On path factors of (3, 4)-biregular bigraphs

Armen S. Asratian^{*}, Carl Johan Casselgren[†]

Abstract. A (3, 4)-biregular bigraph G is a bipartite graph where all vertices in one part have degree 3 and all vertices in the other part have degree 4. A path factor of G is a spanning subgraph whose components are nontrivial paths. We prove that a simple (3, 4)-biregular bigraph always has a path factor such that the endpoints of each path have degree three. Moreover we suggest a polynomial algorithm for the construction of such a path factor.

Keywords: path factor, biregular bigraph, interval edge coloring

1 Introduction

We use [9] and [7] for terminology and notation not defined here and consider finite loop-free graphs only. V(G) and E(G) denote the sets of vertices and edges of a graph G, respectively. A proper edge coloring of a graph G with colors $1, 2, 3, \ldots$ is a mapping $f : E(G) \to \{1, 2, 3, \ldots\}$ such that $f(e_1) \neq f(e_2)$ for every pair of adjacent edges e_1 and e_2 . A bipartite graph with bipartition (Y, X) is called an (a, b)-biregular bigraph if every vertex in Y has degree a and every vertex in Xhas degree b. A path factor of a graph G is a spanning subgraph whose components are nontrivial paths. Some results on different types of path factors can be found in [1, 2, 17, 18, 20, 23]. In particular, Ando et al [2] showed that a claw-free graph with minimum degree d has a path factor whose components are paths of length at least d. Kaneko [17] showed that every cubic graph has a path factor such that each component is a path of length 2, 3 or 4. It was shown in [18] that a 2-connected cubic graph has a path factor whose components are paths of length 2 or 3.

In this paper we investigate the existence of path factors of (3, 4)-biregular bigraphs such that the endpoints of each path have degree three. Our investigation is motivated by a problem on interval colorings. A proper edge coloring of a graph G with colors $1, 2, 3, \ldots$ is called an *interval* (or *consecutive*) coloring if the colors received by the edges incident with each vertex of G form an interval of integers. The notion of interval colorings was introduced in 1987 by Asratian and Kamalian [5] (available in English as [6]). Generally, it is an \mathcal{NP} -complete problem to determine whether a given bipartite graph has an interval coloring [22]. Nevertheless, trees, regular and

^{*}Linköping University, Linköping Sweden, arasr@mai.liu.se.

[†]Umeå University, Umeå, Sweden, carl-johan.casselgren@math.umu.se.

complete bigraphs [13, 16], doubly convex bigraphs [16], grids [12] and all outerplanar bigraphs [8, 11] have interval colorings. Hansen [13] proved that every $(2, \beta)$ -biregular bigraph admits an interval coloring if β is an even integer. A similar result for $(2, \beta)$ -biregular bigraphs for odd β was given in [14, 19]. Only a little is known about $(3, \beta)$ -biregular bigraphs. It follows from the result of Hanson and Loten [15] that no such a graph has an interval coloring with fewer than $3 + b - \gcd(3, b)$ colors, where gcd denotes the greatest common divisor. We showed in [3] that the problem to determine whether a $(3, \beta)$ -biregular bigraph has an interval coloring is \mathcal{NP} -complete in the case when 3 divides β .

It is unknown whether all (3, 4)-biregular bigraphs have interval colorings. Pyatkin [21] showed that such a graph G has an interval coloring if G has a 3-regular subgraph covering the vertices of degree four. Another sufficient condition for the existence of an interval coloring of a (3, 4)biregular bigraph G was obtained in [4, 10]: G admits an interval coloring if it has a path factor where every component is a path of length not exceeding 8 and the endpoints of each path have degree three. It was conjectured in [4] that every simple (3, 4)-biregular bigraph has such a path factor. However this seems difficult to prove.

In this note we prove a little weaker result. We show that a simple (3, 4)-biregular bigraph always has a path factor such that the endpoints of each path have degree three. Moreover, we suggest a polynomial algorithm for the construction of such a path factor.

Note that (3, 4)-biregular bigraphs with multiple edges need not have path factors with the required property. For example, consider the graph G formed from three triple-edges by adding a claw; that is, the pairs x_iy_i have multiplicity three for $i \in \{1, 2, 3\}$, and there is an additional vertex y_0 with neighborhood $\{x_1, x_2, x_3\}$. Clearly, there is no path factor of G such that the endpoints of each path have degree 3.

2 The result

A pseudo path factor of a (3,4)-biregular bigraph G with bipartition (Y, X) is a subgraph F of G, such that every component of F is a path of even length and $d_F(x) = 2$ for every $x \in X$. Let $V_F = \{y \in Y : d_F(y) > 0\}.$

Theorem 1. Every simple (3,4)-biregular bigraph has a pseudo path factor.

