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The Link Component Number of Suspended Trees
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Abstract. This paper provides a relationship between a geometric structure of a suspended
tree and the number of link components of the associated link diagram.
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1. Research Motivation and Early Studies

We use standard terminology and notation of knot theory and graph theory, see for
example [1] and [2], respectively. Graphs considered in this paper are assumed to be
embedded in the 2-sphere S

2, that is, all graphs are plane graphs. Plane graphs are often
used as a research tool in knot theory. This is because there is a one-to-one correspondence
between a link diagram and an edge-signed plane graph.

Let L be a link diagram in the 2-sphere S
2. Suppose first that L has at least one

crossing. Regarding L as a 4-regular plane graph, we color the faces black and white.
From this coloring, we get an edge-signed plane graph GL, where its vertices are the black
faces and two vertices are joined by an edge if they share a crossing of L. Each edge is
given a plus or minus sign according to the over/under information of the crossing. See
Fig. 1. If L has no crossings, then GL has no edges, and the number of vertices is equal
to the number of link components. Conversely, from the edge-signed plane graph GL, we
can restore the link diagram L by considering the medial graph of GL.

Fig. 1. A link diagram L and its graph GL

Our research interest is to explore when a graph represent a knot and when a link.
In general, how can we determine the number of components of a link diagram from the
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associated plane graph? For this purpose, we may only consider the underlying unsigned
graph, since ignoring signs of edges does not change the number of components.

Definition 1. For a plane graph G, the number of components of the associated link
diagram is called the link component number of G, and is denote by l(G).

Problem 1. For a plane graph G, find a method to determine the link component number
l(G).

Example 1. Let G be a tree, then l(G) is equal to one. The proof is as follows. Recall that
each degree one vertex of a tree is called a leaf, and any tree other than K1 has at least two
leaves. At each leaf, we untwist the string of the link diagram as the Reidemeister move I
and contract the incident edge, and we get a smaller tree with the same link component
number. By repeating this operation, any tree can reach K1, and we can see that l(G) is
equal to one. ✷

There are several early studies along this line although they possibly have slightly
different expressions. See [3] [4] [5] [8] for examples. The most noteworthy result is the
following, and this may be a solution of the problem above.

Theorem 1. (Schwarzler-Welsh [9]) Let T (G, x, y) be the Tutte polynomial of a plane
graph G. Then it holds that T (G,−1,−1) = (−1)|E(G)|(−2)l(G)−1. ✷

Our aim is now to find out a relation between geometric structures and the link com-
ponent number of a plane graph.

2. Suspended Trees and their Link Component Numbers

In this paper, we consider a certain extension of a tree, and completely determine its link
component number. In what follows, we may assume that a tree has at least one edge,
thus it is not K1. Recall by Example 1 that the link component number of a tree is equal
to one, and this arises from the existence of a leaf.

Definition 2. The graph generated by a tree T by adding a new vertex v and new edges
joining v and all of the leaves of T is called the suspended tree, and is denoted by ST .

We begin with the following observation.

Proposition 1. For a tree T , the link component number of the suspended tree ST is at
most the number of the leaves of T .

Proof. Note that ST −v has only one string. Consider the surrounding of the new vertex v.
We may add up at most the number of arcs appeared here to the link component number
of ST , and this number equals to the number of the leaves of T . Thus, the proposition
follows. ✷

Example 2. Let G be a star graph K1,n, then l(G) is equal to the number of the leaves
n. In this case, it holds that ST = K2,n and in the proof of Proposition 1, the number
of the arcs appeared in the surrounding of v is equal to n and the arcs make mutually
different link components. ✷
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3. The invariance under embeddings

In this section, we discuss about the invariance of the link component number under
planar embeddings.

Let G be a planar graph, and let f1 and f2 be two embeddings of G into S
2. Then

plane graphs f1(G) and f2(G) are equivalent if there exists a homeomorphism of S2 onto
itself which maps f1(G) into f2(G). From the well-known Whitney’s theorem [10], if G
3-connected, then f1(G) and f2(G) are equivalent.

