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On path factors of (3, 4)-biregular bigraphs

Armen S. Asratian∗, Carl Johan Casselgren†

Abstract. A (3, 4)-biregular bigraph G is a bipartite graph where all vertices in one part have

degree 3 and all vertices in the other part have degree 4. A path factor of G is a spanning subgraph

whose components are nontrivial paths. We prove that a simple (3, 4)-biregular bigraph always

has a path factor such that the endpoints of each path have degree three. Moreover we suggest a

polynomial algorithm for the construction of such a path factor.
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1 Introduction

We use [9] and [7] for terminology and notation not defined here and consider finite loop-free

graphs only. V (G) and E(G) denote the sets of vertices and edges of a graph G, respectively. A

proper edge coloring of a graph G with colors 1, 2, 3, . . . is a mapping f : E(G) → {1, 2, 3, . . .} such

that f(e1) 6= f(e2) for every pair of adjacent edges e1 and e2. A bipartite graph with bipartition

(Y,X) is called an (a, b)-biregular bigraph if every vertex in Y has degree a and every vertex in X

has degree b. A path factor of a graph G is a spanning subgraph whose components are nontrivial

paths. Some results on different types of path factors can be found in [1, 2, 17, 18, 20, 23]. In

particular, Ando et al [2] showed that a claw-free graph with minimum degree d has a path factor

whose components are paths of length at least d. Kaneko [17] showed that every cubic graph has

a path factor such that each component is a path of length 2, 3 or 4. It was shown in [18] that a

2-connected cubic graph has a path factor whose components are paths of length 2 or 3.

In this paper we investigate the existence of path factors of (3, 4)-biregular bigraphs such that

the endpoints of each path have degree three. Our investigation is motivated by a problem on

interval colorings. A proper edge coloring of a graph G with colors 1, 2, 3, . . . is called an interval

(or consecutive) coloring if the colors received by the edges incident with each vertex of G form

an interval of integers. The notion of interval colorings was introduced in 1987 by Asratian and

Kamalian [5] (available in English as [6]). Generally, it is an NP-complete problem to determine

whether a given bipartite graph has an interval coloring [22]. Nevertheless, trees, regular and
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complete bigraphs [13, 16], doubly convex bigraphs [16], grids [12] and all outerplanar bigraphs

[8, 11] have interval colorings. Hansen [13] proved that every (2, β)-biregular bigraph admits an

interval coloring if β is an even integer. A similar result for (2, β)-biregular bigraphs for odd β

was given in [14, 19]. Only a little is known about (3, β)-biregular bigraphs. It follows from the

result of Hanson and Loten [15] that no such a graph has an interval coloring with fewer than

3+ b− gcd(3, b) colors, where gcd denotes the greatest common divisor. We showed in [3] that the

problem to determine whether a (3, β)-biregular bigraph has an interval coloring is NP-complete

in the case when 3 divides β.

It is unknown whether all (3, 4)-biregular bigraphs have interval colorings. Pyatkin [21] showed

that such a graph G has an interval coloring if G has a 3-regular subgraph covering the vertices

of degree four. Another sufficient condition for the existence of an interval coloring of a (3, 4)-

biregular bigraph G was obtained in [4, 10]: G admits an interval coloring if it has a path factor

where every component is a path of length not exceeding 8 and the endpoints of each path have

degree three. It was conjectured in [4] that every simple (3, 4)-biregular bigraph has such a path

factor. However this seems difficult to prove.

In this note we prove a little weaker result. We show that a simple (3, 4)-biregular bigraph

always has a path factor such that the endpoints of each path have degree three. Moreover, we

suggest a polynomial algorithm for the construction of such a path factor.

Note that (3, 4)-biregular bigraphs with multiple edges need not have path factors with the

required property. For example, consider the graph G formed from three triple-edges by adding a

claw; that is, the pairs xiyi have multiplicity three for i ∈ {1, 2, 3}, and there is an additional vertex

y0 with neighborhood {x1, x2, x3}. Clearly, there is no path factor of G such that the endpoints of

each path have degree 3.

2 The result

A pseudo path factor of a (3, 4)-biregular bigraph G with bipartition (Y,X) is a subgraph F of G,

such that every component of F is a path of even length and dF (x) = 2 for every x ∈ X . Let

VF = {y ∈ Y : dF (y) > 0}.

