On path factors of (3, 4)-biregular bigraphs

Armen S. Asratian*, Carl Johan Casselgren ${ }^{\dagger}$

Abstract

A (3,4)-biregular bigraph G is a bipartite graph where all vertices in one part have degree 3 and all vertices in the other part have degree 4. A path factor of G is a spanning subgraph whose components are nontrivial paths. We prove that a simple (3, 4)-biregular bigraph always has a path factor such that the endpoints of each path have degree three. Moreover we suggest a polynomial algorithm for the construction of such a path factor.

Keywords: path factor, biregular bigraph, interval edge coloring

1 Introduction

We use [9] and [7] for terminology and notation not defined here and consider finite loop-free graphs only. $V(G)$ and $E(G)$ denote the sets of vertices and edges of a graph G, respectively. A proper edge coloring of a graph G with colors $1,2,3, \ldots$ is a mapping $f: E(G) \rightarrow\{1,2,3, \ldots\}$ such that $f\left(e_{1}\right) \neq f\left(e_{2}\right)$ for every pair of adjacent edges e_{1} and e_{2}. A bipartite graph with bipartition (Y, X) is called an (a, b)-biregular bigraph if every vertex in Y has degree a and every vertex in X has degree b. A path factor of a graph G is a spanning subgraph whose components are nontrivial paths. Some results on different types of path factors can be found in [1, 2, 17, 18, 20, 23]. In particular, Ando et al [2] showed that a claw-free graph with minimum degree d has a path factor whose components are paths of length at least d. Kaneko [17] showed that every cubic graph has a path factor such that each component is a path of length 2,3 or 4 . It was shown in [18] that a 2 -connected cubic graph has a path factor whose components are paths of length 2 or 3 .

In this paper we investigate the existence of path factors of (3, 4)-biregular bigraphs such that the endpoints of each path have degree three. Our investigation is motivated by a problem on interval colorings. A proper edge coloring of a graph G with colors $1,2,3, \ldots$ is called an interval (or consecutive) coloring if the colors received by the edges incident with each vertex of G form an interval of integers. The notion of interval colorings was introduced in 1987 by Asratian and Kamalian [5] (available in English as [6]). Generally, it is an $\mathcal{N} \mathcal{P}$-complete problem to determine whether a given bipartite graph has an interval coloring [22]. Nevertheless, trees, regular and

[^0]complete bigraphs [13, 16], doubly convex bigraphs [16], grids [12] and all outerplanar bigraphs [8, 11] have interval colorings. Hansen [13] proved that every ($2, \beta$)-biregular bigraph admits an interval coloring if β is an even integer. A similar result for $(2, \beta)$-biregular bigraphs for odd β was given in [14, 19]. Only a little is known about ($3, \beta$)-biregular bigraphs. It follows from the result of Hanson and Loten [15] that no such a graph has an interval coloring with fewer than $3+b-\operatorname{gcd}(3, b)$ colors, where gcd denotes the greatest common divisor. We showed in [3] that the problem to determine whether a $(3, \beta)$-biregular bigraph has an interval coloring is $\mathcal{N} \mathcal{P}$-complete in the case when 3 divides β.

It is unknown whether all (3,4)-biregular bigraphs have interval colorings. Pyatkin 21] showed that such a graph G has an interval coloring if G has a 3-regular subgraph covering the vertices of degree four. Another sufficient condition for the existence of an interval coloring of a $(3,4)$ biregular bigraph G was obtained in [4, 10]: G admits an interval coloring if it has a path factor where every component is a path of length not exceeding 8 and the endpoints of each path have degree three. It was conjectured in [4] that every simple (3,4)-biregular bigraph has such a path factor. However this seems difficult to prove.

In this note we prove a little weaker result. We show that a simple $(3,4)$-biregular bigraph always has a path factor such that the endpoints of each path have degree three. Moreover, we suggest a polynomial algorithm for the construction of such a path factor.

Note that (3,4)-biregular bigraphs with multiple edges need not have path factors with the required property. For example, consider the graph G formed from three triple-edges by adding a claw; that is, the pairs $x_{i} y_{i}$ have multiplicity three for $i \in\{1,2,3\}$, and there is an additional vertex y_{0} with neighborhood $\left\{x_{1}, x_{2}, x_{3}\right\}$. Clearly, there is no path factor of G such that the endpoints of each path have degree 3 .