Proof. Let G be a simple (3, 4)-biregular bigraph with bipartition (Y, X). The algorithm below constructs a sequence of subgraphs F_0, F_1, F_2, \ldots of G, where $V(F_0) = V(G), \emptyset = E(F_0) \subset E(F_1) \subset E(F_2) \subset \ldots$ and each component of F_j is a path, for every $j \ge 0$. At each step $i \ge 1$ the algorithm constructs F_i by adding to F_{i-1} one or two edges until the condition $d_{F_j}(x) = 2$ holds for all $x \in X$, where $j \ge 1$. Then $F = F_j$ is a pseudo path factor of G. Parallelly the algorithm constructs a sequence of subgraphs U_0, U_1, U_2, \ldots of G, where $V(U_0) = V(G)$, $\emptyset = E(U_0) \subset E(U_1) \subset E(U_2) \subset \cdots \subset E(U_j)$. The edges of each U_i will not be in the final pseudo path factor F. The algorithm is based on Properties 1-4. During the algorithm the vertices in the set Y are considered to be unscanned or scanned. Initially all vertices in Y are unscanned. At the beginning of each step $i \ge 1$ we have a current vertex x_i . The algorithm selects an unscanned vertex y_i , adjacent to x_i , and determines which edges incident with y_i will be in F_i and which ones in U_i . If $d_{F_i}(v) = 2$ for each $v \in X$, the algorithm stops. Otherwise the algorithm selects a new current vertex and goes to the next step.

Algorithm

Initially $F_0 = (V(G), \emptyset), U_0 = (V(G), \emptyset)$ and all vertices in Y are unscanned.

Step 0. Select a vertex $y_0 \in Y$. Let x_0, x_1, w be the vertices in X adjacent to y_0 in G. Put $F_1 = F_0 + \{wy_0, y_0x_0\}$ and $U_1 = U_0 + y_0x_1$. Consider the vertex y_0 to be scanned. Go to step 1 and consider the vertex x_1 as the current vertex for step 1.

Step i $(i \ge 1)$. Suppose that a vertex x_i with $d_{F_{i-1}}(x_i) \le 1$ was selected at step (i-1) as the current vertex. By Property 4 (see below), $d_{U_{i-1}}(x_i) \le 2$. Therefore there is an edge $x_i y_i$ with $y_i \in Y$ which neither belongs to F_{i-1} , nor to U_{i-1} . Then, by Property 3, the vertex y_i is an unscanned vertex and therefore the subgraph $F_{i-1} + x_i y_i$ does not contain a cycle. Since $d_G(y_i) = 3$, the vertex y_i , besides x_i , is adjacent to two other vertices, $w_1^{(i)}$ and $w_2^{(i)}$.

Case 1. $d_{F_{i-1}}(w_1^{(i)}) = 2 = d_{F_{i-1}}(w_2^{(i)}).$

Put $F_i = F_{i-1} + x_i y_i$ and $U_i = U_{i-1} + \{y_i w_1^{(i)}, y_i w_2^{(i)}\}$. Consider the vertex y_i to be scanned. If $d_{F_i}(v) = 2$ for every vertex $v \in X$ then Stop. Otherwise select an arbitrary vertex $x_{i+1} \in X$ with $d_{F_i}(x_{i+1}) \leq 1$, go to step (i+1) and consider x_{i+1} as the current vertex for step (i+1).

Case 2. $d_{F_{i-1}}(w_1^{(i)}) = 2$ and $d_{F_{i-1}}(w_2^{(i)}) \le 1$.

Put $F_i = F_{i-1} + x_i y_i$, $U_i = U_{i-1} + \{y_i w_1^{(i)}, y_i w_2^{(i)}\}$ and consider the vertex y_i to be scanned. Furthermore put $x_{i+1} = w_2^{(i)}$, go to step (i+1) and consider the vertex x_{i+1} as the current vertex for step (i+1).

Case 3. $d_{F_{i-1}}(w_1^{(i)}) \leq 1$ and $d_{F_{i-1}}(w_2^{(i)}) \leq 1$. Subcase 3a. $d_{F_{i-1}}(w_1^{(i)}) = 0$ or $d_{F_{i-1}}(w_2^{(i)}) = 0$.

We assume that $d_{F_{i-1}}(w_1^{(i)}) = 0$. Put $F_i = F_{i-1} + \{x_i y_i, y_i w_1^{(i)}\}, U_i = U_{i-1} + y_i w_2^{(i)}$ and consider the vertex y_i to be scanned. Furthermore put $x_{i+1} = w_2^{(i)}$, go to step (i + 1) and consider the vertex x_{i+1} as the current vertex for step (i + 1).

