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Abstract

Given a set S of n points in the plane, the opposite-quadrant depth of a point p ∈ S is defined
as the largest number k such that there are two opposite axis-aligned closed quadrants (NW
and SE, or SW and NE) with apex p, each containing at least k elements of S. We prove that
S has a point with opposite-quadrant depth at least n/8. If the elements of S are in convex
position, then we can guarantee the existence of an element whose opposite-quadrant depth is
at least n/4. Both results are asymptotically best possible.

1 Introduction

Let S be a set of n points in the plane. Given any point p, the horizontal and vertical lines through
p define four closed quadrants NW(p), NE(p), SE(p), and SW(p). We define the opposite-quadrant
depth opp(p, S) of a point p with respect to S as the largest number k such that there are two
opposite quadrants NW(p) and SE(p) or NE(p) and SW(p), each containing at least k elements of
S. In notation:

opp(p, S) = max (min (|NW(p) ∩ S|, |SE(p) ∩ S|) ,

min (|NE(p) ∩ S|, |SW(p) ∩ S|)) ,

opp(S) = max
p∈R2

opp(p, S).

A point p is said to be α-deep, for some α > 0, if its opposite-quadrant depth is at least αn. A
(not necessarily unique) point of maximum opposite-quadrant depth is called a deepest point, and
a point which is α-deep is also called an α-centerpoint. If we do not require the centerpoint to be in
S, then there always exists a point that is 1

4 -deep at the intersection of the vertical and horizontal
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halving lines. In fact, 1
4 is the best general bound that can be established on the maximum depth

for any point in the plane, as shown by a set of n points uniformly distributed in a square, a disk,
or even on a circle. There are also sets with deeper points, e.g., any set of n collinear points has a
point of depth dn/2e.

In what follows, we require the centerpoint to belong to the set S. In this case, we cannot
guarantee that there always exists a 1

4 -deep point in S. However, we can show that S always
contains a 1

8 -centerpoint.

Theorem 1 Any set of n points in the plane has an element with opposite-quadrant depth at least
n/8. Moreover, such a point can be found in O(n) time.

The proof is inspired by the “catline” of Hubert and Rousseuw [6].
Somewhat surprisingly, Theorem 1 is essentially tight.

Theorem 2 For infinitely many values of n, there are n-element sets Sn with maxp∈Sn opp(p, Sn) =
(n + 4)/8.

If the points of S are in convex position, that is, if they form the vertex set of a convex polygon,
we can also guarantee the existence of a 1

4 -centerpoint in S. In fact, this statement remains true
under the weaker condition that S is an exposed set, that is, for any p ∈ S, at least one of the four
quadrants NW(p), NE(p), SE(p), and SW(p) contains no element of S in its interior. With a little
twist of terminology, in this case we say that such a quadrant is empty (although it necessarily
contains the point p and may perhaps contain some other boundary points that belong to S).

Theorem 3 Any exposed set of n points in the plane has an element with opposite-quadrant depth
at least n/4. Moreover, such a point can be found in O(n) time.

The above notions are closely related to half-space depth, multivariate regression depth, and
other measures of statistical depth [7]. For instance, the half-space depth of a point p with respect
to an n-element set S in d-space is the minimum number of points of S covered by a closed half-
space containing p. It is well-known that one can always find a point of half-space depth at least⌊

n
d+1

⌋
with respect to S [2]. In sharp contrast to the opposite-quadrant depth, however, now we

cannot guarantee that S has an element of large half-space depth. Indeed, if the points of S are in
strictly convex position, none of them has half-space depth larger than one.

2 Proofs of Theorems 1 and 3

First, notice that having points on the same vertical or horizontal line does not create a problem,
since the quadrants were defined to be closed. In fact, we can slightly perturb our original point set
S by assigning to each element pi ∈ S a vector vi = (i, i2). Then there exists a sufficiently small
ε > 0 such that the modified sets Sλ = {pi + λvi} are in general position for any λ ∈ (0, ε], in the
sense that no pair of points have the same x or y coordinate. Consequently, varying λ in this small
interval will not change the horizontal or vertical order of the elements of Sλ. If our theorems hold
for sets in general position, we can apply them to Sε, and find an α-centerpoint pi + εvi. Then
pi + λvi is α-deep with respect to Sλ for all λ ∈ (0, ε]. Bringing back our points to their original
positions in S only adds points on the boundary of the two opposite quadrants of pi. Therefore, pi

is also an α-centerpoint for S.