2 The result

A pseudo path factor of a (3,4)-biregular bigraph G with bipartition (Y, X) is a subgraph F of G, such that every component of F is a path of even length and $d_{F}(x)=2$ for every $x \in X$. Let $V_{F}=\left\{y \in Y: d_{F}(y)>0\right\}$.

Theorem 1. Every simple (3,4)-biregular bigraph has a pseudo path factor.
Proof. Let G be a simple (3,4)-biregular bigraph with bipartition (Y, X). The algorithm below constructs a sequence of subgraphs $F_{0}, F_{1}, F_{2}, \ldots$ of G, where $V\left(F_{0}\right)=V(G), \emptyset=E\left(F_{0}\right) \subset$ $E\left(F_{1}\right) \subset E\left(F_{2}\right) \subset \ldots$ and each component of F_{j} is a path, for every $j \geq 0$. At each step $i \geq 1$ the algorithm constructs F_{i} by adding to F_{i-1} one or two edges until the condition $d_{F_{j}}(x)=2$ holds for all $x \in X$, where $j \geq 1$. Then $F=F_{j}$ is a pseudo path factor of G. Parallelly the algorithm constructs a sequence of subgraphs $U_{0}, U_{1}, U_{2}, \ldots$ of G, where $V\left(U_{0}\right)=V(G)$, $\emptyset=E\left(U_{0}\right) \subset E\left(U_{1}\right) \subset E\left(U_{2}\right) \subset \cdots \subset E\left(U_{j}\right)$. The edges of each U_{i} will not be in the final pseudo
path factor F. The algorithm is based on Properties 1-4. During the algorithm the vertices in the set Y are considered to be unscanned or scanned. Initially all vertices in Y are unscanned. At the beginning of each step $i \geq 1$ we have a current vertex x_{i}. The algorithm selects an unscanned vertex y_{i}, adjacent to x_{i}, and determines which edges incident with y_{i} will be in F_{i} and which ones in U_{i}. If $d_{F_{i}}(v)=2$ for each $v \in X$, the algorithm stops. Otherwise the algorithm selects a new current vertex and goes to the next step.

Algorithm

Initially $F_{0}=(V(G), \emptyset), U_{0}=(V(G), \emptyset)$ and all vertices in Y are unscanned.
Step 0. Select a vertex $y_{0} \in Y$. Let x_{0}, x_{1}, w be the vertices in X adjacent to y_{0} in G. Put $F_{1}=F_{0}+\left\{w y_{0}, y_{0} x_{0}\right\}$ and $U_{1}=U_{0}+y_{0} x_{1}$. Consider the vertex y_{0} to be scanned. Go to step 1 and consider the vertex x_{1} as the current vertex for step 1 .