Subcase 3b. $d_{F_{i-1}}(w_1^{(i)}) = 1 = d_{F_{i-1}}(w_2^{(i)}).$

Since y_i is an unscanned vertex and $F_{i-1} + x_i y_i$ does not contain a cycle, the vertex y_i is an endvertex of only one path in $F_{i-1} + x_i y_i$. Then at least one of the graphs $F_{i-1} + \{x_i y_i, y_i w_1^{(i)}\}$ and $F_{i-1} + \{x_i y_i, y_i w_2^{(i)}\}$ does not contain a cycle. Assume, for example, that $F_{i-1} + \{x_i y_i, y_i w_1^{(i)}\}$ does not contain a cycle. Then put $F_i = F_{i-1} + \{x_i y_i, y_i w_1^{(i)}\}$, $U_i = U_{i-1} + y_i w_2^{(i)}$ and consider the vertex y_i to be scanned. Furthemore put $x_{i+1} = w_2^{(i)}$, go to step (i+1) and consider the vertex x_{i+1} as

the current vertex for step (i+1).

Now we will prove the correctness of the algorithm. At the beginning of step i we have that x_i is the current vertex, y_i is an unscanned vertex adjacent to x_i and $w_1^{(i)}$, $w_2^{(i)}$ are the two other vertices adjacent to y_i . The following two properties are evident.

Property 1. The algorithm determines which edges incident with y_i will be in F_i and which edges will be in U_i . The vertex y_i is then considered to be scanned and the algorithm will never consider y_i again.

Property 2. The current vertex x_{i+1} for step (i+1) is selected among the vertices $w_1^{(i)}$ and $w_2^{(i)}$, except the case $d_{F_i}(w_1^{(i)}) = d_{F_i}(w_2^{(i)}) = 2$ when an arbitrary vertex $x_{i+1} \in X$ with $d_{F_i}(x_{i+1}) \leq 1$ is selected as the current vertex.

Properties 1 and 2 imply the next property:

Property 3. If $x \in X$, $y \in Y$ and the edge xy neither belongs to F_{i-1} , nor to U_{i-1} , then the vertex y is unscanned at the beginning of step i.

Property 4. If $x \in X$ and $d_{F_{i-1}}(x) \leq 1$ then $d_{U_{i-1}}(x) \leq 2$.

Proof. The statement is evident if $d_{U_{i-1}}(x) = 0$. Suppose that $d_{U_{i-1}}(x) \ge 1$ and j is the minimum number such that j < i and an edge incident with x was included in U_{j-1} at step (j-1). Then the statement of Property 4 is evident if j = i - 1.

Now we consider the case j < i - 1. Clearly, $d_{F_{j-1}}(x) \leq 1$ because $F_{j-1} \subset F_{i-1}$ and $d_{F_{j-1}}(x) \leq d_{F_{i-1}}(x) \leq 1$. Let xy_{j-1} be the edge included in U_{j-1} at step (j-1). Since $d_{U_{j-1}}(x) = 1$ and $d_{F_{j-1}}(x) \leq 1$, there is an edge xy_j with $y_j \in Y$ which neither belongs to F_{j-1} , nor to U_{j-1} . Then, by Property 3, the vertex y_j is an unscanned vertex and therefore the subgraph $F_{j-1} + xy_j$ does not contain a cycle. According to the description of the algorithm, the edge xy_j will be in any case included in F_j at step j, that is, $d_{F_j}(x) \geq 1$. Then $d_{F_k}(x) = 1$ for every $k, j \leq k \leq i-1$, because $F_j \subset F_k \subset F_{i-1}$ and $1 \leq d_{F_j}(x) \leq d_{F_k}(x) \leq d_{F_{i-1}}(x) \leq 1$. Now we will show that $d_{U_{k-1}}(x) = 1$ for each $k, j \leq k < i-1$. Suppose to the contrary that $d_{U_{k-2}}(x) = 1$ and $d_{U_{k-1}}(x) = 2$ for some k, j < k < i-1, that is, another edge incident with x was included in U_{k-1} at step (k-1). Then the conditions $d_{U_{k-1}}(x) = 2$ and $d_{F_{k-1}}(x) = 1$ imply that there is an edge $e \neq y_j x$ incident with x which neither belongs to F_{k-1} , nor to U_{k-1} . Using a similar argument as above we obtain that the edge e should be included in F_k at step k. But then $d_{F_{i-1}}(x) \geq d_{F_k}(x) = 2$, which contradicts our assumption $d_{F_{i-1}}(x) \leq 1$. Thus $d_{U_{k-1}}(x) = 1$ for each $k, j \leq k < i-1$. It is possible that an edge incident with x will be included in U_{k-1} at step (i-1). Therefore $d_{U_{i-1}}(x) \leq 2$.