Thus, from now on we assume that S is in general position. To simplify the presentation, we
also assume that n = |S| is divisible by 8, so that we do not have to deal with upper and lower
integer parts. The proof of Theorem 1 proceeds by first splitting the set into three parts by two
vertical lines, not passing through any element of S, such that in the left and right half-planes there
are precisely n/4 points and the vertical strip in the middle contains n/2 points. Next, we find a
horizontal line, not passing through any point of S, that divides S into two equal halves. In this
way, we obtain a 3× 2 “grid,” whose six regions will be called “cells.” We say that a cell is heavy
if it contains at least as many points as the other cell in the same column, that is, the cell below
or above it. Note that if every cell in a row is heavy, then each of them contains precisely as many
elements as the cell below or above it. Otherwise, there could not be n/2 points in the other row.
Thus, in this case, all six cells must be heavy. Therefore, we can always pick one heavy cell per
column so that not all of them belong to the same row. We distinguish two cases up to symmetries
(reflections about the coordinate axes).

(a) Bitonic configuration: The upper cells H1 and H3 of the first and third columns, respectively,
and the lower cell H2 of the second column are all heavy. (See Figure 1(a).)

(b) Monotone configuration: The upper cells H1 and H2 of the first two columns and the lower
cell H3 of the third column are all heavy. (See Figure 1(b).)
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Figure 1: Proof of Theorem 1. We let H ′
1 be the lower cell in the left column, H11 := H1 ∩ NW(p),

H12 := H1 ∩ SW(p), H21 := H2 ∩NW(p), and H22 := H2 ∩NE(p). Case (a): H1, H3, and one of H21 or H22

have ≥ n/8 points. Case (b): H3 and one of NW(p) or SW(p) have ≥ n/8 points. If NW(p) does not, both
SW(p) and H22 have ≥ n/8 points.

First we prove Theorem 1 for bitonic configurations. Let p be the highest point of the lower
(heavy) cell H2 of the middle column. The quadrants NW(p) and NE(p) contain the heavy cells
H1 and H3, therefore both of them have at least n/8 points of S. All the at least n/4 points in
the heavy cell H2 that belong to S lie in the half-plane SW(p) ∪ SE(p). Thus, at least one of the
two quadrants, SW(p) or SE(p), must contain at least n/8 points. This quadrant together with the
opposite one forms a good pair, concluding the proof for bitonic configurations.

Next we establish Theorem 1 for monotone configurations. We have to use a slightly different
argument, because we have no information about the relative vertical order of the points of H1

and H2. Choose p to be the lowest point in S that belongs to H2, the upper cell in the middle
column. Since SE(p) contains the heavy cell H3, it has at least n/8 points of S. If NW(p), the



quadrant opposite to SE(p), also has at least n/8 points, we are done. Otherwise, the number
of points in SW(p) must exceed n/8, because NW(p) ∪ SW(p) covers the n/4 points in the first
column. Moreover, if NW(p) has fewer than n/8 points, then there must be more than n/8 points
in NE(p) ∩H2. Therefore, in this case both quadrants SW(p) and NE(p) have n/8 points.