Theorem 1. Every simple (3, 4)-biregular bigraph has a pseudo path factor.

Proof. Let G be a simple (3, 4)-biregular bigraph with bipartition (Y,X). The algorithm be-

low constructs a sequence of subgraphs F0,F1,F2, . . . of G, where V (F0) = V (G), ∅ = E(F0) ⊂

E(F1) ⊂ E(F2) ⊂ . . . and each component of Fj is a path, for every j ≥ 0. At each step i ≥ 1

the algorithm constructs Fi by adding to Fi−1 one or two edges until the condition dFj
(x) = 2

holds for all x ∈ X , where j ≥ 1. Then F = Fj is a pseudo path factor of G. Parallelly

the algorithm constructs a sequence of subgraphs U0, U1, U2, . . . of G, where V (U0) = V (G),

∅ = E(U0) ⊂ E(U1) ⊂ E(U2) ⊂ · · · ⊂ E(Uj). The edges of each Ui will not be in the final pseudo
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path factor F . The algorithm is based on Properties 1-4. During the algorithm the vertices in the

set Y are considered to be unscanned or scanned. Initially all vertices in Y are unscanned. At

the beginning of each step i ≥ 1 we have a current vertex xi. The algorithm selects an unscanned

vertex yi, adjacent to xi, and determines which edges incident with yi will be in Fi and which ones

in Ui. If dFi
(v) = 2 for each v ∈ X , the algorithm stops. Otherwise the algorithm selects a new

current vertex and goes to the next step.

Algorithm

Initially F0 = (V (G), ∅), U0 = (V (G), ∅) and all vertices in Y are unscanned.

Step 0. Select a vertex y0 ∈ Y . Let x0, x1, w be the vertices in X adjacent to y0 in G. Put

F1 = F0 + {wy0, y0x0} and U1 = U0 + y0x1. Consider the vertex y0 to be scanned. Go to step 1

and consider the vertex x1 as the current vertex for step 1.

Step i (i ≥ 1). Suppose that a vertex xi with dFi−1
(xi) ≤ 1 was selected at step (i − 1) as

the current vertex. By Property 4 (see below), dUi−1
(xi) ≤ 2. Therefore there is an edge xiyi

with yi ∈ Y which neither belongs to Fi−1, nor to Ui−1. Then, by Property 3, the vertex yi is an

unscanned vertex and therefore the subgraph Fi−1+xiyi does not contain a cycle. Since dG(yi) = 3,

the vertex yi, besides xi, is adjacent to two other vertices, w
(i)
1 and w

(i)
2 .

Case 1 . dFi−1
(w

(i)
1 ) = 2 = dFi−1

(w
(i)
2 ).

Put Fi = Fi−1 + xiyi and Ui = Ui−1 + {yiw
(i)
1 , yiw

(i)
2 }. Consider the vertex yi to be scanned. If

dFi
(v) = 2 for every vertex v ∈ X then Stop. Otherwise select an arbitrary vertex xi+1 ∈ X with

dFi
(xi+1) ≤ 1, go to step (i+ 1) and consider xi+1 as the current vertex for step (i+ 1).

Case 2 . dFi−1
(w

(i)
1 ) = 2 and dFi−1

(w
(i)
2 ) ≤ 1.

Put Fi = Fi−1 + xiyi, Ui = Ui−1 + {yiw
(i)
1 , yiw

(i)
2 } and consider the vertex yi to be scanned.

Furthermore put xi+1 = w
(i)
2 , go to step (i+ 1) and consider the vertex xi+1 as the current vertex

for step (i+ 1).

Case 3 . dFi−1
(w

(i)
1 ) ≤ 1 and dFi−1

(w
(i)
2 ) ≤ 1.

Subcase 3a. dFi−1
(w

(i)
1 ) = 0 or dFi−1

(w
(i)
2 ) = 0.

We assume that dFi−1
(w

(i)
1 ) = 0. Put Fi = Fi−1+ {xiyi, yiw

(i)
1 }, Ui = Ui−1+ yiw

(i)
2 and consider the

vertex yi to be scanned. Furthermore put xi+1 = w
(i)
2 , go to step (i + 1) and consider the vertex

xi+1 as the current vertex for step (i+ 1).

Subcase 3b. dFi−1
(w

(i)
1 ) = 1 = dFi−1

(w
(i)
2 ).