For the case that G is not 3-connected, Negami clarified the difference of the embed-
dings. In order to describe the statement, we review the definitions. Let f be an embedding
of a planar graph G into S

2. A local jump is defined as follows. Let D1 and D2 be two
disks in S

2 such that ∂D1 ∩ f(G) = ∂D2 ∩ f(G) is a vertex f(v). Then a local jump is
the modification of f into τ ◦ f where τ is an orientation-preserving homeomorphism of
D1 into D2. A local reversion is defined as follows. Let D be a disk in S

2 and let τ is an
orientation-reversing homeomorphism of D onto itself such that each point x ∈ ∂D∩f(G)
is a vertex of f(G) and τ(x) = x. We may assume that ∂D∩ f(G) consists of at most two
vertices. Then a local reversion is the alternation of f into τ ◦ f . See Fig. 2.

G1 G2 G1

Fig. 2. a local jump and a local reversion

Theorem 2. (Negami [7]) Let G be a planar graph, and let f1 and f2 be two embeddings
of G into S

2. Then f1(G) and f2(G) may be equivalent or f1(G) can be transformed into
f2(G) by a finite sequence of local jumps and local reversions. ✷

Now we prove the following.

Theorem 3. Let G be a planar graph, and f1 and f2 be two embeddings of G into S
2.

Then the link component numbers of f1(G) and f2(G) are equal.

Proof. From Theorem 2, we may only show that the theorem is true for the case that
f2(G) is obtained from f1(G) by performing a local jump and the case by a local reversion.

(Case 1: local reversion) Suppose first that ∂D∩ f1(G) consists of two vertices f1(u1)
and f1(u2). Then the associated link diagram of f1(G) meets ∂D at four points. Let
t1, t2, t3, t4 be the points in a counterclockwise direction on ∂D. Let D ∩ f1(G) = f1(G2)
and (S2 − intD) ∩ f1(G) = f1(G1). Let ai (resp. bi) be the string of the associated link
diagram of f1(G1) (resp. f1(G2)) which contains ti for i = 1, 2, 3, 4. As for the associated
link diagram of f1(G1), there are three possible combinations: (a1) a1 = a2 and a3 = a4,
(a2) a1 = a3 and a2 = a4, and (a3) a1 = a4 and a2 = a3. And this is the case with the
associated link diagram of f1(G2), and we similarly denote them by (b1), (b2), and (b3).

Although we have ai = bi for i = 1, 2, 3, 4 in the associated link diagram of f1(G),
we have a1 = b2, a2 = b1, a3 = b4, a4 = b3 in the associated link diagram of f2(G). Thus
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the combination of the strings changes by the local reversion, but the link component
numbers does not change in each case. These are arranged in the table bellow.

The subcases that ∂D∩f1(G) consists of one vertex and null can be similarly and more
easily shown.

b1 b2 b3

a1 2 1 1
a2 1 2 1
a3 1 1 2

Table 1. Numbers of strings that meet ∂D

(Case 2: local jump) In this case, the associated link diagram of fi(G) meets ∂Di at
two points for i = 1, 2. But the two points are contained in the same link component
inside and outside Di, respectively. Thus the link component numbers does not change. ✷

By Theorem 3, we may not distinguish between a planar graph and its plane graph as
for the link component number.

Next theorem is also noteworthy, and is used in Corollary 1.

Theorem 4. Let G be a planar graph and u be a cut vertex such that G = G1 ∪ G2 and
{u} = G1 ∩ G2. Then, the link component number of G is equal to the sum of two link
component numbers of G1 and G2 minus one.

Proof. Let L1 and L2 be two link diagrams arising from G1 and G2, respectively. Then,
we obtain a link diagram of G by amalgamating one string of L1 and one string of L2 at
u. Thus, the theorem follows. ✷

4. Key Lemmas and the Theorem

First we observe the following.

Lemma 1. Let T be a tree, and suppose that T has a vertex v of degree two. Let x, y be
the neighbors of v, and suppose that neither x nor y is a leaf of T . Let T ′ be the tree
obtained from T by contracting vx and vy. Then the link component numbers of ST and
ST ′ are equal.

Proof. This is obvious if we see how strings of the corresponding link diagram behave.
Imagine the Reidemeister move II. ✷

Lemma 2. Let T be a tree which is not K2 such that each vertex of degree two, if any,
is adjacent to a leaf of T . Then, T has at least one of the following vertex w: (Type I) w
is adjacent to a leaf and a degree two vertex which is adjacent to a leaf, (Type II) w is
adjacent to two degree two vertices each of which is adjacent to a leaf, and (Type III) w
is adjacent to two leaves.

Proof. We show by contradiction. Suppose T has no vertices of Type I, II, or III. Let
x, y, z be numbers of the vertices of degree one, two, and three or more, respectively.

