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1 Introduction

A triangular embedding of a complete regular tripartite graph Kn,n,n in a
surface is face two-colourable if and only if the surface is orientable [5]. In this
case, the faces of each colour class can be regarded as the triples of a transversal
design TD(3, n), of order n and block size 3. Such a design comprises a triple
(V,G,B), where V is a 3n-element set (the points), G is a partition of V
into three parts (the groups) each of cardinality n, and B is a collection of
3-element subsets (the blocks) of V such that each 2-element subset of V is
either contained in exactly one block of B, or in exactly one group of G, but not
both. Two TD(3, n)s , (V, {G1, G2, G3},B) and (V ′, {G′

1, G
′

2, G
′

3},B
′) are said

to be isomorphic if, for some permutation π of {1, 2, 3}, there exist bijections
αi : Gi → G′

π(i), i = 1, 2, 3, that map blocks of B to blocks of B′. A Latin

square of side n determines a TD(3, n) by assigning the row labels, the column
labels, and the entries as the three groups of the design. Two Latin squares are
said to be in the same main class if the corresponding transversal designs are
isomorphic. A question that naturally arises is: which pairs of (main classes
of) Latin squares may be biembedded?

This question seems to be difficult. On the existence side, recursive con-
structions are given in [3, 6, 7]. Of particular interest are biembeddings of
Latin squares which are the Cayley tables of groups and other algebraic struc-
tures. An infinite class of biembeddings of Latin squares representing the
Cayley tables of cyclic groups of order n is known for all n ≥ 2. This is the
family of regular biembeddings constructed using a voltage graph based on
a dipole with n parallel edges embedded in a sphere [12], or alternatively
directly from the Latin squares defined by Cn(i, j) = i + j (mod n), and
C ′

n(i, j) = i + j − 1 (mod n) [5]. A regular biembedding of a Latin square
of side n has the greatest possible symmetry, with full automorphism group
of order 12n2, the maximum possible value. Recently the present authors [3]
constructed another family of biembeddings of the Latin squares representing
the Cayley tables of cyclic groups of order 2n, n ≥ 3, also with a high degree
of symmetry. Enumeration results for biembeddings of Latin squares of side 3
to 7 are given in [5] and for groups of order 8 in [8]. More recently still, in [9]
it has been shown that with the single exception of the group C2

2 , the Cayley
table of each Abelian group appears in some biembedding.

In the context of non-existence results, some small Latin squares do not
appear in any biembeddings [5]. In [11], the present authors introduced the
concept of the parity vector of a main class of Latin squares. Using this
concept, it was shown that for n ≥ 2, there is no biembedding of two Latin
squares both lying in the same main class as the Latin square obtained from
the Cayley table of the Abelian 2-group Cn

2 .
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The purpose of the current paper is two-fold. First we calculate the parity
vectors of the Latin squares which are the Cayley tables of Abelian groups,
as well as various classes of non-Abelian groups. We also deal with Steiner
quasigroups and loops. Secondly we use our calculations to show that there
exists a set H of main classes of Latin squares of even side n such that each
class admits no self-embeddings, that is to say no biembeddings of any pair of
Latin squares belonging to that main class, and for which

|H| ≥











n
n2

4
(1−o(1)) if n ≡ 0, 4 or 8 (mod 12),

n
n2

6
(1−o(1)) if n ≡ 2 or 10 (mod 12),

n
n2

36
(1−o(1)) if n ≡ 6 (mod 12).

Before doing this we give some definitions and then briefly recall the relevant
material on Latin squares and parity vectors (taken from [11]).

