

jFj � ðk � 1Þðd � blogpðk � 1Þc þ 1Þ:

As d � dimðW Þ ¼
Ps

i¼0
n
i

� �
, our claim follows.

Let d ¼ blogpðk � 1Þc. A subspace of W with dimension d has pd vectors, so it
follows that

jFj � pd � ðk � 1Þ;

concluding the proof of the base case.
Now assume d > blogpðk � 1Þc. Similar to the previous proof, let t be the

largest integer such that there are t members of F whose intersection has cardi-
nality not in L modulo p. Let these members be A1; . . . ;At and let A ¼ \t

i¼1Ai. It
follows that for every i ¼ 1; . . . ; t,

fAiðvAÞ ¼ ~fAi
ðvAÞ ¼

Y

l2L

ðjAi \ Aj � lÞ ¼
Y

l2L

ðjAj � lÞ 6� 0ðmod pÞ:

On the other hand, due to the maximality of t, for any member
B 2F0 ¼FnfA1; . . . ;Atg, jB \ ð\t

i¼1AiÞj ¼ jB \ Aj 2 L. Therefore,
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fBðvAÞ ¼ ~fBðvAÞ ¼
Y

l2L

ðjB \ Aj � lÞ � 0ðmod pÞ:

Hence for every i, 1 � i � t, fAi 2 W is linearly independent from the subspace V 0

spanned by the fB, B 2F0. Thus dim V 0 � d � 1 and we can conclude as in the
previous proof. (

3. k-wise Oddtown

In order to prove Theorem 1.2, we need to consider a more general scenario,
where F is allowed to contain sets with high multiplicity. This extension will
provide room for us to consider a more general induction hypothesis. To this end
we need to introduce a few definitions. A collection F of sets is called an l-multi-
system if each set occurs in F with multiplicity at most l. A 1-multi-system is
called a family. We extend the definition of the k-wise oddtown property to multi-
systems. A multi-system F is said to have the k-wise oddtown property if

	 jAj � 1ðmod 2Þ for every A 2F and
	 jA1 \ . . . \ Akj � 0ðmod 2Þ for every sub-multi-system fA1; . . . ;Akg of F.

That is, in the intersection property, Ai and Aj might be equal as sets, but they
are distinct members of the multi-system. Note that in a k-wise oddtown multi-
system there cannot be a set with multiplicity larger than k � 1.

Proof of Theorem 1.2. First we shall prove that for an extremal k-wise oddtown
system F, dim V ðFÞ should be at most n� dlog2ðk � 1Þe and then apply Lemma
2.1.

The following definition plays a crucial role in our argument.

Definition. Let F be a multi-system of sets. A set M is called a basis set of F, if

(i) M is nonempty
(ii) jM j is even
(iii) M ¼ A1 \ . . . \ Ak�1 for some sub-multi-system fA1; . . . ;Ak�1g of F.

Observe, that the characteristic vector w of a basis set M ¼ A1 \ . . . \ Ak�1 is
orthogonal to V ðFÞ. Indeed, for any B 2F, B 6¼ Ai, i ¼ 1; . . . ; k � 1, w � vB ¼ 0
since F is a k-wise oddtown system, while w � vAi ¼ 0 because of ðiiÞ. Thus the
vector space W ðFÞ, generated by the characteristic vectors of the basis sets of F,
is contained in the orthogonal complement V ðFÞ? of V ðFÞ. It is well-known that
for any subspace V , dim V þ dim V ? ¼ n. Therefore d � n� b, where
b ¼ dimW ðFÞ.