Then, for any leaf l, there exists a vertex w with degT w ≥ 3 such that w is adjacent
to l or a degree two vertex which is adjacent to l. In this situation, we say that v has l as
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a root. Then, for any vertex w with degT w ≥ 3, w has at most one leaf as a root. Thus,
it holds that z ≥ x.

Since T is a tree, the number of the edges is x+y+z−1, and x+y+z−1 ≥ (x+2y+3z)/2
by the handshaking lemma. Thus we have x− 2 ≥ z, a contradiction. ✷

Lemma 3. Suppose that a tree T has a vertex w of Type I. Let T ′ be the tree obtained
from T by deleting a length two path from w to a leaf. Then, the link component numbers
of ST and ST ′ are equal.

Proof. If degT w ≥ 3, then this is obvious from Fig. 3, where dotted lines denote strings
around the new vertex v of ST . In the case that degT w = 2, although non-leaf w of T
changes a leaf of T ′, it is not difficult to check the link component numbers of ST and ST ′

are equal. ✷

Fig. 3. Deletion of a path of length two which is incident to a vertex of Type I

Lemma 4. Suppose that a tree T has a vertex w of Type II. Let T ′ be the tree obtained
from T by deleting two length two paths each of which connects w and a leaf, and if
degT w = 3, then we delete w furthermore. Then, the link component numbers of ST and
ST ′ are equal.

Proof. This is obvious from Fig. 4. In the case that degT w = 3, there is a possibility that
the third neighbor x of w has degree two in T and consequently x might have degree one
in T ′. But in that case, the neighbor of x must be a leaf, and hence the lemma follows. ✷

Fig. 4. Deletion of two paths of length two which are incident to a vertex of Type II

Lemma 5. Suppose that a tree T has a vertex w of Type III. Let T ′ be the tree obtained
from T by deleting two leaves. Then, the link component number of ST ′ is equal to the link
component number of ST minus one.
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Fig. 5. Deletion of an edge which is incident to a vertex of Type III

Proof. If degT w ≥ 3, then this is obvious from Fig. 5. In the case of degT w = 2, although
non-leaf w of T changes a leaf of T ′, it is not difficult to check the lemma holds. ✷

The Main Theorem in this paper is the following.

Theorem 5. Any tree can be transformed into K2 by performing the operations as in
Lemmas 1, 3, 4 and 5. Moreover, the link component number of ST is equal to the number
of times of the operations of Lemma 5 plus one.

Proof. We show the theorem by a mathematical induction on the number of the edges of
T . The first step is the case that T = K2, and it is trivial. The second step immediately
follows from Lemmas 1–5. ✷

Theorem 5 suggests that the link component number of a suspended tree depends on
essentially the number of K1,2’s appeared in the operations above, where the two vertices
of one partite set are leaves. Comparing to the computation by using the Tutte polynomial
(Theorem 1), the computational effort may be relatively small.

We conclude this section by mentioning two corollaries of our theorem.

Definition 3. The suspended forest is the graph obtained from a forest by adding a new
vertex and new edges joining the vertex and the leaves of the forest.

Corollary 1. Let F be a forest consisting of n trees. Then, the link component number of
the suspended forest is equal to the sum of the link component numbers of the constituent
suspended trees plus n minus one.

Proof. This is an immediate consequence of Theorem 4. ✷

Corollary 2. Let T be a tree other than K2, and has no vertices of degree two. Then, the
link component number of the suspended tree is two or more. ✷

Proof. This is because T must have a vertex of type III. ✷

Thus, in contrast to the fact that a tree always represents a knot, a suspended tree
does not represent a knot if the tree part has no vertices of degree two.

5. Concluding Remark

We shall briefly describe a relationship between suspended trees and knot theory. A link
L is called arborescent (or algebraic) if L is formed by taking the numerator closure of
an tangle obtained by additions and multiplications of rational tangles. It is known that
a link L is arborescent if and only if the associated graph GL has a vertex v such that
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T = GL−v is a tree [6]. Thus, as an application of Theorem 5, we may determine the link
component number of an arborescent link via its graph. In fact, if v is adjacent to some
vertex of T , the number of edges between them may be assumed to be at most one, since
we can delete parallel two edges by considering the Reidemeister move II. If v is adjacent
to a non-leaf vertex x of T , then we may consider the tree obtained from T by adding a
length two path to x.
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