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t. Let G be a topologi
al graph with n verti
es, i.e., a graph drawn in the plane withedges drawn as simple Jordan 
urves. It is shown that, for any 
onstants k; l, there exists another
onstant C(k; l), su
h that if G has at least C(k; l)n edges, then it 
ontains a k � l-gridlike
on�guration, that is, it 
ontains k + l edges su
h that ea
h of the �rst k edges 
rosses ea
h ofthe last l edges. Moreover, one 
an require the �rst k edges to be in
ident to the same vertex.Key words. Insert your keywords here.1. Introdu
tionA topologi
al graph is a graph drawn in the plane with no loops or parallel edges sothat its verti
es are represented by points, and its edges by Jordan 
urves 
onne
ting the
orresponding points. The points (resp., 
urves) representing the verti
es (resp., edges) ofthe abstra
t graph are also 
alled verti
es (resp., edges) of the resulting topologi
al graph.If it is 
lear from the 
ontext, we will make no notational distin
tion between the verti
es(edges) of the underlying abstra
t graph, and the points (
urves) representing them inthe plane. We assume that (i) the edges of a topologi
al graph do not pass through anyvertex, (ii) if two edges share an interior point, then at this point they properly 
ross,and (iii) no three edges 
ross at the same point. A topologi
al graph is 
alled simple ifany pair of its edges have at most one point in 
ommon (either a 
ommon endpoint or a
rossing).It follows from Euler's Polyhedral Formula that every planar graph with n verti
es hasat most 3n� 6 edges. Equivalently, every topologi
al graph G with n verti
es and morethan 3n� 6 edges has a pair of 
rossing edges. This simple statement was generalized inseveral dire
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2 J�anos Pa
h et al.Pa
h and T�oth [PT97℄ proved that a simple topologi
al graph of n verti
es and morethan (r+2)(n� 3) edges must have r edges that 
ross the same edge. This bound is tightfor r = 1; 2; 3, but 
an be substantially improved for large values of r.Agarwal et al. [AAPPS97℄ proved that for some C > 0, every simple topologi
al graphwith n verti
es and more than Cn edges has three pairwise 
rossing edges. In [PRT02℄,it was shown, by a mu
h shorter argument, that the same assertion is true for all (notne
essarily simple) topologi
al graphs. In [PRT03℄, this result was further strengthened:for every integer r > 0, there exists a 
onstant Cr > 0, su
h that every topologi
al graphwith n verti
es and more than Crn edges has r + 2 edges su
h that the �rst two 
rossea
h other and both of them 
ross the remaining r edges.In this note, we establish another generalization. A set of k + l edges of a topologi
algraph is said to form a (k; l)-grid if ea
h of the �rst k edges 
rosses all of the remaining ledges. If, in addition, the �rst k edges are in
ident to the same vertex, then the (k; l)-gridis 
alled radial. If the last l edges are also in
ident to a vertex, then the grid is biradial.

Figure 1. A radial (4; 5)-grid.Theorem 1. For any k; l � 1, every topologi
al graph with n verti
es and more than16 � 244lkn edges 
ontains a radial (k; l)-grid.If we assume that G is a simple topologi
al graph, the proof be
omes simpler and thebound be
omes better.Theorem 2. For any k; l � 1, every simple topologi
al graph of n verti
es and more than8 � 24lkn edges 
ontains a radial (k; l)-grid.In the spe
ial 
ase when the verti
es of the graph are in 
onvex position, the edges aredrawn by straight-line segments, k = 2, and l = 1, Theorem 2 has been established byBrass et al. [BKV03℄.It follows from the results in [PPTT02℄ that, for any �xed k and l, the maximum numberof edges of an x-monotone topologi
al graph with n verti
es that does not 
ontain anybiradial (k; l)-grid is O(n logn). We do not know whether this bound 
an be repla
ed byO(n). We 
annot de
ide either if, instead of requiring that the grid be radial or biradial,one 
an assume that all endpoints of the parti
ipating edges are distin
t.It is an easy 
orollary of Theorem 2 that for any k; l � 1; there exists a 
onstant 
 = 
klsu
h that every simple topologi
al graph with n verti
es and more than 
n edges 
ontainsa radial (k; l)-grid whose �rst k edges 
ross the remaining edges in the same order. Thismeans that their arrangement really looks like a grid with quadrilateral 
ells.



