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Abstract

The pre-coloring extension problem consists, given a graph G and
a subset of nodes to which some colors are already assigned, in finding
a coloring of G with the minimum number of colors which respects
the pre-coloring assignment. This can be reduced to the usual coloring
problem on a certain contracted graph. We prove that pre-coloring
extension is polynomial for complements of Meyniel graphs. We an-
swer a question of Hujter and Tuza by showing that “PrExt perfect”
graphs are exactly the co-Meyniel graphs, which also generalizes re-
sults of Hujter and Tuza and of Hertz. Moreover we show that, given
a co-Meyniel graph, the corresponding contracted graph belongs to a
restricted class of perfect graphs (“co-Artemis” graphs, which are “co-
perfectly contractile” graphs), whose perfectness is easier to establish
than the strong perfect graph theorem. However, the polynomiality of
our algorithm still depends on the ellipsoid method for coloring perfect
graphs.

1 Introduction

Often in applied optimization, one faces difficulty in the modelling process
because of the need to express some constraints that are not extensively
studied theoretically. One type of such constraints is that the organization
of the system is partially fixed a priori, for technical, historical or social
reasons. In terms of mathematical programming, this can be interpreted as
fixing the value of some decision variables before the optimization process.
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Although these prerequirements cause the size of the problem to drop, they
may alterate the structural properties of the problem in such a way that its
complexity increases from polynomial to NP-hard. The Pre-Coloring exten-
sion problem, also called PrExt, is a good illustration of this phenomenon.

For an integer k, a k-coloring of the vertices of a graph G is the assignment
of one element of {1, 2, . . . , k} (a color) to each vertex of G so that any
two adjacent vertices receive different colors. Since each color class induces
a stable set of G, a coloring can also be seen as a partition of V (G) into
stable sets. The smallest k such that G admits a k-coloring is the chromatic
number of G, denoted by χ(G). A pre-coloring of G is a coloring of the
vertices of an induced subgraph of G, that is, a collection Q = {C1, . . . , Cm}
of pairwise disjoint stable sets of G. We say that a k-coloring {S1, . . . , Sk}
of G extends Q if for each j = 1, . . . ,m we have Cj ⊆ Sj . The problem
PrExt can be defined as follows:

Input: A graph G, an integer k, and a pre-coloring Q of G using
only colors from {1, . . . , k}.

Question: Is there a k-coloring of G that extends Q ?

PrExt is a generalization of coloring (which consists in taking Q = ∅), and
it is more difficult than coloring since PrExt is NP-complete even when
restricted to bipartite graphs [5, 10], to interval graphs [4] or to permutation
graphs [12]. On the other hand, polynomial cases of PrExt have been found,
using several approaches, surveyed in [20].

Given a pre-coloring Q = {C1, . . . , Cm} of G, we can define a graph G/Q
as follows. Contract each Cj into one vertex cj , with edges between cj and
every vertex of V (G)\ (C1 ∪ · · · ∪Cm) that has at least one neighbour in Cj .
Also add an edge between any two cj ’s. The following lemma, whose proof
is obvious, shows how PrExt reduces to coloring via contraction:

Lemma 1 For any graph G, and any pre-coloring Q of G, the set of pre-
coloring extensions of Q is in one-to-one correspondence with the set of
colorings of G/Q. In particular, the minimum number of colors needed to
extend Q is equal to χ(G/Q). ✷

Lemma 1 shows that if we are able to solve the coloring problem for G/Q
then we are also able to solve PrExt for G. This paper attempts to give some
insight on how this translation works in general and to show in particular
how it applies to perfect graphs. The latter point is summarized in the
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following two theorems, which are the central results of this paper. Before
presenting them we need some more definitions. A cycle of length p in a
graph G is a sequence of p distinct vertices v1, . . . , vp of G such that vivi+1

is an edge for each i modulo p. A chord of the cycle is an edge vivj such that
|j − i| ≥ 2 mod p. If the cycle has length at least 4 and is chordless, then
it is also called a hole. If the cycle has length at least five and has only one
chord p1p3 (up to shifting indices), then it is called a house. An antihole is
the complementary graph of a hole. A Meyniel graph [16, 17] is a graph in
which every odd cycle has at least two chords. It is easy to see that a graph
G is a Meyniel graph if and only if it contains no odd hole and no house.