In the following theorem we prove that the maximum size of a k-wise oddtown
family with dimW ðFÞ < dlog2ðk � 1Þe is asymptotically much less than
ðk � 1Þðn� 2dlog2ðk � 1ÞeÞ, the lower bound given by Construction A.
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Theorem 3.1 Let k � 3; l; n � 1 be integers and F � 2½n� be a k-wise oddtown
l-multi-system. Let b � k � 2 be the dimension of the vector space W ðFÞ generated
by the characteristic vectors of the basis sets of F. Then

jFj � max
b

i¼0

2iþ1lþ k � 1

3
ðn� 2iÞ

	 


: ð2Þ

Proof of Theorem 3.1. We proceed by induction on b. To check the base case
b ¼ 0, assume that F is a family with no basis sets, that is all ðk � 1Þ-wise inter-
sections are either odd or empty. We use induction on n. For n ¼ 1, the maximum
size system contains the singleton minfl; k � 1g � ð2lþ k � 1Þ=3-times.
Suppose now that n > 1.

Case 1. Every point is contained in at most k � 1 sets. Then
X

A2F
jAj ¼

X

A2F

X

p2A

1 ¼
X

p

X

p2A2F
1 � nðk � 1Þ:

The number of sets in F is maximized when (almost) all degrees are k � 1 and
the sizes of the sets are as small as possible. That is when F contains all the
1-element subsets with multiplicity minfl; k � 1g and a 3-uniform (almost-)
regular hypergraph with maximum degree ðk � 1�minfl; k � 1gÞ.1 Then
jFj � minfl; k � 1gnþ ðk � 1�minfl; k � 1gÞn=3 � ð2lþ k � 1Þn=3.

Case 2. There is a point x with degree at least k.

Then there are some A1; . . . ;Ak, such that their intersection contains x. Since
this intersection is even, it must contain another element y 6¼ x. But A1 \ . . . \ Ak�1
is then not empty, thus it is odd (remember that b ¼ 0), so N ¼ A1 \ . . . \ Ak�2
contains at least three elements.

Consider those members E of F (E 6¼ Ai; i ¼ 1; . . . ; k � 2) for which E \ N is
not empty, thus odd. There are at most jN j of such E’s. (For any two E1;E2,
N \ E1 \ E2 is even. This implies that an odd intersection N \ E determines E
uniquely. Then one can use the pairwise Oddtown Theorem within N for the sets
N \ E, when this intersection is odd.)

All other members of F are disjoint from N , thus they form a system on
n� jN j points. So by induction

jFj � ð2lþ k � 1Þðn� jN jÞ
3

þ jN j þ k � 2

¼ 2lþ k � 1

3
n� jN j

3
ð2lþ k � 4Þ þ k � 2 � 2lþ k � 1

3
n;

since jN j � 3 and l � 1.

1Remark: In case k � n�1
2

� �
þ 2, Baranyai’s Theorem ensures that this actually can be achieved,

such that, depending on the remainder of n modulo 3, only 0; 1 or 2 points have degree smaller
than the maximum.
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This completes the proof of the base case b ¼ 0. Now let us assume that b > 0.
Let us choose a minimal basis set M ¼ A1 \ . . . \ Ak�1.

If jM j ¼ 2, then by the k-wise oddtown property each element of F either
contains or is disjoint from M . Then the multi-system F nM ¼ fE nM : E 2Fg
is a k-wise oddtown 2l-multi-system on n� 2 points. The dimension of W ðF nMÞ
is b� 1. (More precisely, W ðFÞ is equal to the direct product W ðF nMÞ 
 hvM i.
If there is a basis set B of F nM which is not a basis set of F, then B [M is a
basis set of F, thus the characteristic vector of B is in W ðFÞ. On the other hand if
B is basis set of F then B nM is a basis set of F nM .) Thus, by the induction
hypothesis,

jFj ¼ jF nM j � max
b�1

i¼0

2iþ1 � 2lþ k � 1

3
ððn� 2Þ � 2iÞ

	 


¼ max
b

j¼1

2jþ1 � lþ k � 1

3
ðn� 2jÞ

	 


:

Suppose now that jM j � 4.

Case 1. There is an index j such that \i6¼jAi n Aj ¼ ;.

