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EVERY LARGE POINT SET CONTAINS

MANY COLLINEAR POINTS OR AN EMPTY PENTAGON

ZACHARY ABEL, BRAD BALLINGER, PROSENJIT BOSE, SÉBASTIEN COLLETTE,

VIDA DUJMOVIĆ, FERRAN HURTADO, SCOTT D. KOMINERS, STEFAN LANGERMAN,

ATTILA PÓR, AND DAVID R. WOOD

Abstract. We prove the following generalised empty pentagon theorem: for every

integer ℓ ≥ 2, every sufficiently large set of points in the plane contains ℓ collinear

points or an empty pentagon. As an application, we settle the next open case of the

“big line or big clique” conjecture of Kára, Pór, and Wood [Discrete Comput. Geom.

34(3):497–506, 2005].

1. Introduction

While the majority of theorems and problems about sets of points in the plane assume

that the points are in general position, there are many interesting theorems and problems

about sets of points with collinearities. The Sylvester-Gallai Theorem and the orchard

problem are some examples; see [6]. The main contribution of this paper is to extend

the ‘empty pentagon’ theorem about point sets in general position to point sets with

collinearities.

1.1. Definitions. We begin with some standard definitions. Let P be a finite set of

points in the plane. We say that P is in general position if no three points in P are

collinear. Let conv(P ) denote the convex hull of P . We say that P is in convex position

if every point of P is on the boundary of conv(P ). A point v ∈ P is a corner of P if

conv(P − v) 6= conv(P ). We say that P is in strictly convex position if each point of P

is a corner of P . A strictly convex k-gon is the convex hull of k points in strictly convex

position. If X ⊆ P is a set of k points in strictly convex position and conv(X)∩P = X,

then conv(X) is called a k-hole (or an empty strictly convex k-gon) of P . A 4-hole is

called an empty quadrilateral, a 5-hole is called an empty pentagon, a 6-hole is called an

empty hexagon, etc.
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For distinct points a, b, c in the plane, let ∆[a, b, c] be the closed triangle determined

by a, b, c, and let ∆(a, b, c) be the open triangle determined by a, b, c. For integers

n ≤ m, let [n,m] := {n, n+ 1, . . . ,m} and [n] := [1, n].

1.2. Erdős-Szekeres Theorem. The Erdős-Szekeres Theorem [16] states that for ev-

ery integer k there is a minimum integer ES(k) such that every set of at least ES(k)

points in general position in the plane contains k points in convex position (which are

therefore in strictly convex position). See [2, 6, 28, 34] for surveys of this theorem. The

following generalisation of the Erdős-Szekeres Theorem for point sets with collinearities

is easily proved by applying a suitable perturbation of the points (see Section 3):

Theorem 1. For every integer k every set of at least ES(k) points in the plane contains

k points in convex position.

The Erdős-Szekeres Theorem generalises for points in strictly convex position as

follows:

Theorem 2. For all integers ℓ ≥ 2 and k ≥ 3 there is a minimum integer ES(k, ℓ) such

that every set of at least ES(k, ℓ) points in the plane contains:

• ℓ collinear points, or

• k points in strictly convex position.

Of course, the conclusion in Theorem 2 that there is a large set of collinear points

is unavoidable, since a large set of collinear points only contains two points in strictly

convex position. Theorem 2 is known (it is Exercise 3.1.3 in [26]), but as far as we are

aware, no proof of it has appeared in the literature and no explicit bounds on ES(k, ℓ)

have been formulated. To illustrate various proof techniques in geometric Ramsey

theory, we present three proofs of Theorem 2. The first proof finds a large subset of

points in general position and then applies the standard Erdős-Szekeres theorem (see

Lemma 9). The second proof first applies Theorem 1 to obtain a large subset in convex

position, in which a large subset in strictly convex position is found (see Lemma 8).

The third proof is based on Ramsey’s Theorem for hypergraphs (see Section 4).

1.3. Empty Polygons. Attempting to strengthen the Erdős-Szekeres Theorem, Erdős

[12] asked whether for each fixed k every sufficiently large set of points in general position

contains a k-hole. Harborth [20] answered this question in the affirmative for k ≤ 5,

by showing that every set of at least ten points in general position contains a 5-hole.