A graph G is perfect if, for every induced subgraph H of G, the chromatic
number of H is equal to the maximum clique size in H. Perfect graphs
were introduced in 1960 by Berge, see [2, 18], who also conjectured that a
graph is perfect if and only if it does not contain an odd hole or an odd
antihole of length at least five. This long-standing conjecture was proved
by Chudnovsky, Robertson, Seymour and Thomas [6]. It was known since
[16, 17] that Meyniel graphs are perfect.

A prism is a graph formed by three vertex-disjoint chordless paths P1 = u0-
· · ·-ur, P2 = v0-· · ·-vs, P3 = w0-· · ·-wt with r, s, t ≥ 1, such that the sets
A = {u0, v0, w0} and B = {ur, vs, wt} are cliques and there is no edge
between the Pi’s other than the edges in A and B. Note that a prism with
r = s = t = 1 is an antihole on six vertices. A graph is an Artemis graph
[7] if it contains no odd hole, no antihole on at least five vertices, and no
prism. Artemis graphs are perfect by the Strong Perfect Graph Theorem [6]
but also by a simpler result [15].

Given a graph G, a co-coloring of G is a partition of V (G) into cliques of
G. For our purpose it will be more convenient to talk about co-colorings
than colorings. Obviously a co-coloring of G is a coloring of G, and all the
statements in this paper can be translated back and forth from co-colorings
to colorings by taking complementary graphs and complementary classes of
graphs.

Let Q = {C1, . . . , Cm} be a collection of pairwise disjoint cliques of G. Note
that Q is a pre-coloring of G; so Q will be called a pre-co-coloring of G. We
denote by GQ the graph obtained by the operation of co-contraction defined
as follows. Each element Cj of Q is contracted into one vertex cj . A vertex
of G \ (C1 ∪ · · · ∪Cm) is adjacent to cj in GQ if and only if it is adjacent in
G to every vertex of Cj; and there is no edge between any two cj ’s. Clearly,
GQ is the complementary graph of G/Q.

3



Theorem 1 The co-contraction GQ of G is a perfect graph for every pre-
co-coloring Q if and only if G is a Meyniel graph.

Theorem 2 If G is a Meyniel graph and Q is any pre-co-coloring of G,
then the co-contracted graph GQ is an Artemis graph.

Theorem 1 has a nice algorithmic consequence:

Corollary 1 PrExt is polynomial for co-Meyniel graphs.

Proof. PrExt on co-Meyniel graphs is equivalent to co-PrExt on Meyniel
graphs. Given a Meyniel graphG and a co-coloring Q ofG, the co-contracted
graph GQ is perfect by Theorem 1. One can use a polynomial-time algorithm
[8, 19] to find an optimum co-coloring for GQ. From this co-coloring, using
Lemma 1, one deduces an optimal pre-co-coloring extension of Q for G. ✷

Corollary 1 contains and unifies several previously known cases of polynomi-
ality of PrExt [10, 11, 20]: split graphs, cographs, P5-free bipartite graphs,
complements of bipartite graphs, and the case of a co-Meyniel graph where
every pre-color class has size 1 [9]. The proof of corollary 1 can also be used
to derive a more general algorithmic consequence of Lemma 1. Given a class
of graphs G, let its “co-contraction closure” G+ be the class of all graphs
obtained by the co-contraction of any pre-co-colored graph in G.

Corollary 2 Let G be a class of graph. If co-coloring is polynomial on graph
class G+, then co-PrExt is polynomial on G.

One use of Corollary 2 is to reduce co-PrExt on a given class of graph G
to asking “what is G+” and then solving co-coloring on G+. Unfortunately
this strategy may fail in general, because even if we are able to describe G+,
we do not necessarily know the complexity of co-coloring on G+. It may
be more fruitful to try to translate results from co-coloring to co-PrExt.
For instance, in this paper, we want to apply the ellipsoid method, which
allows to (co)-color perfect graphs in polynomial time [8, 19]. So we can
ask: “what is the class G such that G+ = Perfect ?”. Unfortunately, such
a class does not exist. To clarify this point, let us give another definition.
Given a class G, let G− be the set of graphs G such that GQ belongs to G
for every Q. It is easy to see that every class G of graphs satisfies (G−)+ ⊆
G ⊆ (G+)−. Theorem 1 says that Perfect− = Meyniel, and Theorem 2 says
that Meyniel+ ⊆ Artemis, which is a strict subclass of perfect graphs. It
follows that (Perfect−)+ 6= Perfect, and consequently that there is no class
G of graphs such that G+ = Perfect.
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This discussion suggests a weaker but more directly usable version of corol-
lary 2.