A Latin square may be thought of as a set of ordered triples, where the
triple (i, j, k) represents the occurrence of entry k in cell (i, j) of the Latin
square. A Latin square L, of side n, is said to be symmetric if whenever
(i, j, k) ∈ L then (j, i, k) ∈ L. A Latin square L is said to be idempotent if,
for all i ∈ {1, . . . , n}, (i, i, i) ∈ L and unipotent if, for some k ∈ {1, . . . , n}
and all i ∈ {1, . . . , n}, (i, i, k) ∈ L. A Latin square L, of even side 2n, is
said to be half-idempotent if, for all 1 ≤ i ≤ n, (i, i, 2i), (n + i, n + i, 2i) ∈
L. The direct product of two Latin squares A and B is given by A × B =
{((i, i′), (j, j′), (k, k′)) | (i, j, k) ∈ A and (i′, j′, k′) ∈ B}. It will be useful to
distinguish between the row labels, column labels and entry symbols of a Latin
square. So, given a Latin square L of side n, we denote the set of entries by
E = {e1, . . . , en}, the set of rows labels by R = {r1, . . . , rn} and the set of
column labels by C = {c1, . . . , cn}. We take arbitrary but fixed orderings on
R, C and E; we will use (r1, . . . , rn), (c1, . . . , cn) and (e1, . . . , en).

For each row ri, column cj and entry ek of L, define bijections βL
r,i : C → E

with βL
r,i(cj) = ek, βL

c,j : E → R with βL
c,j(ek) = ri, and βL

e,k : R → C, with
βL

e,k(ri) = cj if and only if (ri, cj, ek) ∈ L. Define permutations γL
r,i : E → E,

γL
c,j : R → R and γL

e,k : C → C by γL
r,i(ej) = βL

r,i(cj), γL
c,j(rk) = βL

c,j(ek) and
γL

e,k(ci) = βL
e,k(ri), respectively. We make the following definition.

Definition 1.1 For a Latin square L of side n, let

xL = |{i ∈ N | γL
r,i has odd parity}|,

yL = |{j ∈ N | γL
c,j has odd parity}|,

zL = |{k ∈ N | γL
e,k has odd parity}|.

Then the vector (xL, yL, zL) will be called the parity vector of L.
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We remark that the above definition refers to the Latin square L, as it
is presented. If (x, y, z) is the parity vector of L, the parity vector of any
Latin square in the same main class as L is one of (x, y, z), (x, n − y, n − z),
(n − x, y, n − z) or (n − x, n − y, z), or some reordering of one of these. Of
the resulting 24 parity vectors, there are at most four distinct ones that have
a common minimal first entry. Of these, there is precisely one distinct vector
that has a minimal second entry. We call this vector the main class parity
vector and denote it by [p, q, r], using square brackets to distinguish it from
the original parity vectors. If [p, q, r] is a main class parity vector, then p ≤
q ≤ min{r, n − r}.

The main theorem of [11] is:

Theorem 1.1 [11] Let A and B be two Latin squares of side n, with main
class parity vectors [xA, yA, zA] and [xB , yB, zB] respectively. If there exist Latin
squares A′ and B′ which are in the same main class as A and B respectively
and which can be biembedded, then

• [xA, yA, zA] = [xB, yB, zB] if n is odd;

• [xA, yA, zA] = [xB, yB, n − zB] if n is even.

2 Parity vectors

We begin this section with some general results about parity vectors of Latin
squares. We go on to show how the main class parity vector of the direct
product A × B of two Latin squares can be calculated from the main class
parity vectors of the constituent squares A and B.

Lemma 2.1 Let A and B be Latin squares of the same side n with parity
vectors (xA, yA, zA) and (xB, yB, zB) respectively. Then

xA + yA + zA ≡ xB + yB + zB (mod 2).

Proof. Define bijections ρr, ρc, ρe : A → B by

ρr(ri, cj, ek) = (βB
c,j(ek), cj, ek),

ρc(ri, cj, ek) = (ri, β
B
e,k(ri), ek),

ρe(ri, cj, ek) = (ri, cj, β
B
r,i(cj)),
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for all (ri, cj, ek) ∈ A. Then

ρ−1
r (ri, cj, ek) = ((βA

e,k)
−1(cj), cj, ek),

ρ−1
c (ri, cj, ek) = (ri, (β

A
r,i)

−1(ek), ek),

ρ−1
e (ri, cj, ek) = (ri, cj, (β

A
c,j)

−1(ri)),

for all (ri, cj , ek) ∈ B. To see this note that, for example, if (ri, cj, ek) ∈ A
then ri = βA

c,j(ek). Thus ρr maps (βA
c,j(ek), cj, ek) to (βB

c,j(ek), cj, ek), and so ρ−1
r

maps (βB
c,j(ek), cj, ek) to (βA

c,j(ek), cj, ek). But by the definition of the bijections
βA

α,i, we have βA
c,j(ek) = (βA

e,k)
−1(cj).