Step $i(i \geq 1)$. Suppose that a vertex x_{i} with $d_{F_{i-1}}\left(x_{i}\right) \leq 1$ was selected at step $(i-1)$ as the current vertex. By Property 4 (see below), $d_{U_{i-1}}\left(x_{i}\right) \leq 2$. Therefore there is an edge $x_{i} y_{i}$ with $y_{i} \in Y$ which neither belongs to F_{i-1}, nor to U_{i-1}. Then, by Property 3 , the vertex y_{i} is an unscanned vertex and therefore the subgraph $F_{i-1}+x_{i} y_{i}$ does not contain a cycle. Since $d_{G}\left(y_{i}\right)=3$, the vertex y_{i}, besides x_{i}, is adjacent to two other vertices, $w_{1}^{(i)}$ and $w_{2}^{(i)}$.
Case 1. $d_{F_{i-1}}\left(w_{1}^{(i)}\right)=2=d_{F_{i-1}}\left(w_{2}^{(i)}\right)$.
Put $F_{i}=F_{i-1}+x_{i} y_{i}$ and $U_{i}=U_{i-1}+\left\{y_{i} w_{1}^{(i)}, y_{i} w_{2}^{(i)}\right\}$. Consider the vertex y_{i} to be scanned. If $d_{F_{i}}(v)=2$ for every vertex $v \in X$ then Stop. Otherwise select an arbitrary vertex $x_{i+1} \in X$ with $d_{F_{i}}\left(x_{i+1}\right) \leq 1$, go to step $(i+1)$ and consider x_{i+1} as the current vertex for step $(i+1)$.
Case 2. $d_{F_{i-1}}\left(w_{1}^{(i)}\right)=2$ and $d_{F_{i-1}}\left(w_{2}^{(i)}\right) \leq 1$.
Put $F_{i}=F_{i-1}+x_{i} y_{i}, U_{i}=U_{i-1}+\left\{y_{i} w_{1}^{(i)}, y_{i} w_{2}^{(i)}\right\}$ and consider the vertex y_{i} to be scanned. Furthermore put $x_{i+1}=w_{2}^{(i)}$, go to step $(i+1)$ and consider the vertex x_{i+1} as the current vertex for step $(i+1)$.
Case 3. $d_{F_{i-1}}\left(w_{1}^{(i)}\right) \leq 1$ and $d_{F_{i-1}}\left(w_{2}^{(i)}\right) \leq 1$.
Subcase 3a. $d_{F_{i-1}}\left(w_{1}^{(i)}\right)=0$ or $d_{F_{i-1}}\left(w_{2}^{(i)}\right)=0$.
We assume that $d_{F_{i-1}}\left(w_{1}^{(i)}\right)=0$. Put $F_{i}=F_{i-1}+\left\{x_{i} y_{i}, y_{i} w_{1}^{(i)}\right\}, U_{i}=U_{i-1}+y_{i} w_{2}^{(i)}$ and consider the vertex y_{i} to be scanned. Furthermore put $x_{i+1}=w_{2}^{(i)}$, go to step $(i+1)$ and consider the vertex x_{i+1} as the current vertex for step $(i+1)$.
Subcase 3b. $d_{F_{i-1}}\left(w_{1}^{(i)}\right)=1=d_{F_{i-1}}\left(w_{2}^{(i)}\right)$.
Since y_{i} is an unscanned vertex and $F_{i-1}+x_{i} y_{i}$ does not contain a cycle, the vertex y_{i} is an endvertex of only one path in $F_{i-1}+x_{i} y_{i}$. Then at least one of the graphs $F_{i-1}+\left\{x_{i} y_{i}, y_{i} w_{1}^{(i)}\right\}$ and $F_{i-1}+\left\{x_{i} y_{i}, y_{i} w_{2}^{(i)}\right\}$ does not contain a cycle. Assume, for example, that $F_{i-1}+\left\{x_{i} y_{i}, y_{i} w_{1}^{(i)}\right\}$ does not contain a cycle. Then put $F_{i}=F_{i-1}+\left\{x_{i} y_{i}, y_{i} w_{1}^{(i)}\right\}, U_{i}=U_{i-1}+y_{i} w_{2}^{(i)}$ and consider the vertex y_{i} to be scanned. Furthemore put $x_{i+1}=w_{2}^{(i)}$, go to step $(i+1)$ and consider the vertex x_{i+1} as
the current vertex for step $(i+1)$.
Now we will prove the correctness of the algorithm. At the beginning of step i we have that x_{i} is the current vertex, y_{i} is an unscanned vertex adjacent to x_{i} and $w_{1}^{(i)}, w_{2}^{(i)}$ are the two other vertices adjacent to y_{i}. The following two properties are evident.

Property 1. The algorithm determines which edges incident with y_{i} will be in F_{i} and which edges will be in U_{i}. The vertex y_{i} is then considered to be scanned and the algorithm will never consider y_{i} again.
Property 2. The current vertex x_{i+1} for step $(i+1)$ is selected among the vertices $w_{1}^{(i)}$ and $w_{2}^{(i)}$, except the case $d_{F_{i}}\left(w_{1}^{(i)}\right)=d_{F_{i}}\left(w_{2}^{(i)}\right)=2$ when an arbitrary vertex $x_{i+1} \in X$ with $d_{F_{i}}\left(x_{i+1}\right) \leq 1$ is selected as the current vertex.