Corollary 3 Let G be a class of graph. If co-coloring is polynomial on graph
class G, then co-PrExt is polynomial on G−.

Let us also note that Theorem 1 answers the question of Hujter and Tuza [11]
to characterize “PrExt-Perfect graphs” which, in our language, was pre-
cisely to characterize the class Perfect−. Indeed, Hujter and Tuza’s so-
called “core condition” turns out to be equivalent to the clique condition
χ(G/Q) ≥ ω(G/Q). They called a graph G “PrExt-perfect” if both G/Q
is perfect for every Q and the core condition is sufficient for extendibility.
A consequence of our Lemma 1 is that this second condition is redundant,
because perfection implies sufficiency of the clique condition in G/Q. Hence
their PrExt-perfect graphs coincide with Perfect−.

2 Proof of Theorems 1 and 2

Throughout this section, G is a graph and Q is a pre-co-coloring of G.

One way in Theorem 1 (namely, Perfect− ⊆ Meyniel) is easy:

Lemma 2 If the co-contracted graph GQ is perfect for all pre-co-coloring Q
of G, then G is Meyniel.

Proof. If G contains an odd hole, then the graph G∅ contains this hole. If
G contains a house with the chord xy and G contains no odd hole, then
the house has odd length and the co-contracted graph G{{x},{y}} contains
an odd hole. So G must be a Meyniel graph for GQ to be perfect for every
Q. ✷

The rest of this section is devoted to the study of Meyniel+.

Lemma 3 In a Meyniel graph G, let P = p0-· · ·-pn be a chordless path and
x be a vertex of V (G)\V (P ) which sees p0 and pn. Then either x sees every
vertex of P , or n is even and N(x) ∩ V (P ) ⊆ {p2i | i = 0, . . . , n/2}.

Proof. Call segment any subpath of length at least 1 of P whose two endver-
tices see x and whose interior vertices do not. Since p0 and pn see x, path P
is partitioned into its segments. Let ph-· · ·-pj be any segment with j−h ≥ 2.
Then x, ph, . . . , pj induce a hole, so j − h is even. Thus every segment has
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length either even or equal to 1. Suppose that there is a segment of length
1 and a segment of even length. Then, there are consecutive such segments,
that is, up to symmetry, there are integers 0 < h < j ≤ n such that ph−1-ph
is a segment of length 1 and ph-· · ·-pj is a segment of even length; but then
x, ph−1, ph, . . . , pj induce a house, a contradiction. Thus either all segments
have length 1 (i.e., x sees every vertex of P ), or they all have even length,
and the lemma holds. ✷

Lemma 4 In a Meyniel graph G, let H be an even hole and x be a vertex
of V (G) \ V (H) that sees two consecutive vertices of H. Then x sees either
all vertices of H or exactly three consecutive vertices of H.

Proof. Let x1, . . . , xn be the vertices of H ordered cyclically. Suppose that
x sees x1 and x2 but not all vertices of H, and let xi be a vertex of H that
is not seen by x. Suppose that x sees a vertex xj with j /∈ {1, 2, 3, n}. By
symmetry we can assume that i < j. Then either x1-· · ·-xj or x2-· · ·-xj is
an odd chordless path, and in either case x sees the two endvertices and not
all vertices of that path, a contradiction to Lemma 3. So N(x) ∩ V (H) ⊆
{x1, x2, x3, xn}. If x sees none of x3, xn, then V (H) ∪ {x} induces a house,
a contradiction. If x sees both x3, xn, then x, x3, . . . , xn induce an odd hole,
a contradiction. So x sees exactly one of x3, xn, and the lemma holds. ✷

Lemma 5 In a Meyniel graph G, let Q be a clique, P = p0-· · ·-pn be a
chordless path in G \ Q, and z be a vertex not in Q ∪ V (P ). Suppose that
z and p0 see all vertices of Q, that z does not see p1, and that some vertex
q ∈ Q sees p0 and pn and not p1. Then pn sees all vertices of Q.