We form the compositions

ρ−1
c ρe(ri, cj , ek) = (ri, (β

A
r,i)

−1βB
r,i(cj), β

B
r,i(cj)),

ρ−1
e ρr(ri, cj , ek) = (βB

c,j(ek), cj, (β
A
c,j)

−1βB
c,j(ek)),

ρ−1
r ρc(ri, cj , ek) = ((βA

e,k)
−1βB

e,k(ri), β
B
e,k(ri), ek),

each of which is a permutation on A. If we consider the action of ρ−1
c ρe on

a fixed row i of A, we have a permutation of that row which is isomorphic
to (βA

r,i)
−1βB

r,i. Thus this row permutation has even parity if and only if γA
r,i

and γB
r,i have the same parity. Now the entire permutation ρ−1

c ρe is simply the
composition of each of these row permutations, so it will have the same parity
as xA + xB. Likewise ρ−1

e ρr and ρ−1
r ρc will have the same parity as yA + yB

and zA + zB respectively. But (ρ−1
c ρe)(ρ

−1
e ρr)(ρ

−1
r ρc) is the identity. Hence

xA + xB + yA + yB + zA + zB is even.

Lemma 2.2 Let L be a symmetric Latin square of side n with parity vector
(x, y, z). Then the following must hold.

(1) x = y.

(2) If L is idempotent then n must be odd and

z =

{

0, if n ≡ 1 (mod 4),
n, if n ≡ 3 (mod 4).

(3) If L is half-idempotent then n must be even and z = n/2.

(4) If L is unipotent then n must be even and

z =

{

0, if n ≡ 0 (mod 4),
n − 1, if n ≡ 2 (mod 4).
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Proof. Since L is symmetric, for each i, row i has the same parity as column i
(that is, γL

r,i and γL
c,i have the same parity), and therefore x = y, which proves

(1). If (i, j, k) ∈ L then by symmetry (j, i, k) ∈ L; hence γL
e,k(ci) = cj and

γL
e,k(cj) = ci, implying that the column permutation γL

e,k consists entirely of
fixed points and involutions, for each k. A fixed point in γL

e,k corresponds to
an occurrence of entry k on the main diagonal. If we subtract the number
of such occurrences from n and then divide by two, we obtain the number of
involutions in γL

e,k, and the parity of this number is the parity of γL
e,k. If L

is idempotent then every permutation γL
e,k contains precisely one fixed point.

Hence n is odd and the parity of γL
e,k is even if n ≡ 1 (mod 4) and odd if

n ≡ 3 (mod 4). If L is half-idempotent then, by definition, n is even, half of
the permutations γL

e,k consist of two fixed points and (n − 2)/2 involutions,
and the other half consist of n/2 involutions. If L is unipotent then one
permutation γL

e,k is the identity and all the others consist of n/2 involutions.
Hence n must be even and the parity of γL

e,k must be even if n ≡ 0 (mod 4)
and odd if n ≡ 2 (mod 4). Results (2), (3) and (4) follow.

Lemma 2.3 Let [x, y, z] be the main class parity vector of a Latin square of
side n. Then x + y + z is even if n ≡ 0 or 1 (mod 4), and odd if n ≡ 2 or
3 (mod 4).

Proof. For all odd n there exists a symmetric, idempotent Latin square of
side n, and for all even n there exists a symmetric, half-idempotent Latin
square of side n. Thus by Lemma 2.2 for all n ≡ 0 or 1 (mod 4) there exists a
Latin square of side n, with parity vector (x, y, z), where x+ y + z is even and
for all n ≡ 2 or 3 (mod 4) there exists a Latin square of side n, with parity
vector (x, y, z), where x + y + z is odd. Therefore, by Lemma 2.1, the result
holds for every Latin square of side n.