Since yi is an unscanned vertex and Fi−1 + xiyi does not contain a cycle, the vertex yi is an

endvertex of only one path in Fi−1+xiyi. Then at least one of the graphs Fi−1+ {xiyi, yiw
(i)
1 } and

Fi−1 + {xiyi, yiw
(i)
2 } does not contain a cycle. Assume, for example, that Fi−1 + {xiyi, yiw

(i)
1 } does

not contain a cycle. Then put Fi = Fi−1+{xiyi, yiw
(i)
1 }, Ui = Ui−1+yiw

(i)
2 and consider the vertex

yi to be scanned. Furthemore put xi+1 = w
(i)
2 , go to step (i + 1) and consider the vertex xi+1 as
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the current vertex for step (i+ 1).

Now we will prove the correctness of the algorithm. At the beginning of step i we have that

xi is the current vertex, yi is an unscanned vertex adjacent to xi and w
(i)
1 , w

(i)
2 are the two other

vertices adjacent to yi. The following two properties are evident.

Property 1. The algorithm determines which edges incident with yi will be in Fi and which edges

will be in Ui. The vertex yi is then considered to be scanned and the algorithm will never consider

yi again.

Property 2. The current vertex xi+1 for step (i+ 1) is selected among the vertices w
(i)
1 and w

(i)
2 ,

except the case dFi
(w

(i)
1 ) = dFi

(w
(i)
2 ) = 2 when an arbitrary vertex xi+1 ∈ X with dFi

(xi+1) ≤ 1 is

selected as the current vertex.

Properties 1 and 2 imply the next property:

Property 3. If x ∈ X , y ∈ Y and the edge xy neither belongs to Fi−1, nor to Ui−1, then the

vertex y is unscanned at the beginning of step i.

Property 4. If x ∈ X and dFi−1
(x) ≤ 1 then dUi−1

(x) ≤ 2.

Proof. The statement is evident if dUi−1
(x) = 0. Suppose that dUi−1

(x) ≥ 1 and j is the minimum

number such that j < i and an edge incident with x was included in Uj−1 at step (j − 1). Then

the statement of Property 4 is evident if j = i− 1.

Now we consider the case j < i− 1. Clearly, dFj−1
(x) ≤ 1 because Fj−1 ⊂ Fi−1 and dFj−1

(x) ≤

dFi−1
(x) ≤ 1. Let xyj−1 be the edge included in Uj−1 at step (j − 1). Since dUj−1

(x) = 1 and

dFj−1
(x) ≤ 1, there is an edge xyj with yj ∈ Y which neither belongs to Fj−1 , nor to Uj−1. Then,

by Property 3, the vertex yj is an unscanned vertex and therefore the subgraph Fj−1 + xyj does

not contain a cycle. According to the description of the algorithm, the edge xyj will be in any case

included in Fj at step j, that is, dFj
(x) ≥ 1. Then dFk

(x) = 1 for every k, j ≤ k ≤ i− 1, because

Fj ⊂ Fk ⊂ Fi−1 and 1 ≤ dFj
(x) ≤ dFk

(x) ≤ dFi−1
(x) ≤ 1. Now we will show that dUk−1

(x) = 1 for

each k, j ≤ k < i − 1. Suppose to the contrary that dUk−2
(x) = 1 and dUk−1

(x) = 2 for some k,

j < k < i − 1, that is, another edge incident with x was included in Uk−1 at step (k − 1). Then

the conditions dUk−1
(x) = 2 and dFk−1

(x) = 1 imply that there is an edge e 6= yjx incident with x

which neither belongs to Fk−1 , nor to Uk−1. Using a similar argument as above we obtain that

the edge e should be included in Fk at step k. But then dFi−1
(x) ≥ dFk

(x) = 2, which contradicts

our assumption dFi−1
(x) ≤ 1. Thus dUk−1

(x) = 1 for each k, j ≤ k < i − 1. It is possible that an

edge incident with x will be included in Ui−1 at step (i− 1). Therefore dUi−1
(x) ≤ 2. ✷

The description of the algorithm and Properties 1-4 show that the algorithm will stop at step

i only when dFi
(x) = 2 for every x ∈ X , that is, when Fi is a pseudo path factor of G. The proof

of Theorem 1 is complete. ✷
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Now we will prove that every pseudo path factor of a (3, 4)-biregular bigraph G can be trans-

formed into a path factor of G, such that the endpoints of each path have degree 3.