The description of the algorithm and Properties 1-4 show that the algorithm will stop at step i only when $d_{F_i}(x) = 2$ for every $x \in X$, that is, when F_i is a pseudo path factor of G. The proof of Theorem 1 is complete.

Now we will prove that every pseudo path factor of a (3, 4)-biregular bigraph G can be transformed into a path factor of G, such that the endpoints of each path have degree 3.

Lemma 2. Let G be a (3, 4)-biregular bigraph with bipartition (Y, X). Then |X| = 3k and |Y| = 4k, for some positive integer k.

This is evident because |E(G)| = 4|X| = 3|Y|.

Lemma 3. Let F be a pseudo path factor of a (3, 4)-biregular bigraph G with bipartition (Y, X). Then F has a component which is a path of length at least four.

Proof. By Lemma 2 we have that |X| = 3k and |Y| = 4k for some integer k. We also have that $d_F(x) = 2$ for each vertex $x \in X$. If the length of all paths in F is two, then $|Y| \ge 2|X| = 6k$ which contradicts |Y| = 4k. Therefore F has a component which is a path of length at least four. \Box

Theorem 4. Let F be a pseudo path factor of a simple (3, 4)-biregular bigraph G with bipartition (Y, X). If $V_F \neq Y$ and y_0 is a vertex with $d_F(y_0) = 0$, then there is a pseudo path factor F' with $V_{F'} = V_F \cup \{y_0\}$, such that no path in F' is longer than the longest path in F.

Proof. Let $y_0 \in Y$ and $d_F(y_0) = 0$. We will describe an algorithm which will construct a special trail T with origin y_0 .

Step 1. Select an edge $y_0x_1 \notin E(F)$. Since $d_F(x_1) = 2$, there are two edges of F, x_1y_1 and x_1u_1 , which are incident with x_1 .

Case 1. $d_F(y_1) = 2$ or $d_F(u_1) = 2$. Suppose, for example, that $d_F(y_1) = 2$. Then put $T = y_0 \rightarrow x_1 \rightarrow y_1$ and Stop. **Case 2.** $d_F(y_1) = 1 = d_F(u_1)$.

Put $T = y_0 \rightarrow x_1 \rightarrow y_1$ and go to Step 2.

Step *i* $(i \ge 1)$. Suppose that we have already constructed a trail $T = y_0 \rightarrow x_1 \rightarrow y_1 \rightarrow \cdots \rightarrow x_i \rightarrow y_i$ which satisfies the following conditions:

- (a) All edges in T are distinct and $y_{j-1}x_j \notin E(F)$, $x_jy_j \in E(F)$ for $j = 1, \ldots, i$.
- (b) The vertices y_1, \ldots, y_i are distinct.
- (c) A component of F containing the vertex x_j is a path of length 2, for j = 1, ..., i.

Select an edge $e \in E(G) \setminus E(F)$ which is incident with y_i . The existence of such an edge follows from the conditions (a), (b) and (c). Moreover, the condition (b) implies that $e \notin T$. Let $e = y_i x_{i+1}$. Then $d_F(x_{i+1}) = 2$ because F is a pseudo path factor of G. Since $e \notin E(T)$, the conditions (a), (b) and (c) imply that at least one of the edges of F incident with x_{i+1} , does not belong to T.

Case 1. x_{i+1} lies on a component of F which is a path of length two.

Select a vertex y_{i+1} such that $x_{i+1}y_{i+1} \in E(F) \setminus E(T)$, add the edge $x_{i+1}y_{i+1}$ and the vertex y_{i+1} to T and go to step (i+1). Now $T = y_0 \to x_1 \to y_1 \to \cdots \to x_{i+1} \to y_{i+1}$.

Case 2. x_{i+1} lies on a component of F which is a path of length at least four. There is a vertex y_{i+1} such that $x_{i+1}y_{i+1} \in E(F) \setminus E(T)$ and $d_F(y_{i+1}) = 2$. Add the edge $x_{i+1}y_{i+1}$ and the vertex y_{i+1} to T and Stop. We have now that $T = y_0 \to x_1 \to y_1 \to \cdots \to x_{i+1} \to y_{i+1}$.