Then the ðk � 2Þ-wise intersection N ¼ \i 6¼jAi would be equal to M and would
not contain any other basis set because of the minimality of M . Thus, again, every
member of F either contains or is disjoint from M , implying that F nM is a k-
wise 2l-multi-system. Similarly, by the induction hypothesis,

jFj ¼ jF nM j � max
b�1

i¼0

2iþ1 � 2lþ k � 1

3
ððn� jM jÞ � 2iÞ

	 


� max
b

j¼1

2jþ1 � lþ k � 1

3
ðn� 2jÞ

	 


:

Case 2. For every index j ¼ 1; . . . ; k � 1:, the sets Cj ¼ \i 6¼jAi n Aj are not empty.

Let us choose some k � 2 sets from fA1; . . . Ak�1g such that their intersection
does not contain any other basis set, but M . This is possible because of a simple
counting argument. We say that a basis set B 6¼ M ruins an index j if B � \i6¼jAi.
In case index j is ruined, let us fix an arbitrary basis set Bj ruining j. Then the
minimality of M implies Bj \ Cj 6¼ ;. Since the nonempty Cjs are pairwise disjoint
by definition, the set of characteristic vectors fvBj : j is ruinedg is linearly inde-
pendent. Hence b, the dimension of the space of the characteristic vectors of basis
sets, cannot be less than (actually it is equal to) the number of indices ruined. Since
b � k � 2, we have an index, say k � 1, which is not ruined by any basis set. Then
N ¼ \k�2

i¼1 Ai does not contain any other basis set, but M .
In particular, the intersection of any member of F n fA1; . . . ;Ak�2g with N is

either odd, or M , or empty. Let
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FN ¼ fA1; . . . ;Ak�2g;
F0 ¼ fE 2F nFN : E \ N ¼ ;g;
F1 ¼ fE 2F nFN : jE \ N j � 1ðmod 2Þg;
F2 ¼ fE 2F nFN : 0 6¼ jE \ N j � 0ðmod 2Þg ¼ fE 2F nFN : E \ N ¼ Mg:

The family F0
1 ¼ fE \ N : E 2F1g is a pairwise oddtown family on jN j

points, so jF1j ¼ jF0
1j � jN j.

Any element E of F0 [F2 is either disjoint from N or intersects it in M .
Then ðF0 [F2Þ n N ¼ fE n N : E 2F0 [F2g is a k-wise oddtown 2l-multi-
system on n� jN j points. Let the dimension of W ððF0 [F2Þ n NÞ be b0. If B is a
basis set of ðF0 [F2Þ n N then either B itself or B [M is a basis set of F. In any
case the characteristic vector vB is in W ðFÞ. Hence W ððF0 [F2Þ nMÞ � W ðFÞ.
Thus b0 � b� 1, since vM 2 W ðFÞ n W ððF0 [F2Þ nMÞ. By the induction
hypothesis,

jFj¼jFN jþjF1jþjF0[F2j�k�2þjN jþmax
b0

i¼0

2iþ1 �2lþk�1
3

ðn�jN j�2iÞ
	 


¼max
b0

i¼0

2iþ2lþk�1
3

ðn�2ðiþ1ÞÞ�jN j2
iþ2lþk�4

3
þ2

iþ3lþ2k�2þ3k�6
3

	 


�max
b0

i¼0

2iþ2lþk�1
3

ðn�2ðiþ1ÞÞ�52
iþ2lþk�4

3
þ2

iþ3lþ5k�8
3

	 


¼

¼max
b0

i¼0

2iþ2lþk�1
3

ðn�2ðiþ1ÞÞ�3 �2
iþ2l�12
3

	 


�

�max
b0

i¼0

2iþ2lþk�1
3

ðn�2ðiþ1ÞÞ
	 


�max
b

j¼1

2jþ1lþk�1
3

ðn�2jÞ
	 


Here we used that jN j � 5, since jM j � 4 and Cj 6¼ ;. (

The proof of Theorem 1.2 is now immediate by applying Theorem 3.1 with
l ¼ 1. Suppose first that k � 1 ¼ 2s for some positive integer s. The size of the
family from Construction A is larger than the upper bound in (2) for suffi-
ciently large n. Indeed, ðk � 1Þðn� 2sÞ is larger than 2bþ1þk�1

3 ðn� 2bÞ for every
b < s if n � 3 log2ðk � 1Þ � k�1

k�2. Hence for an extremal system F, the dimension
of W ðFÞ cannot be less than log2ðk � 1Þ, which implies that
dim V ðFÞ � n� log2ðk � 1Þ. Then the first part of Theorem 1.2 is a conse-
quence of Lemma 2.1.