Lemma 2.4 Let A and B be Latin squares of side a and b respectively, with
parity vectors (xA, yA, zA) and (xB, yB, zB) respectively. Then the parity vector
of A × B is































(0, 0, 0), a even, b even,
(bxA, byA, bzA), a even, b odd,
(axB, ayB, azB), a odd, b even,
(bxA + axB − 2xAxB,
byA + ayB − 2yAyB,
bzA + azB − 2zAzB), a odd, b odd.

Proof. In order for the parity vectors to be well defined we must have ar-
bitrary but fixed orderings of the rows, column and entry sets of A and B.
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Take (r1, r2, · · · ra), (c1, c2, · · · ca), and (e1, e2, · · · ea) for A, and (r′1, r
′

2, · · · r
′

b),
(c′1, c

′

2, · · · c
′

b), and (e′1, e
′

2, · · · e
′

b) for B. Then

A × B =
{

((ri, r
′

p), (cj, c
′

q), (ek, e
′

s)) | (ri, cj , ek) ∈ A, (r′p, c
′

q, e
′

s) ∈ B
}

.

Using the orderings in A and B, we can order the rows, columns and entries of
A×B; take ((r1, r

′

1), (r1, r
′

2), · · · , (r1, r
′

b), (r2, r
′

1), · · · , (ra, r
′

b−1), (ra, rb)) for the
rows, and similarly for the columns and entries. Thus the β and γ functions
are well defined on A × B.

From the definition of A × B we have

βA×B
(ri,r′p)(cj , c

′

q) = (βA
r,i(cj), β

B
r′,p(c

′

q)),

hence
γA×B

(ri,r′p)(ej , e
′

q) = (γA
r,i(ej), γ

B
r′,p(e

′

q)).

Thus we see that the permutation corresponding to row (ri, r
′

p) of A × B
consists of the composition of b copies of γA

r,i and a copies of γB
r′,p.

If a and b are both even, then every row of A×B will have even parity, so
xA×B = 0. If a is even and b is odd, then γA×B

(ri,r′p) will have the same parity as

γA
r,i, thus xA×B = bxA; similarly if a is odd and b is even, xA×B = axB . Finally,

if a and b are both odd, then γA×B
(ri,r′p) will be odd if γA

r,i is odd and γB
r,p′ is even,

or vice-versa; thus

xA×B = xA(b − xB) + (a − xA)xB = bxA + axB − 2xAxB.

The proofs for yA×B and zA×B are similar.

3 Steiner quasigroups and Steiner loops

First we recall the definitions of a Steiner quasigroup and a Steiner loop. A
Steiner triple system of order n is a pair (V,B) where V is an n-element set
(the points) and B is a collection of 3-element subsets (the blocks) of V such
that each 2-element subset of V is contained in exactly one block of B. It is
well known that a Steiner triple system of order n (briefly STS(n)) exists if
and only if n ≡ 1 or 3 (mod 6) [10]. Given an STS(n), (V,B), we may define
a binary operation ∗ on V by x ∗ x = x, x ∈ V and x ∗ y = z if {x, y, z} ∈ B.
Then (V, ∗) is a Steiner quasigroup or squag of order n. Alternatively define
on V ∪ {∞} an operation ◦ by x ◦ x = ∞, ∞ ◦ x = x ◦∞ = x, x ∈ V ∪ {∞}
and x ◦ y = z if {x, y, z} ∈ B. Then (V ∪ {∞}, ◦) is a Steiner loop or sloop of
order n + 1.
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Theorem 3.1 Let (V,B) be an STS(n) and let (V, ∗) be the associated Steiner
quasigroup. Further, let L be the Latin square formed from the Cayley table of
(V, ∗). Then the main class parity vector of L is

[0, 0, n] if n ≡ 3 or 7 (mod 12),
[0, 0, 0] if n ≡ 1 or 9 (mod 12).