By Lemma 3, F has a component which is a path of length at least four. Therefore the algorithm will stop after a finite number of steps. Let the trail $T = y_0 \rightarrow x_1 \rightarrow y_1 \rightarrow \cdots \rightarrow x_{i+1} \rightarrow y_{i+1}$, be the result of the algorithm, where $i \ge 0$, the vertex x_j lies on a component of F which is a path of length two for each $j \le i$, the vertex x_{i+1} lies on a component of F which is a path of length at least 4, and $d_F(y_{i+1}) = 2$. We define a new pseudo path factor F' by setting V(F') = V(F) and

$$E(F') = (E(F) \setminus \{x_j y_j : j = 1, \dots, i, i+1\}) \cup \{y_{j-1} x_j : j = 1, \dots, i, i+1\}.$$

Clearly, $V_{F'} = V_F \cup \{y_0\}$ and the proof of Theorem 4 is complete.

Theorems 1 and 4 imply the following theorem:

Theorem 5. Every simple (3, 4)-biregular bigraph has a path factor such that the endpoints of each path have degree 3.

References

- J. Akiyama, M. Kano, Factors and factorizations of graphs- a survey, J. Graph Theory, 9 (1985) 1-42.
- [2] K. Ando, Y. Egawa, A. Kaneko, K. Kawarabayashi, H. Matsuba, Path factors in claw-free graphs, Discrete Mathematics 243 (2002) 195-2000
- [3] A. S. Asratian and C. J. Casselgren, On interval edge colorings of (α, β) -biregular bipartite graphs, Discrete Math. 307 (2006) 1951-1956.
- [4] A. S. Asratian, C. J. Casselgren, J. Vandenbussche and D.B. West, *Proper path-factors and interval edge-colorings of* (3, 4)-*biregular bigraphs*, arXiv:0704.2650v1.
- [5] A. S. Asratian and R. R. Kamalian, Interval coloring of the edges of a multigraph (in Russian), Applied mathematics, 5 (1987), 25-34, Erevan University.
- [6] A. S. Asratian and R. R. Kamalian, Investigation of interval edge-colorings of graphs, Journal of Combinatorial Theory. Series B 62 (1994), no. 1, 34-43.
- [7] A. S. Asratian, T. M. J. Denley, R. Häggkvist, *Bipartite graphs and their applications*, Cambridge University Press, Cambridge, 1998.

- [8] M. A. Axenovich, On interval colorings of planar graphs. Proc. 33rd Southeastern Intl. Conf. Combin., Graph Theory and Computing (Boca Raton, FL, 2002). Congr. Numer. 159 (2002), 77–94.
- [9] J. A. Bondy, U. S. R. Murty, *Graph theory with applications*, American Elsevier Publishing Co., Inc., New York, 1976.
- [10] C. J. Casselgren, Some results on interval edge colorings of bipartite graphs, Master's Thesis, Linköping University, Linköping, Sweden, 2005
- K. Giaro, M. Kubale, Compact scheduling of zero-one time operations in multi-stage systems, Discrete Appl. Math. 145 (2004) 95-103
- [12] K. Giaro, M. Kubale, Consecutive edge-colorings of complete and incomplete Cartesian products of graphs, Congr. Numer. 128(1997) 143-149.
- [13] H. M. Hansen, Scheduling with minimum waiting periods (in Danish), Master Thesis, Odense University, Odense, Denmark, 1992.
- [14] D. Hanson, C. O. M. Loten, B. Toft, On interval colourings of bi-regular bigraphs, Ars Combin. 50 (1998), 23-32.
- [15] D. Hanson, C. O. M. Loten, A lower bound for interval colouring bi-regular bigraphs, Bulletin of the ICA 18 (1996), 69-74.
- [16] R. R. Kamalian, Interval edge-colorings of graphs, Doctoral thesis, Novosibirsk, 1990.
- [17] A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least 2, J. Comb.Theory B 88 (2003)195-218
- [18] K. Kawarabayashi, H. Matsuba, Y. Oda, K. Ota, Path factors in cubic graphs, J. Graph Theory, 39 (2002) 188-193.
- [19] A.V. Kostochka, Unpublished manuscript, 1995
- [20] M.D. Plummer, Graph factors and factorization: 1985-2003: A survey, Discrete Mathematics, 307 (2007) 791-821.
- [21] A. V. Pyatkin, Interval coloring of (3,4)-biregular bigraphs having large cubic subgraphs, Journal of Graph Theory 47 (2004), 122-128.
- [22] S. V. Sevastjanov, Interval colorability of the edges of a bigraph (in Russian), Metody Diskretnogo Analiza, 50 (1990), 61-72.
- [23] H. Wang, Path factors of bipartite graphs J. Graph Theory 18 (1994) 161–167.