Assume now that 2s þ 1 � k � 1 < 2sþ1. Our argument is similar to the
above, except the range of validity is somewhat smaller. For any
n � 3ðk � 1Þ þ 2dlog2ðk � 1Þe � 2, the size of the family from Construction A is
greater than the dominating term 2sþ1þk�1

3 ðn� 2sÞ in the upper bound (2). So,
again, dim V ðFÞ � n� dlog2ðk � 1Þe and the second part of Theorem 1.2 fol-
lows from Lemma 2.1. (
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4. k-wise Nonuniform Fischer-Inequality

In this section we prove Theorems 1.3 and 1.4.
It is convenient to introduce the following definition. We say thatF is a k-wise

l-Fischer family if the intersection of any k members of F contains exactly l
elements. Let mk

l ðnÞ be the largest possible size of a k-wise l-Fischer setsystem.
First we determine mk

0ðnÞ exactly for every n and k.

Lemma 4.1.

mk
0ðnÞ ¼

Ps
i¼0

n
i

� �
þ k � 1�

Ps�1
i¼0

n�1
i

� �� �
n

sþ1

j k
if k � 1 � 2n�1

2n if k � 1 > 2n�1

(

;

where s is the largest integer such that
Ps�1

i¼0
n�1

i

� �
� k � 1 (provided s exists, i.e.

k � 1 � 2n�1).

Proof. For a family H let us denote by DðHÞ the sum of the degrees:

DðHÞ :¼
X

v2V

degHðvÞ ¼
X

A2H
jAj:

The heart of the proof is the following trivial observation.

Observation. A family is k-wise 0-Fischer if and only if each point has degree at
most k � 1.

For k � 1 � 2n�1 the lemma follows easily from our observation since the
degree of any point in 2½n� is 2n�1 � k � 1. Suppose now thatPs�1

i¼0
n�1

i

� �
� k � 1 <

Ps
i¼0

n�1
i

� �
. First we construct an appropriate family F

of the desired size. Let us denote by ½n�
i

� �
the family of all i-element subsets of

½n�. The family [s
i¼0

½n�
i

� �
is ð

Ps�1
i¼0

n�1
i

� �
Þ-regular. Thus we can include all of

[s
i¼0

½n�
i

� �
in F and could still have some ‘‘available degree’’; i.e.

d ¼ k � 1�
Ps�1

i¼0
n�1

i

� �
at each vertex.

We add to F several more sets, of size sþ 1, while making sure that the degree
of no point grows above k � 1, i.e. no point is contained in more than d of these
newly included ðsþ 1Þ-element sets. To achieve this goal, we use a special case of
the celebrated theorem of Baranyai [3], due to Katona.

Lemma 4.2. [4, Lemma, p. 179] Let a � n
r

� �
be an arbitrary nonnegative integer.

Then there exists an almost regular subhypergraph H �Hr
n (that is the degrees of

any two vertices in H differ by at most one) with jEðHÞj ¼ a edges.

By choosing r ¼ sþ 1; a ¼ bd n
sþ1c, Lemma 4.2 provides us with an almost regular

ðsþ 1Þ-uniform hypergraph H with a edges.
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X

v2V

degHðvÞ ¼ DðHÞ ¼ aðsþ 1Þ � dn:

As H is almost regular, no vertex has degree larger than d in H. Therefore
F ¼ ð[s

i¼0
½n�
i

� �
Þ [H is a k-wise 0-Fischer familywith the required number of edges.