Proof. We prove this lemma by induction on n. Suppose that some vertex
q′ ∈ Q does not see pn. By Lemma 3 applied to P and q, since q sees p0, pn
and not p1, path P has even length andN(q)∩V (P ) ⊆ {p2i | i = 1, . . . , n/2}.
Let j be the largest integer such that q sees pj and j < n. Since j is even,
pj , . . . , pn, q induce an even hole C. Suppose that j = 0. Then q′ sees q, p0
on C and not pn, so Lemma 4 implies that q′ sees p1 and none of p2, . . . , pn.
Call C ′ the even hole induced by (V (C) \ p0) ∪ {q′}. Vertex z sees q, q′ of
C ′ and not p1, so Lemma 4 implies that z sees pn and none of p1, . . . , pn−1.
But then V (C) ∪ {z} induces a house, a contradiction. So j ≥ 2. By the
induction hypothesis, pj sees all vertices of Q. Then q′ sees q, pj on C and
not pn, so Lemma 4 implies that q′ sees pj+1 and none of pj+2, . . . , pn. But
then p0, q, q

′, pj+1, . . . , pn induce a house, a contradiction. ✷
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Lemma 6 In a Meyniel graph G, let Q be a clique, X be a connected set of
vertices of G\Q, and z be a vertex not in Q∪X. Suppose that z sees all the
vertices of Q and none of X, and that each vertex of X has a non-neighbour
in Q. Then some vertex of Q has no neighbour in X.

Proof. We prove the lemma by induction on the size of X. If |X| = 1 there
is nothing to prove, so assume |X| ≥ 2. Let x, x′ be two distinct vertices
of X such that X \ {x} and X \ {x′} are connected (for example let x, x′

be two leaves of a spanning tree of X). By the induction hypothesis, there
are vertices q, q′ of Q such that q has no neighbour in X \ {x} and q′ has
no neighbour in X \ {x′}. If either q does not see x or q′ does not see x′,
then the lemma holds, so suppose that q sees x and q′ sees x′. Let P be a
shortest path from x to x′ in X. Then either V (P )∪ {q, q′} induces an odd
hole or V (P ) ∪ {q, q′, z} induces a house, a contradiction. ✷

Lemma 7 Let G be a Meyniel graph and Q be a precocoloring of G. Then
the cocontracted graph GQ contains no antihole of size at least 6.

Proof. Suppose that GQ contains an antihole A of size at least 6. Since
the cliques of Q are cocontracted into a stable set, there are at most two
vertices in A that result from the cocontraction of a clique and if there are
two such vertices they are consecutive in the cyclic ordering of A. If there
are five consecutive vertices of A that do not result from the cocontraction
of a clique, then these five vertices form a house of G, a contradiction. So
there are no such five vertices, which implies that A is of size six and has
exactly two cocontracted vertices. Let x1, . . . , x6 be the vertices of A ordered
cyclically, such that x1, x2 are the cocontracted vertices. Let C1 be the clique
whose cocontraction results in x1. Since x1 and x6 are not adjacent, x6 does
not see all the vertices of C1, so there is a vertex q1 of C1 that does not see
x6 in G. Then q1, x3, x4, x5, x6 induce a house in G, a contradiction. ✷

Lemma 8 Let G be a Meyniel graph and Q be a precocoloring of G. Then
the cocontracted graph GQ contains no odd hole.

Proof. We prove the lemma by induction on m = |Q|. If m = 0, then
GQ = G and the lemma holds. So assume m > 0 and let Q = {C1, . . . , Cm}.
Suppose that GQ contains an odd hole H. Let x1, . . . , xn be the vertices of
H ordered cyclically. For each j = 1, . . . ,m, we may assume that the vertex
that results from the cocontraction of Cj lies in H, for otherwise H is an
odd hole in GQ \ {Cj}, which contradicts the induction hypothesis. So let
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us call xij the vertex of H that results from the cocontraction of Cj, and
assume without loss of generality that 1 < i1 < i2 < · · · < im ≤ n.

Suppose that m = 1. We may assume that i1 = 1. Since x3 and x1 are
not adjacent in GQ, x3 does not see all vertices of C1 in G, so there is a
vertex q1 of C1 that does not see x3 in G. Then the path P = x2-· · ·-xn is
chordless and odd, and q1 sees both endvertices of P and misses vertex x3
of P , a contradiction to Lemma 3. Therefore m ≥ 2.

The cocontracted vertices xi1 , . . . , xim form a stable set in H. So for all j,
we have ij+1 − ij ≥ 2. Since n is odd and m ≥ 2, there exists j such that
ij+1 − ij is odd (and so ij+1 − ij ≥ 3). We can assume without loss of
generality that i2 − i1 is odd and i1 = 1 (so i2 ≥ 4). Let R be the odd path
x2-· · ·-xi2−1.