All of the above steps can be performed in linear time, first using a linear-time selection algo-
rithm [1] to find the vertical lines with the properties described in the proof above, and the halving
horizontal line, and finally performing several passes through the points to determine whether one
has a bitonic or monotone configuration and to find the highest and lowest point in the appropriate
cell. Hence one can find a point of depth at least n/8 from an arbitrary point set in O(n) time.
This completes the proof of Theorem 1.
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Figure 2: Proof of Theorem 3 when all points belong to the convex curve shown. For each i = 1, 2, 3, we let
H ′

i be the complement of Hi in column i. Case (a): if SE(p) is empty, then SW(p) contains all points in H2

and NE(p) contains all points in the last column. Case (b): if NE(p) is empty, then NW(p) contains all the
≥ n/4 points of H2, and SE(p) ⊇ H3 ∪H ′

3 contains all the n/4 points of the right column; (c) if NW(p) is
empty, then the situation is symmetric; and (d) if SW(p) is empty, then NW(p) contains all the n/4 points
in the left column and SE(p) contains all the n/2 points in the bottom row.

Now we prove Theorem 3. We use the same configurations as for Theorem 1. (See Figure 2.) We
want to use the assumption that every point p ∈ S is “exposed,” that is, one of the four quadrants
determined by p is “empty.”

We first prove Theorem 3 for bitonic configurations. As in the proof of Theorem 1, let p ∈ S



be the highest point in H2. Observe that neither NE(p) nor NW(p) can be empty since each of
them contains a heavy cell (H1 or H3). Suppose without loss of generality that SE(p) is empty (see
Figure 2(a)). Then p is not only the highest, but also the rightmost point in its cell. Hence, SW(p)
contains all at least n/4 points in H2, while NE(p) contains all n/4 elements of the last column.

It remains to establish Theorem 3 for monotone configurations. Again, let p be the lowest
element of S in H2. Now one of the four quadrants at p must be empty. Observe that SE(p)
covers the heavy cell H3, so it is not empty. If NE(p) is empty, then NW (p) contains all the at
least n/4 points in H2, and SE(p) contains all the n/4 points of S in the third column, so we are
done (Figure 2(b)). By symmetry, if NW (p) is empty, both NE(p) and SW(p) contain at least n/4
points (Figure 2(c)). Finally, if SW (p) is empty, then NW (p) contains all the n/4 points of S in
the first column, and SE(p) contains all the n/2 points of S in the second row, so we are also done
in this case (Figure 2(d)). The running time analysis for finding such a point p of depth at least
n/4 is the same as for Theorem 1. This completes the proof of Theorem 3.

3 Proof of Theorem 2

Let ε be a small positive number, let θ be the counterclockwise rotation by π
2 about the origin, and

let S1 denote the set consisting of the following four points:

T := (−2ε, 1), L := (−1,−2ε), B := (2ε,−1), R := (1, 2ε).

Setting T1 = {T}, L1 = {L}, B1 = {B}, R1 = {R}, we have S1 = T1 ∪ L1 ∪ B1 ∪ R1. Now
let k > 1, and suppose that Tk−1, Lk−1, Bk−1, Rk−1, and Sk−1 = Tk−1 ∪ Lk−1 ∪ Bk−1 ∪ Rk−1 have
already been defined. Let

Tk := Tk−1 ⊕ (εk∆),
Lk := Lk−1 ⊕ (εkθ(∆)),
Bk := Bk−1 ⊕ (εkθ2(∆)),
Rk := Rk−1 ⊕ (εkθ3(∆)),

where ∆ = {L,B,R} and ⊕ stands for the Minkowski sum. Finally, define Sk := Tk∪Lk∪Bk∪Rk.
See Figure 3.

Obviously, we have |Sk| = 4 · 3k−1, and the set Sk is invariant under the rotation θ.
Clearly, opp(p, S1) = 1 holds for every p ∈ S1. It is easy to show by induction on k that

|NW(p) ∩ Tk| ≤
3k−1 + 1

2
,

for every p ∈ Tk. For k = 1 there is nothing to prove. Let k > 1, and suppose that we have
already verified the statement for k− 1. Write p ∈ Tk in the form q⊕ (εkr), for some q ∈ Tk−1 and
r ∈ ∆. Using the induction hypothesis, we obtain that NW(q), and hence also NW(p), contains
at most 3k−2+1