Let us assume now that there exists a k-wise 0-Fischer family F0 with
jF0j ¼ jFj þ 1. As F contains the first jFj smallest subsets of ½n�,

P
A2F0 jAj is

larger than
P

A2F jAj by at least maxfjAj : A 2F0g � sþ 1,

DðF0Þ � DðFÞ þ sþ 1:

By our observation DðF0Þ � ðk � 1Þn, giving us DðFÞ � ðk � 1Þn� ðsþ 1Þ.
On the other hand by the definition of F,

DðFÞ ¼ d
n

sþ 1

� �

ðsþ 1Þ þ ðk � 1� dÞn

>
dn

sþ 1
� 1

� �

ðsþ 1Þ þ ðk � 1� dÞn ¼ ðk � 1Þn� ðsþ 1Þ;

a contradiction.
Hence we proved that F is a k-wise 0-Fischer family of maximum size. (

The next theorem determines mk
l ðnÞ for most of the triples ðn; k; lÞ; in particular

when k is fixed and n is large enough. It reveals the fact that extremal k-wise
l-Fischer families are not too exciting, as they are usually obtained from extremal
k-wise 0-Fischer families by the addition of l new points to each member. The
proof is basically identical to the one in Füredi [7]; we include an adaptation to
our formulation of the statement.

Theorem 4.3. Let 2n þ 1 � k � 2, n � l � 1 be positive integers. Then

mk
l ðnÞ ¼ maxfmk

0ðn� lÞ; k � 1g if k þ l > n;
mk

l ðnÞ � maxfmk
0ðn� lÞ; ng if k þ l � n;

Proof. Clearly mk
l ðnÞ � mk

0ðn� lÞ, since from any k-wise 0-Fischer family on n� l
points one can construct a k-wise l-Fischer family on n points just by adding the
same l new points to each member.

Consider a k-wise l-Fischer family F ¼ fA1; . . . ;Amg of size m ¼ mk
l ðnÞ.

Case 1. There are k � 1 sets in F whose intersection B is of size l.
Then every member of F must contain B. Thus the family

F n B :¼ fA n B : A 2Fg is a k-wise 0-Fischer family on n� l points, so
jFj ¼ jF n Bj � mk

0ðn� lÞ. Hence m ¼ mk
0ðn� lÞ.

Case 2. The intersection of any k � 1 members of F contains at least lþ 1 points.
Assume first that k þ l > n. The value of m cannot be less than k � 1, since any

collection of k � 1 sets is a k-wise 0-Fischer family. If m > k � 1 then there exists
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an l-element set B, which is the intersection of k members A1; . . . Ak of F. There
are at most k � 1 points in ½n� n B, so there exists an index j � k, such that the
intersection of the k � 1 sets A1; . . . ;Aj�1;Ajþ1; . . . ;Ak is also B. This contradicts
the assumption of Case 2 and proves m ¼ k � 1.

Assume now that k þ l � n. Then clearly k � 1 < n� lþ 1 ¼ m2
0ðn� lÞ

� mk
0ðn� lÞ � m. Let A1; . . . ;Ak�2 2F be members such that the cardinality of

B ¼ A1 \ . . . \ Ak�2 is as small as possible. If there were i > j > k � 2 such that
Ai \ B ¼ Aj \ B, that would imply l ¼ jA1 \ . . . Ak�2 \ Ai \ Ajj ¼ jB \ Aij, con-
tradicting our assumption that there are no k � 1 members of the family having l-
element intersection. Thus Ai \ B determines Ai uniquely. The family
FB ¼ fBi : Bi ¼ Ai \ B; i > k � 2g, defined on jBj points, is pairwise l-Fischer.
Therefore the pairwise Nonuniform Fischer Inequality implies that it could have at
most jBj members. Since jFj ¼ m � k, there exists sets Ak�1;Ak 2F. Every one of
the n� l points in ½n� � \k

i¼1Ai is not contained in at least one of theAjs, 1 � j � k. A
simple averaging argument then shows that the smallest ðk � 2Þ-wise intersection B
has cardinality at most lþ 2

k ðn� lÞ ¼ n� k�2
k ðn� lÞ. So

jFj¼jFBjþjfA1;...;Ak�2j�n�k�2
k
ðn�lÞþðk�2Þ�n�ðk�2Þ k

n�l
�1

� �

�n (

Now Theorems 1.3 and 1.4 are simple corollaries of Lemma 4.1 and Theorem
4.3. We only remark that mk

0ðnÞ is monotone increasing in n and even mk
0ðn� 1Þ

dominates both k � 1 and n in their respective range of interest.