Topologi
al graphs with no large grids 32. Proof of Theorem 1Let G be a topologi
al graph with n > 5 verti
es, 
ontaining no radial (k; l)-grid for somek; l > 0. Assume without loss of generality that G is 
onne
ted (as an abstra
t graph),otherwise we 
an argue separately for its 
onne
ted 
omponents and 
omplete the proofby indu
tion.Let us redraw G, if ne
essary, so that the resulting topologi
al graph ~G satis�es thefollowing two 
onditions:(i) If two edges of ~G 
ross ea
h other, then the 
orresponding edges also 
ross in G;(ii) ~G has the minimum number of 
rossing points among all drawings with property (i).It follows from property (i) that ~G 
annot 
ontain a radial (k; l)-grid, be
ause the
orresponding edges would form a radial (k; l)-grid in G.Obviously, no edge of ~G interse
ts itself, otherwise we 
ould redu
e the number of
rossings by removing the loop. Suppose that ~G has two distin
t edges, e and f , thatmeet at least twi
e (in
luding their 
ommon endpoint, in the 
ase they have one). Asimply 
onne
ted region whose boundary is 
omposed of an ar
 of e and an ar
 of f is
alled a lens.Claim 2.1. Every lens in ~G has a vertex in its interior.Proof. Suppose, for a 
ontradi
tion, that there is a lens ` that 
ontains no vertex of ~G inits interior. Consider a minimal lens `0 � `, by 
ontainment. Noti
e that by swapping thetwo sides of `0, we 
ould redu
e the number of 
rossings without 
reating any new pair of
rossing edges, 
ontradi
ting property (ii) above. 2The following property is a dire
t 
onsequen
e of a result of S
haefer and Stefankovi�
[SS01℄.Claim 2.2. For any edge e of ~G and for any m > 0, every set of 2m 
onse
utive 
rossingsalong e involves at least m distin
t edges other than e. 2Sin
e the abstra
t underlying graph of G and ~G is 
onne
ted, we 
an 
hoose a sequen
eof edges e1; e2; : : : ; en�1 2 E( ~G) su
h that e1; e2; : : : ; ei form a tree Ti, for every 1 � i �n� 1. In parti
ular, e1; e2; : : : ; en�1 form a spanning tree Tn�1 of ~G.As in [PRT02℄, we �rst 
onstru
t a sequen
e of 
rossing-free topologi
al graphs (trees),~T1; ~T2; : : : ; ~Tn�1, as follows. Let ~T1 be de�ned as a topologi
al graph of two verti
es,
onsisting of the single edge e1. Suppose that ~Ti has already been de�ned for some 1 �i < n�1, and let v denote the endpoint of ei+1 that does not belong to Ti. Then we de�ne~Ti+1 as follows. Add to ~Ti the pie
e of ei+1 between v and its �rst 
rossing with ~Ti. Morepre
isely, follow the edge ei+1 from v up to the point v0 where it hits ~Ti for the �rst time,and denote this pie
e of ei+1 by ~ei+1. If v0 is a vertex of ~Ti, then add v and ~ei+1 to ~Ti andlet ~Ti+1 be the resulting topologi
al graph. If v0 is in the interior of an edge e of ~Ti, thenintrodu
e a new vertex at v0. It divides e into two edges, e0 and e00. Add both of them to~Ti, and delete e. Also add v and ~ei+1, and let ~Ti+1 be the resulting topologi
al graph.
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10 10Figure 2. Constru
ting ~T10 from T10After 
ompleting n � 2 steps, we obtain a topologi
al tree ~T := ~Tn�1, whi
h (1) is
rossing-free, (2) has fewer than 2n verti
es, (3) 
ontains ea
h vertex of ~G, and (4) hasthe property that ea
h of its edges is either a full edge, or a pie
e of an edge of ~G.Next, we re
ursively 
onstru
t another sequen
e of 
onne
ted, 
rossing-free topologi
algraphs, ~H1; ~H2; : : : ~Hm = ~H. For every i, let ~Ei 
onsist of all edges of ~G that have a pie
ewhi
h is an edge of ~Hi. We will refer to these edges as used edges at stage i.Set ~H1 := ~T and ~E1 := fe1; e2; : : : ; en�1g. Suppose that we have already 
onstru
ted~Hi and ~Ei for some i > 0.