On the other hand, Horton [21] answered Erdős’ question in the negative for k ≥ 7, by

constructing arbitrarily large sets of points in general position that contain no 7-hole.

The remaining case of k = 6 was recently solved independently by Gerken [18] and

Nicolás [29], who proved that every sufficiently large set of points in general position
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contains a 6-hole. See [3, 4, 7, 8, 10, 22, 24, 25, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41] for

more on empty convex polygons.

The above results do not immediately generalise to sets with a bounded number of

collinear points by simply choosing a large subset in general position as in the first proof

of the Erdős-Szekeres Theorem (since the deleted points might ‘fill a hole’). Neverthe-

less, we prove the following ‘generalised empty pentagon’ theorem, which is the main

contribution of this paper (proved in Section 5).

Theorem 3. For every integer ℓ ≥ 2, every finite set of at least ES( (2ℓ−1)ℓ−1
2ℓ−2 ) points

in the plane contains

• ℓ collinear points, or

• a 5-hole.

Note that Eppstein [11] characterised the point sets with no 5-hole in terms of the

acyclicity of an associated quadrilateral graph. However, it is not clear how this result

can be used to prove Theorem 3. Earlier, Rabinowitz [33] defined a set of points with

no 5-hole to have the pentagon property.

1.4. Big Line or Big Clique Conjecture. Theorem 3 has an important ramification

for the following “big line or big clique” conjecture by Kára et al. [23]. Let P be a finite

set of points in the plane. Two distinct points v,w ∈ P are visible with respect to P

if P ∩ vw = {v,w}, where vw denotes the closed line segment between v and w. The

visibility graph of P has vertex set P , where two distinct points v,w ∈ P are adjacent

if and only if they are visible with respect to P .

Conjecture 4 ([23]). For all integers k and ℓ there is an integer n such that every finite

set of at least n points in the plane contains:

• ℓ collinear points, or

• k pairwise visible points (that is, the visibility graph contains a k-clique).

Conjecture 4 has recently attracted considerable attention [1, 23, 27]. It is trivially

true for ℓ ≤ 3 and all k. Kára et al. [23] proved it for k ≤ 4 and all ℓ. Addario-Berry

et al. [1] proved it in the case that k = 5 and ℓ = 4. Here we prove the next case of

Conjecture 4 for infinitely many values of ℓ.

Theorem 5. Conjecture 4 is true for k = 5 and all ℓ.

Proof. By Theorem 3, every sufficiently large set of points contains ℓ collinear points

(in which case we are done) or a 5-hole H. Let H ′ be a 5-hole contained in H with

minimum area. Then the corners of H ′ are five pairwise visible points (otherwise there

is a 5-hole contained in H with less area, as illustrated in Figure 1). �



4 ABEL ET AL.

Figure 1. Every 5-hole contains five pairwise visible points.

2. Points in Convex Position

In this section we consider the following problem (which will be relevant to the proofs

of Lemma 8 and Theorem 3 to come): given a set P of points in convex position, choose

a large subset of P in strictly convex position. For integers k ≥ 1 and ℓ ≥ 1, let q(k, ℓ) be

the minimum integer such that every set of at least q(k, ℓ) points in the plane in convex

position contains ℓ collinear points or k points in strictly convex position. Trivially, if

k ≤ 2 or ℓ ≤ 2 then q(k, ℓ) = min{k, ℓ}. Since every set of points with no three points in

strictly convex position is collinear, q(3, ℓ) = ℓ for all ℓ ≥ 1. Since every set of points in

convex position with no three collinear points is in strictly convex position, q(k, 3) = k

for all k ≥ 1.

Lemma 6. For all ℓ ≥ 3 and k ≥ 3,

(1) q(k, ℓ) =







1
2(ℓ− 1)(k − 1) + 1 , if k is odd

1
2(ℓ− 1)(k − 2) + 2 , if k is even.

Proof. Let f(k, ℓ) denote the right-hand-side of (1).