Since x3 and x1 are not adjacent in GQ, there is a vertex q1 of C1 that does
not see x3 in G. Likewise, there is a vertex q2 of C2 that does not see xi2−2

in G. Moreover, if m ≥ 3, we can apply Lemma 6 to the clique Cj, the
connected set R and xij−1, which implies that:

For j = 3, . . . ,m, there is a vertex qj ∈ Cj that sees no vertex of R. (1)

Now we select vertices y1, . . . , yn of G as follows. For k = 1, . . . , n, if there
exists j such that ij = k, let yk = qj; else let yk = xk. The selected vertices
y1, . . . , yn form an odd cycle H of G. Note that, in H, vertex y2 is adjacent
only to y1, y3 and possibly to yi2 = q2, by (1).

Every neighbour of q1 in V (H) \ {y2, yn} is in {q2, . . . , qm}. (2)

For let u be a neighbour of q1 in V (H) \ {y2, yn}. Since x2 and xi2 are
not adjacent in GQ, there is a vertex q′2 of C2 that does not see y2 in G.
The subgraph of G induced by V (H) ∪ {q′2} \ {y1, yn, q2} is connected, so
it contains a shortest path U from y2 to u. Since y3 is the only neighbour
of y2 in that subgraph, y3 lies on U as the neighbour of y2. Now Lemma 5
can be applied to C1, U and yn, which implies that u sees all of C1. Then
u must be in {q2, . . . , qm} for otherwise q1 and u would be adjacent in GQ.
So (2) holds. Likewise:

Every neighbour of q2 in V (H) \ {yi2−1, yi2+1} is in {q1, q3, . . . , qm}. (3)

Now each of y2, . . . , yi2−1 has degree 2 in H.

Let us color blue some vertices of the path H \ x1 = x2-· · ·-xn of GQ as
follows. Vertices x2 and xn are colored blue. For j = 2, . . . ,m, vertex
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xij is colored blue if and only if all vertices of the corresponding clique
Cj see q1. All other vertices of H are uncolored. Call blue segment any
subpath of length at least 1 of H \ x1 whose two endvertices are blue and
whose interior vertices are uncolored. Since H \ x1 has odd length and
its endvertices are blue, it has an odd blue segment. Let xh-· · ·-xi be any
odd blue segment, with 2 ≤ h < i ≤ n. Suppose that i − h ≥ 3. Then (2)
implies that q1, xh, xh+1, . . . , xi−1, xi induce an odd hole in GQ\{C1}, which
contradicts the induction hypothesis on |Q|. So we must have i − h = 1.
Since ij+1 − ij ≥ 2 for all j and i2 ≥ 4, this is possible only if h = n − 1.
This implies that xn−1-xn is the only odd blue segment, and that every blue
vertex xk different from xn has even k.

Likewise, we color red some vertices of the path H \ xi2 of GQ as follows.
Vertices xi2−1 and xi2+1 are colored red. For j = 1, 2, . . . ,m and j 6= 2,
vertex xij is colored red if and only if all vertices of the corresponding clique
Cj see q2. Call red segment any subpath of length at least 1 of H\xi2 whose
two endvertices are red and whose interior vertices are not red. Just like
in the preceding paragraph, we obtain that xi2+1-xi2+2 is the only odd red
segment, and that every red vertex xl different from xi2−1 and xi2+1 has
either even l or l = 1.

If i2 = n−1, then m = 2 and V (R)∪{q1, q2, xn} induces an odd hole (if q1, q2
are not adjacent) or a house (if q1, q2 are adjacent) in G, a contradiction. So
suppose i2 ≤ n− 3. Since xi2+2 is red and xn−1 is blue, there is a subpath
xk-· · ·-xl of xi2+2-· · ·-xn−1 such that xk is red, xl is blue, and no interior
vertex of xk-· · ·-xl is colored. By the preceding paragraphs, both k, l are
even. If k = l, then (2) implies that there is a clique Cj such that k = ij ,
and then V (R) ∪ {q1, q2, qj} induces an odd hole (if q1, q2 are not adjacent)
or a house (if q1, q2 are adjacent) in G, a contradiction. So k 6= l. If q1, q2
are adjacent, then (2) and (3) imply that {q1, xk, . . . , xl, q2} induces an odd
hole in GQ \{C1, C2}, a contradiction to the induction hypothesis on |Q|. If
q1, q2 are not adjacent then V (R) ∪ {q1, xk, . . . , xl, q2} induces an odd hole
in GQ \ {C1, C2}, again a contradiction. This completes the proof of the
lemma. ✷

Lemma 9 Let G be a Meyniel graph and Q be a precocoloring of G. Then
the cocontracted graph GQ contains no prism.