2 − 1 points of Tk−1 in its interior, each giving rise to precisely three points of Tk.
In addition, by the construction of ∆, the quadrant NW(p) contains at most two elements of the
triple {q ⊕ (εkr) | r ∈ ∆}. That is, we have

|NW(p) ∩ Tk| ≤ 3
(

3k−2 + 1
2

− 1
)

+ 2 =
3k−1 + 1

2
,



S1 S2

T1

R1

B1

L1

T2

R2

B2

L2

Figure 3: The construction for the proof of Theorem 2. The set S1 of four points (right), and the
set S2 of 12 points has opposite-quadrant depth 2, shown with a pair of opposite quadrants with 2
and 5 points, respectively.

as required. Analogously, we obtain

|NE(p) ∩ Tk| ≤
3k−1 + 1

2
,

for every p ∈ Tk, because NE(p) also contains at most two elements of the triple {q⊕(εkr) | r ∈ ∆}.
These two bounds imply that

opp(p, Sk) ≤
3k−1 + 1

2
=
|Sk|+ 4

8
,

for every k ≥ 1 and p ∈ Tk. The easy verification of the fact that equality can be attained here
is left to the reader. Since the construction is symmetric under the rotation theta, we obtain that
the same bound is true for every p ∈ Sk. This completes the proof of Theorem 2.

4 Concluding remarks

The notion of opposite-quadrant depth arose in connection with conflict-free coloring problems [4,5].
Take n points in the plane in general position and connect two of them by an edge if the smallest
axis-parallel rectangle containing them covers no other point of the set. Is it true that this graph
contains a large independent set?

Let f(n) denote the size of the largest independent set whose existence can always be guaranteed
and suppose for a moment that there exists a point p whose opposite-quadrant depth is n/4.
That is, NW(p) and SE(p), say, both contain at least n/4 points. The point p guarantees that
no pair of points lying in opposite quadrants are connected by an edge. Thus, after recursively
finding independents sets in the subgraphs induced by NW(p) and SE(p), their union is always
an independent set in the whole graph. Thus, we would have f(n) ≥ 2f(n/4) − 1, implying that
f(n) = Ω(

√
n). Unfortunately, Theorem 1 yields only f(n) = Ω(n1/3), and, by Theorem 2, this

method cannot lead to a better bound. Nevertheless, by an easy application of a lemma of Erdős
and Szekeres [3], we obtain f(n) = Ω(

√
n), and this bound can be slightly improved [9]. It is not

known whether f(n) = o(n).



The natural extension of opposite-quadrant depth to opposite-orthant depth in three dimensions
seems to lead to interesting questions. Curiously, the opposite-orthant depth of the intersection
point of three halving planes can be zero. For instance, place n/4 points in small neighborhoods
of the points (1, 1, 1), (1,−1,−1), (−1, 1,−1) and (−1,−1, 1). However, it is not hard to see that
any set of n points in three-dimensional space has an element of opposite-orthant depth at least
cn, where c > 0 is an appropriate constant. Indeed, it follows by the repeated application of the
lemma of Erdős and Szekeres [3] mentioned earlier that any 9-tuple of points in three-dimensional
space contains a triple (p, q, r) such that p and r belong to opposite orthants with respect to q.
Clearly, the number of distinct triples that can be obtained in this way is at least(

n
9

)(
n−3

6

) =

(
n
3

)(
9
3

) .

Therefore, there exists a point q∗ which plays the role of the “middle” element in at least

1
n
·
(
n
3

)(
9
3

)
such triples. At least one quarter of these triples have the same type, in the sense that the other
two elements belong to the same pair of opposite orthants. That is, the opposite-orthant depth of
q∗ is at least

1
4n2

·
(
n
3

)(
9
3

) = Ω(n),

as required. The same argument works in higher dimensions. For similar results, consult [8].
An alternate extension of opp(p, S) to three dimensions is maxσ,τ min(|S ∩ σ|, |S ∩ τ |), over all

pairs σ, τ of opposite quadrants determined by a pair of axis-aligned planes. There are now six
pairs of opposite quadrants. With this definition, all planar lower bounds remain valid in three
dimensions, but they are not necessarily tight.
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