We first prove the lower bound on q(k, ℓ) for odd k ≥ 5, the case k = 3 having been

proved above. As illustrated in Figure 2(a), let P be a set consisting of ℓ− 1 points on

every second side of a convex (k − 1)-gon. Thus P has 1
2(k − 1)(ℓ − 1) points with no

ℓ collinear points and no k in strictly convex position (since at most two points from

each side are in strictly convex position). Hence q(k, ℓ) > 1
2(ℓ − 1)(k − 1), which is an

integer. Thus q(k, ℓ) ≥ 1
2 (ℓ− 1)(k − 1) + 1 = f(k, ℓ).

Now we prove the lower bound on q(k, ℓ) for even k ≥ 4. For k = 4, a set of ℓ − 1

collinear points plus one point off the line has no four points in strictly convex position;

hence q(4, ℓ) ≥ ℓ+ 1. Now assume k ≥ 6. As illustrated in Figure 2(b), let P be a set

consisting of ℓ − 1 points on every second side of a convex (k − 2)-gon, plus one more

point not collinear with any two other points. Thus P has 1
2 (ℓ − 1)(k − 2) + 1 points

with no ℓ collinear points and no k in strictly convex position (since at most two points

from each ‘long’ side are in strictly convex position plus the one extra point). Hence

q(k, ℓ) > 1
2(ℓ−1)(k−2)+1, which is an integer. Thus q(k, ℓ) ≥ 1

2(ℓ−1)(k−2)+2 = f(k, ℓ).
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(a) (b)

Figure 2. Extremal examples for ℓ = 6 and (a) k = 9 and (b) k = 8.

We now prove the upper bound q(k, ℓ) ≤ f(k, ℓ) for ℓ ≥ 3 and k ≥ 1. We proceed by

induction on k ≥ 1. The cases k ∈ {1, 2, 3} or ℓ = 3 follow from the discussion at the

start of the section. Now assume that k ≥ 4 and ℓ ≥ 4. Let P be a set of at least f(k, ℓ)

points in convex position with no ℓ collinear points and no k points in strictly convex

position. Let v1, . . . , vm be the corners of P in clockwise order, where vm+1 := v1 and

v0 := vm. Let Pi := P ∩ vivi+1 for each i ∈ [m]. Thus |Pi| ∈ [2, ℓ − 1] for each i ∈ [m].

Suppose that |Pi| ≥ 4 for some i ∈ [m]. Thus |P −Pi| ≥ f(k, ℓ)− (ℓ−1) = f(k−2, ℓ).

By induction, P −Pi has a subset S of k− 2 points in strictly convex position (since P

and thus P − Pi has no ℓ collinear points). Thus S plus two internal points on Pi form

a subset of k points in strictly convex position, which is a contradiction. Now assume

that |Pi| ≤ 3 for all i ∈ [m].

Suppose that |Pi| = 2 for some i ∈ [m]. Say t, u, v, w, x, y are the consecutive points

on the boundary of conv(P ), where Pi = {v,w}. Since {u, v, w, x} are in strictly convex

position, assume that k ≥ 5. Thus |P − {t, u, v, w, x, y}| ≥ f(k, ℓ)− 6 ≥ f(k− 4, ℓ). By

induction, P −{t, u, v, w, x, y} has a subset S of k− 4 points in strictly convex position

(since P and thus P − {t, u, v, w, x, y} has no ℓ collinear points). Since |Pi−1| ≤ 3 and

|Pi+1| ≤ 3, it follows that S ∪ {u, v, w, x} is a set of k points in strictly convex position,

which is a contradiction.

Now assume that |Pi| = 3 for all i ∈ [m]. Thus |P | = 2m. As illustrated in Figure 3,

let S consist of each of the m non-corner points of P , plus every second corner point

(where in the case of odd m, we omit two consecutive corners from S). Thus S is a

set of at least 1
2(3m − 1) points in strictly convex position. We have |P | ≥ f(k, ℓ),

which, since ℓ ≥ 4, is at least 3
2k − 1. Since no k points are in strictly convex position,

|S| ≤ k − 1 and

8(k − 1) ≥ 8|S| ≥ 12m− 4 = 6|P | − 4 ≥ 6(32k − 1)− 4 = 9k − 10 ,

implying k ≤ 2, which is a contradiction. �
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(a) (b)

Figure 3. The case |Pi| = 3 for all i ∈ [m] where (a) m = 6 and (b)

m = 7. Dark points are in S.