p

s

Figure 3. A proper 
ut.Let Ei be the set of unused edges of ~G at this stage, that is, Ei = E( ~G) n ~Ei. Everyedge e 2 Ei may 
ross ~Hi at several points. These 
rossing points divide e into severalpie
es, 
alled segments. Let S denote the set of all segments over all edges e 2 Ei. To form~Hi+1, we add one segment s 2 S to ~Hi as an edge. Ea
h endpoint of s is either a vertexof ~Hi, or a point p on an edge e of ~Hi. In the latter 
ase, p divides e into two segments,e0 and e00. Add p to ~Hi as a vertex, and repla
e e with two edges, e0 and e00. Denote theresulting topologi
al graph by ~Hi(s). The segment s divides one of the 
ells of ~Hi intotwo 
ells. If ea
h of these 
ells has at least 8 sides, in
luding those along s, then we saythat s is a proper 
ut of ~Hi (see Figure 3). Note that if we en
ounter both sides of an edgewhile walking around the boundary of a 
ell, then this edge 
ontributes 2 to the numberof sides of the 
ell.



Topologi
al graphs with no large grids 5We distinguish two 
ases.Case 1. There exists no s 2 S whi
h is a proper 
ut of ~Hi.Set m := i, ~H := ~Hi, ~E := ~Ei, and the pro
edure terminates.Case 2. There exists s 2 S whi
h is a proper 
ut of ~Hi.Suppose that s is a segment of an unused edge e 2 Ei at stage i. Set ~Hi+1 := ~Hi(s),~Ei+1 := ~Ei [ feg, and pro
eed further to the next step.Sin
e ~G has �nitely many edges, this pro
edure will terminate. Let ~E and E denotethe set of used and unused edges after the last stage, resp., i.e., ~E = ~Em and E = Em.Claim 2.3. ~H has fewer than 8n edges. Consequently, the number of used edges of ~Gafter the last stage satis�es j ~Ej < 8n.Proof. Let �i (resp., Æi) be the number of edges (resp., 
ells) in ~Hi. We know that �1 < 2nand Æ1 = 1. For every i, we have �i+1 � �i+3 and Æi+1 = Æi+1, so that �m < 3m+2n� 3,Æm = m. On the other hand, ea
h 
ell has at least 8 edges. This holds for ~H1 = ~T ,provided that n � 5, and, by 
onstru
tion, it remains true as segments are added. Sowe have �m � 4Æm. It follows that 3m + 2n � 3 > �m � 4Æm = 4m. Thus, we obtain2n� 3 > m. This implies that for the number of edges of ~H we have �m < 8n.The se
ond statement follows from the fa
t that every used edge of ~G has a segmentwhi
h is an edge of ~H. 2It remains to estimate the number of unused edges of ~G at the �nal stage. For anyvertex v of ~G, let deg(v) be the number of unused edges of ~G in
ident to v, and let deg ~H(v)be the degree of v in ~H. Consider the 
y
li
 order of the unused edges of ~G and the edgesof ~H in
ident to v, in a small neighborhood of v. We show that between any �xed pair of
onse
utive edges e0 and e00 of ~H, there are at most (2k� 2)244l unused edges of ~G in thissequen
e. Let E(e0; e00) be the set of all su
h unused edges. An edge e 2 E(e0; e00) is 
alledlong or short, a