Proof. Let (x, y, z) be the parity vector of L. Since a Steiner quasigroup is
symmetric and idempotent, Lemma 2.2 implies that x = y and that z = n if
n ≡ 3 (mod 4) and z = 0 if n ≡ 1 (mod 4). Let {a, b, c} ∈ B, then a∗b = c and
a ∗ c = b, further γL

r,a(eb) = ec and γL
r,a(ec) = eb. Hence γL

r,a has even parity if
(n− 1)/2 is even and odd parity otherwise. Thus x = y = 0 if n ≡ 1 (mod 4),
and x = y = n if n ≡ 3 (mod 4). Consequently the parity vector of L is
given by (0, 0, 0) if n ≡ 1 (mod 4), and by (n, n, n) if n ≡ 3 (mod 4). After
noting that when n ≡ 3 (mod 4) the main class parity vector is given by
[n − x, n − y, z], the result follows.

Theorem 3.2 Let (V,B) be an STS(n− 1) and let (V ∪ {∞}, ◦) be the asso-
ciated Steiner loop. Further, let L be the Latin square formed from the Cayley
table of (V ∪ {∞}, ◦). Then the main class parity vector of L is

[0, 0, 0] if n ≡ 4 or 8 (mod 12),
[1, 1, n − 1] if n ≡ 2 or 10 (mod 12).

Proof. Let (x, y, z) be the parity vector of L. We note that L is a symmetric
unipotent Latin square. Hence Lemma 2.2 implies that x = y and that z = 0
if n ≡ 0 (mod 4) and z = n − 1 if n ≡ 2 (mod 4). The bijection γL

r,∞ is
the identity permutation. Further, γL

r,a(e∞) = ea and γL
r,a(ea) = e∞, while if

{a, b, c} ∈ B, then γL
r,a(eb) = ec and γL

r,a(ec) = eb. Hence γL
r,a has even parity if

n/2 is even and odd parity otherwise. Thus x = y = 0 if n ≡ 0 (mod 4), and
x = y = n − 1 if n ≡ 2 (mod 4). When n ≡ 2 (mod 4) the main class parity
vector is given by [n − x, n − y, z] and the result follows.

4 Groups

We begin this section with a general result concerning the parity vector of the
Cayley table of any group, and then use this result to determine the main class
parity vector of the Latin square formed from the Cayley table of the cyclic
group and, ultimately, of any Abelian group. But first let G be any group of
order n. If g ∈ G is an element of order m, then the index of g is defined to
be the integer n/m.
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Lemma 4.1 Let A be a Latin square formed from the Cayley table of a group
G of order n. Let H = {g ∈ G | g has even order and odd index}. Let K =
{g ∈ G | g has order 3 or greater}. Then |K| is even, and

(xA, yA, zA) =

{

(|H|, |H|, |H|), if |K|/2 is even,
(|H|, |H|, n− |H|), if |K|/2 is odd.

In particular,

(xA, yA, zA) =

{

(0, 0, 0), if n ≡ 1 (mod 4),
(0, 0, n), if n ≡ 3 (mod 4).

Proof. Let g be any element of G, with order m and index n/m. Then
γA

r,g(ex) = egx, γA
c,g(rx) = rxg−1 and γA

e,g(cx) = cx−1g. Thus, for α ∈ {r, c}, the
permutation γA

α,g can be written as n/m cycles of length m, with one of the
cycles being (g, g2, g3, . . . , gm) if α = r, or (gm, gm−1, gm−2, . . . , g) if α = c.
Thus the parity of γA

α,g is odd if and only if m is even and n/m is odd; that is,
if and only if g ∈ H . If the order of G is odd, then the order of each element
in G is odd and so H is empty.

This leaves only the calculation of zA. Note that γA
e,g = Pg ◦ Q, where

Q(cx) = cx−1 and Pg(cx) = cxg. By the reasoning above, Pg will have odd
parity if and only if g ∈ H . The permutation Q, which is independent of g,
consists of one or more fixed points, and cycles of length 2 involving pairs of
elements from K. It follows that |K| will be even, and the parity of Q will be
the parity of |K|/2. We have the parity of Pg, Q and hence γA

e,g(cx), and the
result follows.