3. Generalisations of the Erdős-Szekeres Theorem

In this section we prove Theorems 1 and 2, which generalise the Erdős-Szekeres

Theorem for points in general position. If P ′ is a perturbation of a finite set P of points

in the plane, let v′ ∈ P ′ denote the image of a point v ∈ P , and let S′ := {v′ : v ∈ S} for

each S ⊆ P . If dist(v, v′) ≤ ǫ for each v ∈ P then P ′ is an ǫ-perturbation. Observe that

Theorem 1 follows from the next lemma and the Erdős-Szekeres Theorem for points in

general position (applied to P ′).

Lemma 7. For every finite set P of points in the plane, there is a general position

perturbation P ′ of P , such that if S′ is a subset of P ′ in convex position, then S is in

(non-strict) convex position.

Proof. For each non-collinear ordered triple (u, v, w) of points in P there exists µ > 0

such that every ǫ-perturbation of P will not change the orientation1 of (u, v, w) whenever

0 < ǫ < µ. Since there are finitely many such triples there is a minimal such µ. Let P ′

be a µ-perturbation of P in general position.

Let S′ be a subset of P ′ in convex position. Consider S′ in anticlockwise order. Thus

each ordered triple of consecutive points in S′ has positive orientation. Now consider S

in the corresponding order as S′. Since the perturbation preserved negatively oriented

triples, each ordered triple of consecutive points in S has non-negative orientation. That

is, S is in (non-strict) convex position, as desired. �

We now prove two lemmas, each of which shows how to force k points in strictly

convex position, thus proving Theorem 2.

Lemma 8. For all k ≥ 3 and ℓ ≥ 3, if k is odd then

ES(k, ℓ) ≤ ES(12 (k − 1)(ℓ − 1) + 1) ,

and if k is even then

ES(k, ℓ) ≤ ES(12 (k − 2)(ℓ − 1) + 2) .

1The orientation of an ordered triple of points (u, v, w) is 0 if u, v, w are collinear; otherwise it is

positive or negative depending on whether we turn left or right when going from u to w via v.
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Proof. For odd k, let P be a set of at least ES(12(k−1)(ℓ−1)+1) points with no ℓ points

collinear. Thus P contains 1
2(k− 1)(ℓ− 1) + 1 points in convex position by Theorem 1.

Thus P contains k points in strictly convex position by Lemma 6. The proof for even

k is analogous. �

Lemma 9. For all k ≥ 3 and ℓ ≥ 3,

ES(k, ℓ) ≤ (ℓ− 3)

(

ES(k)− 1

2

)

+ ES(k) .

Proof. It is well known [5, 13, 14, 15, 17] and easily proved2 that every set of at least

(ℓ − 3)
(

k−1
2

)

+ k points in the plane contains ℓ collinear points or k points in general

position. Thus every set P of at least (ℓ − 3)
(ES(k)−1

2

)

+ ES(k) points in the plane

contains ℓ collinear points or ES(k) points in general position. In the latter case, P

contains k points in strictly convex position. �

The best known upper bound on ES(k), due to Tóth and Valtr [34], is

ES(k) ≤
(

2k − 5

k − 2

)

+ 1 ∈ O

(

22k√
k

)

.

Thus Lemma 8 implies that if k is odd then

(2) ES(k, ℓ) ∈ O

(

2(k−1)(ℓ−1)

√
kℓ

)

,

and if k is even then

(3) ES(k, ℓ) ∈ O

(

2(k−2)(ℓ−1)

√
kℓ

)

.

Similarly, Lemma 9 implies that

(4) ES(k, ℓ) ∈ O

(

ℓ · 24k
k

)

.

Note that the bound in (4) is stronger than the bounds in (2) and (3) for ℓ ≥ 6 and

sufficiently large k. For ℓ ≤ 5 the bounds in (2) and (3) are stronger.