Properties 1 and 2 imply the next property:
Property 3. If $x \in X, y \in Y$ and the edge $x y$ neither belongs to F_{i-1}, nor to U_{i-1}, then the vertex y is unscanned at the beginning of step i.

Property 4. If $x \in X$ and $d_{F_{i-1}}(x) \leq 1$ then $d_{U_{i-1}}(x) \leq 2$.
Proof. The statement is evident if $d_{U_{i-1}}(x)=0$. Suppose that $d_{U_{i-1}}(x) \geq 1$ and j is the minimum number such that $j<i$ and an edge incident with x was included in U_{j-1} at step $(j-1)$. Then the statement of Property 4 is evident if $j=i-1$.

Now we consider the case $j<i-1$. Clearly, $d_{F_{j-1}}(x) \leq 1$ because $F_{j-1} \subset F_{i-1}$ and $d_{F_{j-1}}(x) \leq$ $d_{F_{i-1}}(x) \leq 1$. Let $x y_{j-1}$ be the edge included in U_{j-1} at step $(j-1)$. Since $d_{U_{j-1}}(x)=1$ and $d_{F_{j-1}}(x) \leq 1$, there is an edge $x y_{j}$ with $y_{j} \in Y$ which neither belongs to F_{j-1}, nor to U_{j-1}. Then, by Property 3, the vertex y_{j} is an unscanned vertex and therefore the subgraph $F_{j-1}+x y_{j}$ does not contain a cycle. According to the description of the algorithm, the edge $x y_{j}$ will be in any case included in F_{j} at step j, that is, $d_{F_{j}}(x) \geq 1$. Then $d_{F_{k}}(x)=1$ for every $k, j \leq k \leq i-1$, because $F_{j} \subset F_{k} \subset F_{i-1}$ and $1 \leq d_{F_{j}}(x) \leq d_{F_{k}}(x) \leq d_{F_{i-1}}(x) \leq 1$. Now we will show that $d_{U_{k-1}}(x)=1$ for each $k, j \leq k<i-1$. Suppose to the contrary that $d_{U_{k-2}}(x)=1$ and $d_{U_{k-1}}(x)=2$ for some k, $j<k<i-1$, that is, another edge incident with x was included in U_{k-1} at step $(k-1)$. Then the conditions $d_{U_{k-1}}(x)=2$ and $d_{F_{k-1}}(x)=1$ imply that there is an edge $e \neq y_{j} x$ incident with x which neither belongs to F_{k-1}, nor to U_{k-1}. Using a similar argument as above we obtain that the edge e should be included in F_{k} at step k. But then $d_{F_{i-1}}(x) \geq d_{F_{k}}(x)=2$, which contradicts our assumption $d_{F_{i-1}}(x) \leq 1$. Thus $d_{U_{k-1}}(x)=1$ for each $k, j \leq k<i-1$. It is possible that an edge incident with x will be included in U_{i-1} at step $(i-1)$. Therefore $d_{U_{i-1}}(x) \leq 2$.

The description of the algorithm and Properties 1-4 show that the algorithm will stop at step i only when $d_{F_{i}}(x)=2$ for every $x \in X$, that is, when F_{i} is a pseudo path factor of G. The proof of Theorem 1 is complete.

Now we will prove that every pseudo path factor of a $(3,4)$-biregular bigraph G can be transformed into a path factor of G, such that the endpoints of each path have degree 3 .

Lemma 2. Let G be a (3,4)-biregular bigraph with bipartition (Y, X). Then $|X|=3 k$ and $|Y|=4 k$, for some positive integer k.

This is evident because $|E(G)|=4|X|=3|Y|$.
Lemma 3. Let F be a pseudo path factor of a (3,4)-biregular bigraph G with bipartition (Y, X). Then F has a component which is a path of length at least four.

Proof. By Lemma 2 we have that $|X|=3 k$ and $|Y|=4 k$ for some integer k. We also have that $d_{F}(x)=2$ for each vertex $x \in X$. If the length of all paths in F is two, then $|Y| \geq 2|X|=6 k$ which contradicts $|Y|=4 k$. Therefore F has a component which is a path of length at least four.