Proof. Suppose that GQ contains a prism K formed by paths P1 = u0-
· · ·-ur, P2 = v0-· · ·-vs, P3 = w0-· · ·-wt, with r, s, t ≥ 1, and with triangles
A = {u0, v0, w0} and B = {ur, vs, wt}. By Lemma 7, K is not an antihole
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on 6 vertices, so we can assume that one of r, s, t is not equal to 1. Let
Q = {C1, . . . , Cm}. We have m ≥ 1 since a Meyniel graph contains no prism,
because a prism contains a house. For each j = 1, . . . ,m, call cj the vertex
of GQ that results from the cocontraction of Cj , and let C = {c1, . . . , cm}.
By Lemma 8, GQ contains no odd hole, thus r, s, t have the same parity.
Note that V (K) \C ⊂ V (G), and, since C is a stable set, N(cj) ⊂ V (G) for
each j = 1, . . . ,m. We claim that:

|A ∩ C| = 1 and |B ∩C| = 1. (4)

Note that |A ∩ C| ≤ 1 and |B ∩ C| ≤ 1 since A,B are cliques and C is a
stable set of GQ. Now, suppose up to symmetry that A ∩ C = ∅. For each
j = 1, . . . ,m, we can apply Lemma 6 in G to the clique Cj , the connected
set A \N(cj), and some neighbour z of cj in K (more precisely: if cj = ui
with i < r then take z = ci+1; if cj = ur and either s ≥ 2 or t ≥ 2, take
z = vs or z = wt respectively; if cj = ur and s = t = 1, then r ≥ 3 and take
z = ur−1; a similar such z exists if cj ∈ V (P2) ∪ V (P3)). Lemma 6 implies
that there is a vertex qj ∈ Cj that sees no vertex of A \ N(cj). Let P be
the subgraph of G induced by (V (K) \ C) ∪ {q1, . . . , qm}. Let u′1 be the
neighbour of u0 in P \ {v0, w0} (so u′1 is either u1 or some qj), and similarly
let v′1 be the neighbour of v0 in P \ {u0, w0}. Let R be a shortest path from
u′1 to v′1 in P \ {u0, v0, w0}. Then V (R)∪ {u0, v0, w0} induces a house in G,
a contradiction. So (4) holds.

By (4) and up to symmetry we may assume that u0 = c1, and so v0, w0 are
vertices of G. As above, by Lemma 6, for j = 2, . . . ,m, we can select a
vertex qj in Cj that misses all of {v0, w0} \N(cj). We claim that:

Vertices v1 and w1 of GQ are in C. (5)

For suppose, up to symmetry, that v1 is not in C. Then we can select a
vertex q′1 ∈ C1 that misses v1. Let P be the subgraph of G induced by
(V (K) \ C) ∪ {q′1, q2, . . . , qm}. Let R be a shortest path from q′1 to v1 in
P \ {v0, w0}. Then R has length at least 2 and V (R) ∪ {v0, w0} induces a
house in G, a contradiction. So (5) holds.

By (5), we may assume that v1 = c2 and w1 = c3. Recall that q2 is a vertex
of C2 that misses w0, and q3 is a vertex of C3 that misses v0. Since v1 and
w1 are not adjacent, the lengths s, t of P2, P3 cannot both be equal to 1;
thus let us assume up to symmetry that s ≥ 2. We claim that:

Vertex q2 is adjacent to all of C1. (6)
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For suppose that q2 is not adjacent to some vertex q′′1 ∈ C1. Let P be
the subgraph of G induced by (V (K) \ C) ∪ {q′′1 , q2, . . . , qm}. Let R be a
shortest path from q′′1 to q2 in P \ {v0, w0}. Then R has length at least 2
and V (R) ∪ {v0, w0} induces a house in G, a contradiction. So (6) holds.