ording to whether it has altogether at least 4l or fewer than 4l 
rossingswith edges of ~H, respe
tively.In what follows, we would like to distinguish between the two sides of the same edge.To this end, orient the edges of ~H arbitrarily, and orient every element of E(e0; e00) awayfrom v. If two oriented edges, e and f , 
ross at a point p, we say that at this point e
rosses f from left to right (or, equivalently, f 
rosses e from right to left), if the dire
tionof e at p 
an be obtained from the dire
tion of f at p by a 
lo
kwise turn through anangle less than �.For any long edge e = �!vw 2 E(e0; e00), 
onsider the �rst 4l 
rossings along e withthe edges of ~H, as we move from v towards w, and let hh1; h2; : : : ; h4li be the list of the
orresponding edges of ~H. For any 1 � i � 4l, write ti = h�i (resp., let ti = h+i ) if e 
rosseshi from left to right (resp., from right to left). Finally, de�ne the type of e = �!vw as theordered list (sequen
e) T (e) = ht1; t2; : : : ; t4li.The type of a short edge e = vw is de�ned similarly, ex
ept that now the list T (e)might be shorter (be
ause we do not have 4l 
rossings), and we add w to the list as a lastelement.Claim 2.4. The number of types is at most 244l.Proof. Sin
e there exists no proper 
ut of ~H, the two endpoints of ea
h segment of anedge e = �!vw 2 E(e0; e00) are \
lose" to ea
h other in the sense that their distan
e alongthe boundary of the 
orresponding 
ell of ~H is at most 6. More pre
isely, if we �x the�rst i < 4l elements of the sequen
e T (e), there are at most 24 possibilities how to sele
t



6 J�anos Pa
h et al.the (i + 1)-st element: in both dire
tions we 
an 
hoose one of the edges supporting the6 
losest sides of the 
ell, or one of the 6 
losest verti
es as w (if e = vw is short). Thus,the total number of possible types is at most 244l. 2Claim 2.5. For any �xed type, the number of edges in E(e0; e00) is at most 2k � 2.Proof. The statement is trivial if the type 
orresponds to a short edge. Indeed, if two shortedges belonging to E(e0; e00) have the same type, then both of their endpoints 
oin
ide,whi
h is impossible, be
ause our graph has no parallel edges.Suppose now, in order to obtain a 
ontradi
tion, that there are 2k � 1 long edges,e1; e2; : : : ; e2k�1 2 E(e0; e00), whi
h have the same type (t1; : : : ; t4l), where, for ea
h j,tj = h+j or h�j for some edge hj of ~H.For 1 � i � 2k�1 and 1 < j � 4l, let eji denote the segment of ei between its (j�1)-stand j-th 
rossing with the edges of ~H. Let e1i stand for for the segment of ei between vand the �rst 
rossing of ei with an edge of ~H, as we move away from v. Furthermore, let�ei = [4lj=1eji , that is, the pie
e of ei between v and its 4l-th 
rossing with the edges of ~H.Clearly, for any �xed 1 � j � 4l, the segments eji , for 1 � i � 2k � 1, are pairwisenon-
rossing. Indeed, otherwise, let j be the smallest number su
h that eji and eji0 have a
rossing p, for some i 6= i0. Then the lens en
losed by the pie
es of �ei and �ei0 between vand p would be vertex-free, 
ontradi
ting Claim 2.1. Therefore, the 
urves �e1; �e2; : : : ; �e2k�1\run parallel", in the same order. More pre
isely, if �e1; �e2; : : : ; �e2k�1 emanate from v inthis 
lo
kwise order, then for ea
h 1 � j � 4l, the segments ej1; ej2; : : : ; ej2k�1 meet the edgehj in the same order. See Figure 4.
ee e v

123

Figure 4. The edges e1; e2; e3 run parallel.It follows from the de�nition that �ek parti
ipates in at least 4l 
rossings. By Claim 2.2,there are at least 2l distin
t edges of ~G that 
ross �ek. Fix any one of them, e, and denoteby x one of its interse
tion points with �ek.It is suÆ
ient to show that e must 
ross either every element of f�e1; �e2; : : : ; �ekg or everyelement of f�ek; �ek+1; : : : ; �e2k�1g. Indeed, if this holds, then at least half of the 2l distin
t