Theorem 4. Let F be a pseudo path factor of a simple $(3,4)$-biregular bigraph G with bipartition (Y, X). If $V_{F} \neq Y$ and y_{0} is a vertex with $d_{F}\left(y_{0}\right)=0$, then there is a pseudo path factor F^{\prime} with $V_{F^{\prime}}=V_{F} \cup\left\{y_{0}\right\}$, such that no path in F^{\prime} is longer than the longest path in F.

Proof. Let $y_{0} \in Y$ and $d_{F}\left(y_{0}\right)=0$. We will describe an algorithm which will construct a special trail T with origin y_{0}.
Step 1. Select an edge $y_{0} x_{1} \notin E(F)$. Since $d_{F}\left(x_{1}\right)=2$, there are two edges of $F, x_{1} y_{1}$ and $x_{1} u_{1}$, which are incident with x_{1}.
Case 1. $d_{F}\left(y_{1}\right)=2$ or $d_{F}\left(u_{1}\right)=2$.
Suppose, for example, that $d_{F}\left(y_{1}\right)=2$. Then put $T=y_{0} \rightarrow x_{1} \rightarrow y_{1}$ and Stop.
Case 2. $d_{F}\left(y_{1}\right)=1=d_{F}\left(u_{1}\right)$.
Put $T=y_{0} \rightarrow x_{1} \rightarrow y_{1}$ and go to Step 2 .
Step $i(i \geq 1)$. Suppose that we have already constructed a trail $T=y_{0} \rightarrow x_{1} \rightarrow y_{1} \rightarrow \cdots \rightarrow$ $x_{i} \rightarrow y_{i}$ which satisfies the following conditions:
(a) All edges in T are distinct and $y_{j-1} x_{j} \notin E(F), x_{j} y_{j} \in E(F)$ for $j=1, \ldots, i$.
(b) The vertices y_{1}, \ldots, y_{i} are distinct.
(c) A component of F containing the vertex x_{j} is a path of length 2 , for $j=1, \ldots, i$.

Select an edge $e \in E(G) \backslash E(F)$ which is incident with y_{i}. The existence of such an edge follows from the conditions (a), (b) and (c). Moreover, the condition (b) implies that $e \notin T$. Let $e=y_{i} x_{i+1}$. Then $d_{F}\left(x_{i+1}\right)=2$ because F is a pseudo path factor of G. Since $e \notin E(T)$, the conditions (a), (b) and (c) imply that at least one of the edges of F incident with x_{i+1}, does not belong to T.
Case 1. x_{i+1} lies on a component of F which is a path of length two.
Select a vertex y_{i+1} such that $x_{i+1} y_{i+1} \in E(F) \backslash E(T)$, add the edge $x_{i+1} y_{i+1}$ and the vertex y_{i+1} to T and go to step $(i+1)$. Now $T=y_{0} \rightarrow x_{1} \rightarrow y_{1} \rightarrow \cdots \rightarrow x_{i+1} \rightarrow y_{i+1}$.

Case 2. x_{i+1} lies on a component of F which is a path of length at least four.
There is a vertex y_{i+1} such that $x_{i+1} y_{i+1} \in E(F) \backslash E(T)$ and $d_{F}\left(y_{i+1}\right)=2$. Add the edge $x_{i+1} y_{i+1}$ and the vertex y_{i+1} to T and Stop. We have now that $T=y_{0} \rightarrow x_{1} \rightarrow y_{1} \rightarrow \cdots \rightarrow x_{i+1} \rightarrow y_{i+1}$.

By Lemma3, F has a component which is a path of length at least four. Therefore the algorithm will stop after a finite number of steps. Let the trail $T=y_{0} \rightarrow x_{1} \rightarrow y_{1} \rightarrow \cdots \rightarrow x_{i+1} \rightarrow y_{i+1}$, be the result of the algorithm, where $i \geq 0$, the vertex x_{j} lies on a component of F which is a path of length two for each $j \leq i$, the vertex x_{i+1} lies on a component of F which is a path of length at least 4 , and $d_{F}\left(y_{i+1}\right)=2$. We define a new pseudo path factor F^{\prime} by setting $V\left(F^{\prime}\right)=V(F)$ and

$$
E\left(F^{\prime}\right)=\left(E(F) \backslash\left\{x_{j} y_{j}: j=1, \ldots, i, i+1\right\}\right) \cup\left\{y_{j-1} x_{j}: j=1, \ldots, i, i+1\right\} .
$$

Clearly, $V_{F^{\prime}}=V_{F} \cup\left\{y_{0}\right\}$ and the proof of Theorem 4 is complete.
Theorems 1 and 4 imply the following theorem:
Theorem 5. Every simple (3, 4)-biregular bigraph has a path factor such that the endpoints of each path have degree 3.