Lemma 2. Let G be a (3, 4)-biregular bigraph with bipartition (Y,X). Then |X| = 3k and |Y | = 4k,

for some positive integer k.

This is evident because |E(G)| = 4|X| = 3|Y |.

Lemma 3. Let F be a pseudo path factor of a (3, 4)-biregular bigraph G with bipartition (Y,X).

Then F has a component which is a path of length at least four.

Proof. By Lemma 2 we have that |X| = 3k and |Y | = 4k for some integer k. We also have that

dF (x) = 2 for each vertex x ∈ X . If the length of all paths in F is two, then |Y | ≥ 2|X| = 6k

which contradicts |Y | = 4k. Therefore F has a component which is a path of length at least four.

✷

Theorem 4. Let F be a pseudo path factor of a simple (3, 4)-biregular bigraph G with bipartition

(Y,X). If VF 6= Y and y0 is a vertex with dF (y0) = 0, then there is a pseudo path factor F ′ with

VF ′ = VF ∪ {y0}, such that no path in F ′ is longer than the longest path in F .

Proof. Let y0 ∈ Y and dF (y0) = 0. We will describe an algorithm which will construct a special

trail T with origin y0.

Step 1. Select an edge y0x1 /∈ E(F ). Since dF (x1) = 2, there are two edges of F , x1y1 and x1u1,

which are incident with x1.

Case 1 . dF (y1) = 2 or dF (u1) = 2.

Suppose, for example, that dF (y1) = 2. Then put T = y0 → x1 → y1 and Stop.

Case 2 . dF (y1) = 1 = dF (u1).

Put T = y0 → x1 → y1 and go to Step 2.

Step i (i ≥ 1). Suppose that we have already constructed a trail T = y0 → x1 → y1 → · · · →

xi → yi which satisfies the following conditions:

(a) All edges in T are distinct and yj−1xj /∈ E(F ), xjyj ∈ E(F ) for j = 1, . . . , i.

(b) The vertices y1, . . . , yi are distinct.

(c) A component of F containing the vertex xj is a path of length 2, for j = 1, . . . , i.

Select an edge e ∈ E(G) \ E(F ) which is incident with yi. The existence of such an edge

follows from the conditions (a), (b) and (c). Moreover, the condition (b) implies that e /∈ T . Let

e = yixi+1. Then dF (xi+1) = 2 because F is a pseudo path factor of G. Since e /∈ E(T ), the

conditions (a), (b) and (c) imply that at least one of the edges of F incident with xi+1, does not

belong to T .

Case 1 . xi+1 lies on a component of F which is a path of length two.

Select a vertex yi+1 such that xi+1yi+1 ∈ E(F ) \ E(T ), add the edge xi+1yi+1 and the vertex yi+1

to T and go to step (i+ 1). Now T = y0 → x1 → y1 → · · · → xi+1 → yi+1.

5



Case 2 . xi+1 lies on a component of F which is a path of length at least four.

There is a vertex yi+1 such that xi+1yi+1 ∈ E(F ) \E(T ) and dF (yi+1) = 2. Add the edge xi+1yi+1

and the vertex yi+1 to T and Stop. We have now that T = y0 → x1 → y1 → · · · → xi+1 → yi+1.

By Lemma 3, F has a component which is a path of length at least four. Therefore the algorithm

will stop after a finite number of steps. Let the trail T = y0 → x1 → y1 → · · · → xi+1 → yi+1, be

the result of the algorithm, where i ≥ 0, the vertex xj lies on a component of F which is a path

of length two for each j ≤ i, the vertex xi+1 lies on a component of F which is a path of length at

least 4, and dF (yi+1) = 2. We define a new pseudo path factor F ′ by setting V (F ′) = V (F ) and

E(F ′) = (E(F ) \ {xjyj : j = 1, . . . , i, i+ 1}) ∪ {yj−1xj : j = 1, . . . , i, i+ 1}.

Clearly, VF ′ = VF ∪ {y0} and the proof of Theorem 4 is complete. ✷

Theorems 1 and 4 imply the following theorem:

Theorem 5. Every simple (3, 4)-biregular bigraph has a path factor such that the endpoints of each

path have degree 3.
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