Now let q1 be any vertex of C1, and let P be the subgraph of G induced by
(V (K) \ C) ∪ {q1, . . . , qm}. We claim that:

Every neighbour of q2 in V (P ) \ {v0, v2} is in {q1, . . . , qm}. (7)

For let x be a neighbour of q2 in V (P ) \ {v0, v2}. We can suppose that
x 6= q1. The subgraph P \ {q1, q2, v2} is connected, so it contains a shortest
path X from v0 to x. Since v0 has no neighbour in V (P ) \ {q1, q2, w0}, w0

lies on X as the neighbour of v0. Now Lemma 5 can be applied to C2, X and
v2, which implies that x sees all of C2. This means that x is in {q1, . . . , qm}
for otherwise v1 and x would be adjacent in GQ. So (7) holds.

In GQ, let us mark some vertices of K \ v1 as follows. Vertices v0 and
v2 are marked. For j = 1, . . . ,m and j 6= 2, vertex cj is marked if and
only if in G vertex q2 sees all vertices of the corresponding clique Cj in G.
All other vertices of K are unmarked. Call segment any subpath of length
at least 1 of K \ v1 whose two endvertices are marked and whose interior
vertices are unmarked. Suppose there exists an odd segment X of length
≥ 3. Then V (X) ∪ {q2} induces an odd hole in GQ\{C2}, which contradicts
Lemma 8. So every segment has length even or equal to 1. Note that
V (P1) ∪ V (P2) \ {v0, v1} induces a chordless path, of odd length (because
r, s have the same parity), and its two extremities are marked; so this path
contains an odd segment, which as noted above has length 1. Call y the
neighbour of v2 on that path. Note that we have either s ≥ 3 and y = v3 or
s = 2 and y = ur. By (7) and the fact that vertices of C are pairwise non-
adjacent, the only possible segment of length one is v2-y, so y is marked, and
(7) implies y ∈ C. Suppose that s ≥ 3. Then V (P3)∪V (P2)\{v1, v2} induces
a chordless odd path, whose two extremities are marked, so it contains a
segment of length 1. The only possible such segment is v0-w0, so w0 is
marked, and (7) implies w0 ∈ C, which contradicts (4). So s = 2 and
y = ur. Now, since B contains ur it cannot contain another vertex of C, so
wt is not in C, which by (5) implies t ≥ 2. Now symmetry between s and t is
restored, and as above we can prove that t = 2 and q3 is adjacent to ur. But
then q2, v0, w0, q3, ur induce an odd hole or a house in G, a contradiction.
✷

Now Lemmas 7, 8 and 9 imply that GQ is an Artemis graph, which proves
Theorem 2. Theorem 2 and Lemma 2 imply Theorem 1.
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3 Concluding remarks

This is still not the end of the story. The general method is as follows.
Assume that we want to apply a co-coloring algorithm A whose validity
is proved on a class G. Then we can use A for the problem co-PrExt on
G−. Since we know that (G−)+ ⊆ G only, we can wonder what is the class
(G−)+, because there might exist algorithms that are better than A to co-
color graphs in (G−)+ (or for solving co-PrExt on G−). Here we proved
that Perfect− = Meyniel and that (Perfect−)+ = Meyniel+ ⊆ Artemis (

Perfect. Improving from Perfect to Artemis (in the last strict inclusion) has
two interesting aspects: First, perfection of Artemis graphs [15] is easier
to establish than perfection of Berge graphs. Second, since co-PrExt is
polynomial on Meyniel graphs with the ellipsoid method, the question arises
of finding a combinatorial algorithm for this question. However we do not
have an answer for this and we leave it as an open problem.

The scope of applications of Lemma 1 might not be completely exploited
yet: for instance the computational complexity equivalence may work in
any computational class C (APX, NP, . . . ), provided that the reduction in
the proof of Lemma 1 preserves the properties of C. For instance, it is an
AP -reduction (see [1] for the background concerning approximability, both
in general and concerning coloring problems); so approximability results can
be transposed from coloring on G to PrExt on G−. An extension could be the
converse of Corollary 2; this would allow for a translation of inaproximability
results from coloring to precoloring extension. The difficulty here is, given a
graph class G and a graph G (not necessarily in G+), to find a graph H ∈ G
and a precoloring Q of H such that H/Q = G or to certify that there is no
such pair H,Q. The complexity of this problem is open, even if we restrict G
to be Meyniel (note here that Meyniel+ is not even well characterized yet).
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