References

[1] J. Akiyama, M. Kano, Factors and factorizations of graphs- a survey, J. Graph Theory, 9 (1985) 1-42.
[2] K. Ando, Y. Egawa, A. Kaneko, K. Kawarabayashi, H. Matsuba, Path factors in claw-free graphs, Discrete Mathematics 243 (2002) 195-2000
[3] A. S. Asratian and C. J. Casselgren, On interval edge colorings of (α, β)-biregular bipartite graphs, Discrete Math. 307 (2006) 1951-1956.
[4] A. S. Asratian, C. J. Casselgren, J. Vandenbussche and D.B. West, Proper path-factors and interval edge-colorings of $(3,4)$-biregular bigraphs, arXiv:0704.2650v1.
[5] A. S. Asratian and R. R. Kamalian, Interval coloring of the edges of a multigraph (in Russian), Applied mathematics, 5 (1987), 25-34, Erevan University.
[6] A. S. Asratian and R. R. Kamalian, Investigation of interval edge-colorings of graphs, Journal of Combinatorial Theory. Series B 62 (1994), no. 1, 34-43.
[7] A. S. Asratian, T. M. J. Denley, R. Häggkvist, Bipartite graphs and their applications, Cambridge University Press, Cambridge, 1998.
[8] M. A. Axenovich, On interval colorings of planar graphs. Proc. 33rd Southeastern Intl. Conf. Combin., Graph Theory and Computing (Boca Raton, FL, 2002). Congr. Numer. 159 (2002), 77-94.
[9] J. A. Bondy, U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976.
[10] C. J. Casselgren, Some results on interval edge colorings of bipartite graphs, Master's Thesis, Linköping University, Linköping, Sweden, 2005
[11] K. Giaro, M. Kubale, Compact scheduling of zero-one time operations in multi-stage systems, Discrete Appl. Math. 145 (2004) 95-103
[12] K. Giaro, M. Kubale, Consecutive edge-colorings of complete and incomplete Cartesian products of graphs,Congr.Numer.128(1997) 143-149.
[13] H. M. Hansen, Scheduling with minimum waiting periods (in Danish), Master Thesis, Odense University, Odense, Denmark, 1992.
[14] D. Hanson, C. O. M. Loten, B. Toft, On interval colourings of bi-regular bigraphs, Ars Combin. 50 (1998), 23-32.
[15] D. Hanson, C. O. M. Loten, A lower bound for interval colouring bi-regular bigraphs, Bulletin of the ICA 18 (1996), 69-74.
[16] R. R. Kamalian, Interval edge-colorings of graphs, Doctoral thesis, Novosibirsk, 1990.
[17] A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least 2, J. Comb.Theory B 88 (2003)195-218
[18] K. Kawarabayashi, H. Matsuba, Y. Oda, K. Ota, Path factors in cubic graphs, J. Graph Theory, 39 (2002) 188-193.
[19] A.V. Kostochka, Unpublished manuscript, 1995
[20] M.D. Plummer, Graph factors and factorization: 1985-2003: A survey, Discrete Mathematics, 307 (2007) 791-821.
[21] A. V. Pyatkin, Interval coloring of (3,4)-biregular bigraphs having large cubic subgraphs, Journal of Graph Theory 47 (2004), 122-128.
[22] S. V. Sevastjanov, Interval colorability of the edges of a bigraph (in Russian), Metody Diskretnogo Analiza, 50 (1990), 61-72.
[23] H. Wang, Path factors of bipartite graphs J. Graph Theory 18 (1994) 161-167.

[^0]: *Linköping University, Linköping Sweden, arasr@mai.liu.se.
 ${ }^{\dagger}$ Umeå University, Umeå, Sweden, carl-johan.casselgren@math.umu.se.