Note that if G is any group of even order whose Sylow 2-subgroups are not
cyclic, then |H| = 0. To see this, suppose that G has order n = 2st where
s, t ≥ 1 and t is odd. Then for g ∈ G to have even order and odd index, it
must have order 2sr where r | t. But then gr has order 2s and so the subgroup
〈gr〉 of order 2s is cyclic, a contradiction. Hence H = ∅.

Using the preceding lemma, the main class parity vector for any cyclic
group can be determined.

Theorem 4.1 For any n ∈ N, let Cn denote the Latin square formed from the
Cayley table of the cyclic group of order n. Then the main class parity vector
of Cn is:

[xCn
, yCn

, zCn
] =







[n
2
, n

2
, n

2
], if n is even,

[0, 0, 0], if n ≡ 1 (mod 4),
[0, 0, n], if n ≡ 3 (mod 4).
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Proof. If n is odd then the result follows directly from the previous lemma.
If n is even, let n = 2m, m ≥ 1, and suppose that the cyclic group is generated
by an element g. Then the elements g2i−1, 1 ≤ i ≤ m, have even order
and index gcd(2i − 1, n) which is odd. On the other hand the elements g2i,
0 ≤ i ≤ m − 1, have index gcd(2i, n) which is even. Hence |H| = m = n/2,
and the result follows.

We can now determine the main class parity vector for any Abelian group.

Theorem 4.2 Let A be a Latin square formed from the Cayley table of an
Abelian group G of order n. Then the main class parity vector of A is

[xA, yA, zA] =







































[0, 0, 0], if n ≡ 1 (mod 4),
[0, 0, n], if n ≡ 3 (mod 4),
[n
2
, n

2
, n

2
], if n ≡ 2 (mod 4),

[0, 0, 0], if n ≡ 0 (mod 4) and G is isomorphic
to the product of two groups of even order,

[n
2
, n

2
, n

2
], if n ≡ 0 (mod 4) and G is not isomorphic

to the product of two groups of even order.

Proof. By the Fundamental Theorem of finite Abelian groups, G may be
regarded as the direct product of cyclic groups. The result follows from The-
orem 4.1 and Lemma 2.4. The result also follows directly from Lemma 4.1 for
n odd.

Using Lemma 4.1 we may also classify the main class parity vectors for the
dihedral groups and the generalized quaternion groups.

Lemma 4.2 Let n = 2m and let A be a Latin square formed from the Cayley
table of the dihedral group Dm of order n. Then the parity vector of A is

[xA, yA, zA] =















[0, 0, 2m], if m ≡ 0 (mod 4),
[m, m, m], if m ≡ 1 (mod 4),
[0, 0, 0], if m ≡ 2 (mod 4),
[m, m, m], if m ≡ 3 (mod 4).

Proof. The group presentation for the dihedral group Dm can be written
as 〈σ, τ | σm = e, τ 2 = e, τστ = σ−1〉, where e is the identity element. We
assume that the ordering of the rows, columns and entries of Dm is given by
(σ0, σ1, . . . , σm−1, τ, σ1τ, . . . , σm−1τ).

Let H and K be defined as in the statement of Lemma 4.1. Elements of
the form σi, 0 ≤ i ≤ m − 1, have order m/ gcd(i, m), and hence have even
index. Thus none of these elements are in H , but all elements of this form
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are in K except for e and, if m is even, σm/2. The elements of the form σiτ ,
0 ≤ i ≤ m − 1, have order 2 and thus index m. Hence none of these elements
are in K, and if m is even then none of these elements occur in H either;
however, if m is odd then all of these elements occur in H .

It follows that if m is even then |K| = m − 2 and |H| = 0, while if m is
odd then |K| = m − 1 and |H| = m. The result follows from Lemma 4.1.

Lemma 4.3 Let n = 2m, m ≥ 3 and let A be a Latin square formed from
the Cayley table of the generalized quaternion group Qm of order n. Then the
main class parity vector of A is

[0, 0, n].

Proof. The group presentation for the generalized quaternion group Qm

can be written as 〈σ, τ | σn/2 = e, τ 2 = σn/4, τστ−1 = σ−1〉, where e is the
identity element. All elements of the group have even index, and all elements
have order greater than 2 except for the identity and σn/4. The result follows
directly from Lemma 4.1.