5. Remarks and Open Questions

	 We believe that Construction A is optimal for every k � 3 provided n is large
enough. The first unknown case is that of the 4-wise oddtown families, where
the size of the extremal family is between 3n� 12 and 3n� 9.
	When a specific L is given, it looks plausible that one can improve the constant
multiplier 1 of the logarithm in Proposition 1.5. It is not clear what the sharp
bound in this problem is, but probably the bound varies with L.
In the special case L ¼ f0g one can generalize Construction A which provides a
family with ðk � 1Þðn� p log2ðk � 1ÞÞ members, such that the cardinality of any
member is not divisible by p but the cardinality of the intersection of any k
members is. We believe that (as in the case p ¼ 2) this lower bound is tight.
However, there are nontrivial obstacles in modifying the proof of Theorem 1.2
to show this.
	 A generalization of the construction in Theorem 1.3 for arbitrary s ¼ jLj is the
following. Let L ¼ f0; 1; . . . ; s� 1g. Let Gs;k be a maximum packing of ðsþ 1Þ-
element sets, such that each s-element set is contained in at most k � 2 members
of Gs;k. The trivial combinatorial upper bound on jGs;kj is ðk � 2Þ n

s

� �
=ðsþ 1Þ.

For s ¼ 2 and k ¼ 3, the infinite family of Steiner triple systems match this
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upper bound. In general, the existence of such tactical configurations is not
known, but asymptotically optimal families could easily be constructed for
every k and s ¼ oðnÞ by generalizing the construction of [9, Theorem 8.1]. Let

Ga ¼ C 2 ½n�
sþ 1

� �

:
X

c2C

c � anðmod nÞ
( )

;

where a is an integer. Then for any k � 2 distinct integers 0 � a1 < a2 < . . .
< ak�2 < n, [k�2

i¼1Cai is a family covering each s-set at most ðk � 2Þ-times. By
averaging, there exists a choice of ais for which G ¼ Gs;k :¼ [k�2

i¼1Cai has at least
ðk � 2Þ n

sþ1

� �
=n members. Thus for s ¼ oðnÞ, jGj ¼ ðk�2sþ1 þ oð1ÞÞ n

s

� �
. Then in the

familyF ¼ [s
i¼1

½n�
i

� �
[ G every s-set is contained in at most k � 1 members, i.e. all

the k-wise intersections are in L. The size ofF is ðsþk�1
sþ1 þ oð1ÞÞ n

s

� �
. It is not hard to

prove with a method similar to the one in Theorem 1.3 that for L ¼ f0; . . . ; s� 1g
F, indeed, is asymptotically optimal. We conjecture that it is actually optimal for
any L, jLj ¼ s.

	 One question we know very little about is the k-wise variant of the uniform Ray-
Chaudhuri-Wilson Theorem. Suppose we are given a set L of s integers. What is
the size of a maximum family F of l-element sets, such that the cardinality of
the intersection of any k members ofF is in L. The upper bound is still the usual
ðk � 1Þ n

s

� �
, while we don’t know any construction having more than

ð1þ oð1ÞÞ n
s

� �
elements.

Acknowledgments. We are grateful to N. Alon and B. Sudakov for helpful discussions.

Note added in proof. Our above conjecture about the optimality of the size
ðsþk�1

sþ1 þ oð1ÞÞ n
s

� �
of the L-intersecting family F was settled recently by Füredi and

Sudakov [10].
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