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SYMMETRIC IDENTITIES FOR EULER POLYNOMIALS

YONG ZHANG, ZHI-WEI SUN AND HAO PAN

ABSTRACT. In this paper we establish two symmetric identities on sums of prod-
ucts of Euler polynomials.

1. INTRODUCTION

The Bernoulli numbers By, By, By, ... are rational numbers given by

. 1
B(]:l, and Z(n_]i;_ )BkIOfornzl,Q,?),....
k=0

The Euler numbers Ey, Ey, Fs, ... are integers determined by

Ey=1, and Z (Z)Ek:O forn=1,2,3,....
k=0

2n—k

Let N = {0,1,2,...}. The Bernoulli polynomials B, (x) (n € N) and the Euler
polynomials E,(z) (n € N) are defined by

By =3 (Z) By and B, () = 3 (Z) % (x - %)H

k=0 k=0

It is well known that
A(B,(z)) = na" ' and A*(E,(z)) = 22"
for all n € N, where we set
A(P(z)) = P(x+1) — P(z) and A*(P(x)) = P(x + 1) + P(x)

for any polynomial P(z). Bernoulli and Euler numbers and polynomials play
important roles in many fields including number theory and combinatorics.

In 2006 Z. W. Sun and H. Pan [6] established the following theorem which unifies
many curious identities concerning Bernoulli and Euler numbers and polynomials.
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Theorem 1.1 (Sun and Pan, 2006). Let n be a positive integer and let x+y+z = 1.
(i) If r,s,t are complex numbers with r + s+t = n, then we have the symmetric

relation
r[s t} +s[t T] +t[r S] —0
Ty, y =, z oz,

L; ?jn B i(_l)k <lf;) (n i k) By k() Br(y)-

k=0

where

(ii) Ifr+s+t=mn—1, then

;“ o[
B () (.2 Josnss

nio ( ) ( ik)B () Enp(2).

Recently, by a sophisticated application of the generating function method, A.
M. Fu, H. Pan and F. Zhang [2] extended Theorem 1.1(i) of Sun and Pan to an
identity on sums of products of m > 2 Bernoulli polynomials.

In this paper we obtain a general identity only involving Euler polynomials and
also give an extension of Theorem 1.1(ii) which involves both Bernoulli and Euler
polynomials.

l\DIﬂ
S

Theorem 1.2. Let m and n be positive integers, and let ro,r1,...,Tm be complex
numbers with ro +r1 + -+ 1, =n — 1.
(i) If m is odd, then we have the symmetric relation

> II(})eue

ki, km>0 j=1

=3 2 (P)E-a) IT () Bl = o 1. 1)
i=1 kiyonkm>0 N 1<j<m N

where 1,5, takes 1 or 0 according as j > i or not.
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(ii) If m is even, then

To ’f’]
Doy () Ee
km>0  j=1
k1+ +km—n 1

:i(—n" > (2)Bki(1—x,~) I1 (k)Ek( g+ 1), (1.2)
¥ Lgzm 2

Remark 1.1. If r + s+t =n — 1, then ([.2)) in the case m = 2 gives

S ()ma-n(, | y)Ea

:_g <Z)Bk(1 —(1 —y))(nik)En—k(w— (I-y)+1)
+§ (;)Bk(l—x)<n_k)E (1—y)—=)

k=0
which is equivalent to the identity of Sun and Pan in Theorem 1.1(ii) since Ej(1 —
r) = (=1 E(2).

Our proof of Theorem given in the next section involves the difference op-
erator A and its companion operator A*. We can also show Theorem via the
generating function approach.

Let k£ be any nonnegative integer. It is well known that By = 0 if k£ is odd and
greater than one. By [Il pp. 804-808],

2 T

B (%) =@ 0B and Bio) = s (Benle) - 24 B (5))

Thus
Bitq

k+1
In view of these, Theorem [[.2]in the case x; = --- = x,, = 1/2 yields the following
consequence involving Euler numbers and Bernoulli numbers.

(—DFEL(1) = EL(0) = 2(1 — 281

Corollary 1.1. Let m and n be positive integers, and let ro, 71, ..., m be complex
numbers with ro +r1 +---+ 71, =n — 1.
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(1) If m is odd, then

SIS In(;)=

km>0 =1
kl‘l’ +km—n
m . . DL 7 T ~
:Z(_l)z Z (_1)\{2<J§m. k;j>0}| (]{;0) E, H (kj) Bkj+1> (1.3)
i=1 E1,eookm >0 ! 1<j<m N

where By = 28(28 — 1)By,/k for k=1,2,3,....
(i) If m is even, then

ESIY H(TJ)Ek

km>0  j=1
k1+ +km—n 1

:i(_l)i Z (—1)Hi<ism: kj>0}|(7];(:)(2ki_2)3ki H (Z)BW. (1.4)

1<j<m
ki+-+km=n J£i
2. PROOF OF THEOREM

As usual we let C denote the field of complex numbers. By [4] Lemma 3.1], for
P(z),Q(x) € Clz], we have P(x) = Q(z) if A*(P(z)) = A*(Q(x)). This property
will play a central role in our proof of Theorem L2

Lemma 2.1. Let P(x),---, Py(z) € Clx]. Then
Pi(z) Y (=1)A*(P(z) [ Pix+ 1)

1<i<m 1<Jj?£<lm
_ A (P() - Po(x) = A (Py(x)) Po(2 + 1) - - Pu(x 1) if 24 m,
A*(Py(z) - Pp(z)) — AP (2)Po(x+ 1) - Pp(z+ 1) if2|m.