5 Main classes admitting no self-embeddings

We now briefly investigate those main classes of Latin squares which admit no
self-embeddings. In particular, we establish a lower bound on the number of
such main classes of Latin squares of side n for every even n.

Lemma 5.1 Let A and B be Latin squares of even side m. Then there is no
biembedding of two Latin squares from the main classes of A×C2 and B×C2.

Proof. This result follows from Theorem 1.1 and Lemma 2.4.

Lemma 5.2 Let A and B be Latin squares of odd side m, and let C and D
be Latin squares of side 6 from the main classes 6.3, 6.4 or 6.10, using the
enumeration in [1]. Then there is no biembedding of two Latin squares from
the main classes of A × C and B × D.

Proof. By Table 3 of [11], C and D will have main class parity vectors
[0, 0, 5], [1, 2, 4] or [1, 1, 1]. Therefore, by Lemma 2.4, A × C and B × D will
have main class parity vectors [0, 0, 5m], [m, 2m, 4m] or [m, m, m]. Since A×C
and B × D have side 6m, the result follows from Theorem 1.1.
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Lemma 5.3 Let A and B be Latin squares formed from the Cayley tables of
Steiner loops of order n. Then there is no biembedding of two Latin squares
from the main classes of A and B.

Proof. This result follows from Theorem 1.1 and Theorem 3.2.

Using known results on the number of distinct Latin squares of side n and
the number of distinct Steiner triple systems of order n, the following estimate
may be obtained.

Theorem 5.1 Let n be a positive even integer. Then there exists a set Hn of
Latin squares of side n, such that no two squares from Hn may be biembedded
together and for which

|Hn| ≥











n
n2

4
(1−o(1)) if n ≡ 0 (mod 4),

n
n2

36
(1−o(1)) if n ≡ 0 (mod 6),

n
n2

6
(1−o(1)) if n ≡ 2 or 4 (mod 6).

Proof. We deal first with the case n ≡ 0 (mod 4). The number L(m) of
distinct Latin squares of side m satisfies L(m) ≥ (m!)2mm−m2

([1], page 141).

Using the estimate m! > (2πm)
1

2 mme−m gives L(m) > mm2(1−o(1)). Now take
m even and apply Lemma 5.1 to obtain L(m) distinct Latin squares of side
n = 2m, no two of which can be biembedded together. Hence for n ≡ 0 (mod
4),

|Hn| ≥
(n

2

)
n2

4
(1−o(1))

= n
n2

4
(1−o(1)).

The case n ≡ 0 (mod 6) is dealt with similarly using Lemma 5.2. Finally,
the case n ≡ 2 or 4 (mod 6) follows from Lemma 5.3 together with the estimate

N(m) = m
m2

6
(1−o(1)) for the number N(m) of distinct Steiner triple systems of

order m ([2], page 70 et seq.).

We remark that the cardinality of Hn should be compared with the total
number of distinct Latin squares of side n, namely nn2(1−o(1)).

Corollary 5.1 Let n be a positive even integer, and let f(n) be the number of
main classes of Latin squares of side n which admit no self-embeddings. Then

f(n) ≥











n
n2

4
(1−o(1)) if n ≡ 0, 4 or 8 (mod 12),

n
n2

6
(1−o(1)) if n ≡ 2 or 10 (mod 12),

n
n2

36
(1−o(1)) if n ≡ 6 (mod 12).
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Proof. The cardinality of a main class of Latin squares of side n is at most
3!(n!)3 and for any positive constant a, nan2

/3!(n!)3 = nan2(1−o(1)). Applying
Theorem 5.1 and writing the results modulo 12 gives the stated inequalities.

In conclusion, we note that the number of nonisomorphic biembeddings of

Latin squares of side n is known to be at least n
n2

144
(1−o(1)) for an infinite set

of values of n [4]. An obvious upper bound for this quantity is n2n2(1−o(1)),
obtained by considering the number of pairs of Latin squares of side n. For
self-embeddings, the corresponding obvious upper bound is nn2(1−o(1)), but no
comparable lower bound is currently known.
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