Topologi
al graphs with no large grids 7edges of ~G that 
ross �ek will also 
ross every element in one of the above sets. Thus, ~Gwill 
ontain a radial (k; l)-grid, 
ontradi
ting our assumptions.Suppose, in order to obtain a 
ontradi
tion, that there are two ar
s, �ea and �eb, 1 �a < k < b � 2k � 1, that do not 
ross e. For any 1 < j � 4l, let Rj denote the regionbounded by eja, ejb, and the portions of hj�1 and hj between their interse
tion points witheja and ejb.By de�nition and by the previous observations, Rj fully 
ontains ejk, but it has novertex of ~H in its interior. Let j � k be the minimum integer su
h that e has a point inRj. Sin
e e 
annot end in Rj, it must meet one of its sides, belonging eja, ejb, hj�1, or hj.(We set h0 := v. Note also that R1 has only three sides.) By de�nition, e 
annot meeteja and ejb. It is also impossible that e enters and leaves Rj through its side belonging tohj, be
ause then, within Rj it would form an empty lens with hj, 
ontradi
ting Claim2.1. Thus, if j > 1, then e must leave Rj through its side belonging to hj�1. This impliesthat e must have a point in Rj�1 
ontradi
ting the minimality of j. On the other hand, ifj = 1, then e must end at h0 = v. However, in this 
ase, the portions of e and �ek betweenv and x would form an empty lens within the region R1[R2[� � �[R4l . This 
ontradi
tion
ompletes the proof of Claim 2.5. 2
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Figure 5. Any edge of ~G that 
rosses �e3 must also 
ross either �e1 and �e2, or �e4 and �e5.Now we return to the proof of Theorem 1. Re
all that ~E and E denote the sets ofused and unused edges of ~G at the last stage, respe
tively. Thus, 
ombining the last three
laims, we obtainjE( ~G)j = jEj+ j ~Ej � jEj+ jE( ~H)j � �244l(2k � 2) + 1� jE( ~H)j � �244l(2k � 2) + 1� 8n< 16 � 244lkn;as required.



8 J�anos Pa
h et al.3. Proof of Theorem 2We only sket
h the proof, sin
e it is a spe
ialization of the previous one. Let G be a simple
onne
ted topologi
al graph with n verti
es that does not 
ontain a radial (k; l)-grid.In 
ontrast to the previous proof, now we do not have to build another topologi
algraph, ~G, sin
e G is simple, i.e., any pair of edges of G 
ross at most on
e. Thus, we 
anfollow the previous argument with ~G = G.Constru
t a topologi
al graph ~H in exa
tly the same way as in the previous proof, andde�ne the sets of used and unused edges as before. Obviously, Claim 2.3 remains true.Now we estimate the number of unused edges of G. For any vertex v of G, let deg(v)denote the number of unused edges of G in
ident to v, and let deg ~H(v) denote the degreeof v in ~H. As before, 
onsider a small neighborhood of v, and list the unused edges of Gand the edges of ~H in
ident to v in the order as they emanate from v. Now we 
an showthat between any two 
onse
utive edges e0 and e00 of ~H, there are fewer than 24lk unusededges of G: Let E(e0; e00) denote the set of all su
h edges. For ea
h e 2 E(e0; e00), 
onsiderthe �rst l 
rossings of e with the edges of ~H, and let T (e) denote the sequen
e of the
orresponding edges of ~H. As before, T (e) is 
alled the type of e. As before, edges withfewer 
rossings with ~H have shorter types; they list all these 
rossings and terminate atthe other endpoint of the edge. Instead of Claims 2.4 and 2.5, now we obtainClaim 3.1. The number of di�erent types is at most 24l. 2Claim 3.2. For any �xed type, E(e0; e00) has at most k � 1 elements.Proof. The 
ase of short edges is argued as above. Suppose, for the sake of 
ontradi
tion,that there are k elements, e1; e2; : : : ; ek, in
ident to v, that \run parallel" for at least lsteps, i.e., we have T = T (e1) = T (e2) = : : : = T (ek). Sin
e G is simple, the l edges ofG 
orresponding to T are all distin
t. Thus, we have found a radial (k; l)-grid in G, thedesired 
ontradi
tion. 2Now the proof 
an be 
ompleted in exa
tly the same way as before.Referen
es[AAPPS97℄ P. K. Agarwal, B. Aronov, J. Pa
h, R. Polla
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h, Geometri
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s, 1999 (J. D. Lamb andD. A. Pree
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al So
iety Le
ture Notes 267, Cambridge UniversityPress, Cambridge, 1999, 167{200.[PRT02℄ J. Pa
h, R. Radoi�
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al graphs, in: Finiteand In�nite Combinatori
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iety Le
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