Proof. Observe that

> (=D)A(Pi(x) ] Pilz+1;4)

1<i<m 1<j<m
J#i
-y (<—1>2‘ T Pt 10— (0 ] Pj<x+1]-<i+1>)
1<i<m 1<j<m 1<j<m

2 1[I Pi@) = 0™ I Pia+1).

1<j<m 1<gj<m



SYMMETRIC IDENTITIES FOR EULER POLYNOMIALS 5

Therefore
Pi(z) Y (=1)A*(P(z) [ Pix+ 1)
1<i<m 1<j<m
J#i
=Pi(2) - Pu(2) + (-1)"Pi(2) [ Pia
1<]<m
=A*(Pi(z) -+ Pn(2)) = (Pi(z + 1)+ (=1)"'Pi(x)) [] Pil=
1<j<m
This proves the desired identity. U
Lemma 2.2. Let ag,ag,a1,a; ..., a,,a, be complexr numbers, and set
e . "k
a0 = ()0l ana ) =3 (7) -var

1=0 1=0

fork=0,...,n. Letro+mr1+---+r, =n—1. Then

k1yekm > =2
ki+-+km=n
r e
Cx (i)
Kiyonkm>0 N1 =\
1seesRm = J
Also, for any i =2,...,m we have
To T T —
Z <]€1)Ak1(_xl)</{;i) (z —Il)k H <kj)Akj( — 1)
k1,.eeskim >0 2<j<m
kit +km=n J#i
r T i\ «
= ¥ @ —w)™ () A (=) T () Ak (e —2). (2.2)
kq k; : k;
k1yeoeskm >0 2<j<m
k1+-+km=n J#i

Proof. By Remark 1.1 of Sun [5],

k

A(z+y) =) (l;)xk_lAl(y) and Ag(z +y) = i( )

=0
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for every kK =0,...,n. Observe that

K1,y km=>0 Jj=2
k1+“‘+k5m:n
m kj
To k1 T kj
- 2 @) () S ()
Fipkm>0 N1 j=2 N/ =0 N
ki+-+km=n

_ LT (7 ro\ 7T (75—l
= Z (—z1)" | (l‘)Alj(xj) Z ’ (kl) H (k _ l-)'
J k120, k>l (1<j<m) j=2 N

Lt +lm=n ki+-+km=n

Given ly,...,l,, € Nwith l; +---+,, = n, by the Chu-Vandermonde convolution
identity (cf. [3 (5.22)]), we have

To - r; — lj
2 . (k‘l) H (kj - lj)
k120, k; > (1<j<m) j=2

(P ) () o)

So (2] follows.
(22) can be proved similarly. Let ¥ denote the left-hand side of (2:2]). Then

o (331 3 e

1

ki,... km>0 1;=0
kj e
<l <I<:J) > (z?) (2 =200 Ay (2 — @)
1<j<m N7 =0 N
J#i
T T _
= > (w-m) (f)Azi(—xi) I1 (/,)Azj (e — )
1yl >0 ¢ 1<j<m N7
li++lm=n YE=
o — lz T ’f’j — lj
o G
ki>l; (1<j<m & j#i) Fi— i) \Fi 1<j<m kj =1
ki>0, k1+-+km=n J#i
T T — r
I1,0e sl >0 i 1<j<m J 1
L+ +Hlm=n jZi

This concludes the proof. O
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Remark 2.1. If we set a; = (—1)'B; and @, = (—1)'Ey(0) for [ =0,...,n
2.2, then Ag(t) = Bi(t) and Ag(t) = Ex(t) for any £k =0,...,n.

Proof of Theorem[L.2 We fix xo, ..., 2.
(i) Suppose that m is odd. Set

A"(P(x1))
_ S i To T ks Tj
_Z(—l) Z (k‘l)Ekl(l —1’1)<kl)2(l’, —1’1) ‘ (k‘])EkJ(
i=2 k1,..skm =0 2<j<m
ki+-+km=n YE)
To 1 o T
+ ) <k1)2(_;€1)k H <kj)Ek] (z; — 27)
ki,...s km=0 Jj=2
kit +km=n

With the help of Lemma 2.2, we have

A"(P (1))
23y Y (e -ar () ea-m T (2)5
kq ‘ k; ‘ ' k; J
=2 k1,eoskm=0 2<j<m
ki1+-+km=n YD)
2 > (! xkﬁ ) By, ()
kl 1 ‘ kj 3 \"J
k1,.. km=0 Jj=2
k14 +km=n

It follows that A*(P(z1)) = A*(Q(x1)), where

7

in Lemma

Z’j — T + 1j>i)

A= X ()=o) T1 () Bt -+ 100

1<i<m ki,..., km,

+ Y ﬁ(;i)Ekj(xj).

ki, km>0 j=1

Therefore P(z1) = Q(z1) by [4 Lemma 3.1]. This proves (LLTI).
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(ii) Now assume that m is even. Define
_ "o (7
P(z)= Y (kl)B,ﬁ(l —zl)g (kj)Ekj(xj — oz +1).

For k1 =0,1,2, ..., clearly

o 1= (G ofz

(As usual () is regarded as 0.) Thus, by Lemma 21 we have
A*(P(x1))

=2 ki,....k ) <
k1+tkm=n i
To — r;
— 7T Z ( Okl )(_xl)kl H (]{;j) Ey, (xj — 7).
K1y kem >0 1<j<m
ki++km=n—1
With the help of Lemma 2.2]
A*(P(21))
" i T1 k To Ts
=2 k1,..e,km >0 1<j<m
k14 t+km=n jZi
T1 ]
w2 (D) T () B
K1,y kem >0 1<j<m

SN (e

ki, km>0  j=1
kit +km=n—1

Therefore, P(x;) coincides with Q(z;) by [4, Lemma 3.1]. So (L2) holds. This
concludes the proof. O
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