2Let P be a set of points in the plane with at most ℓ− 1 points collinear and at most k− 1 points in

general position. Let S ⊆ P be a maximal set of points in general position. Thus every point in P − S

is collinear with two points in S. The set S determines
`

|S|
2

´

lines, each with at most ℓ − 3 points in

P − S. Thus |P | ≤
`

|S|
2

´

(ℓ− 3) + |S| ≤
`

k−1

2

´

(ℓ− 3) + k − 1. That is, if |P | ≥
`

k−1

2

´

(ℓ− 3) + k then P

contains ℓ collinear points or k points in general position.
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4. Empty Quadrilaterals

Point sets with no 4-hole are characterised as follows.

Theorem 10 ([9, 11]). The following are equivalent for a finite set of points P :

(a) P contains no 4-hole,

(b) the visibility graph of P is crossing-free,

(c) P has a unique triangulation,

(d) at least one of the following conditions hold:

• all the points in P , except for at most one, are collinear; see Figures 4(a) and

(b),

• there are two points v,w ∈ P on opposite sides of some line L, such that

P − {v,w} ⊆ L and the intersection of conv(P − {v,w}) and vw either is a

point in P − {v,w} or is empty; see Figures 4(c) and (d),

• P is a set of six points with the same order type as the set illustrated in Fig-

ure 4(e).

(a)

(b)

(c)

(d)

(e)

Figure 4. The point sets with no 4-hole.

Corollary 11. For every integer ℓ ≥ 2, every set of at least max{7, ℓ+2} points in the

plane contains ℓ collinear points or a 4-hole.

Corollary 11 enables a third proof of Theorem 2: By the 2-colour Ramsey Theorem

for hypergraphs (see [19]), for every integer t there is an integer n such that for every

2-colouring of the edges of any complete 4-uniform hypergraph on at least n vertices,

there is a set X of t vertices such that the edges induced by X are monochromatic.

Apply this result with t := max{7, k, ℓ + 2}. We claim that ES(k, ℓ) ≤ n. Let P be a

set of at least n points in the plane with no ℓ collinear points. Let G be the complete

4-uniform hypergraph with vertex set P . For each 4-tuple T of vertices, colour the
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edge T blue if T forms a strictly convex quadrilateral, and red otherwise. Thus there

is a set X of t points such that the edges induced by X are monochromatic. If all the

edges induced by X are red, then no 4-tuple of points in X forms a strictly convex

quadrilateral, which contradicts Corollary 11 since |X| ≥ max{7, ℓ+ 2}. Otherwise, all

the edges induced by X are blue. That is, every 4-tuple of vertices in X forms a strictly

convex quadrilateral. This implies that X forms a strictly convex t-gon (for otherwise

some non-corner in X would be in a triangle of corners of X, implying there is a 4-tuple

of points in X that do not form a strictly convex quadrilateral). Since t ≥ k we are

done.

5. Empty Pentagons

In this section, we prove our main result, Theorem 3. The proof loosely follows the

proof of the 6-hole theorem for points in general position by Valtr [38], which in turn is

a simplification of the proof by Gerken [18].

Proof of Theorem 3. Fix ℓ ≥ 3 and let k := (2ℓ−1)ℓ−1
2ℓ−2 , which is an integer.

Let P be a set of at least ES(k) points in the plane. By Theorem 1, P contains k

points in convex position. Suppose for the sake of contradiction that P contains no ℓ

collinear points and no 5-hole.

A set X of at least k points in P in convex position is said to be k-minimal if there

is no set Y of at least k points in P in convex position, such that conv(Y ) ( conv(X).

As illustrated in Figure 5, let A1 be a k-minimal subset of P . Let A2, . . . , Aℓ−1 be

the convex layers inside A1. More precisely, for i = 2, . . . , ℓ − 1, let Ai be the set

of points in P on the boundary of the convex hull of (P ∩ conv(Ai−1)) − Ai−1. Let

Aℓ := (P ∩ conv(Aℓ−1))−Aℓ−1.

Aℓ

Aℓ−1

b b b A2 A1

Figure 5. Definition of A1, . . . , Aℓ.
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By Lemma 6 with k = 5, for each i ∈ [2, ℓ], any 2ℓ − 1 consecutive points of Ai−1

contains five points in strictly convex position. Thus the convex hull of any 2ℓ − 1

consecutive points of Ai−1 contains a point in Ai, as otherwise it would contain a 5-

hole. Now Ai−1 contains
⌊

|Ai−1|
2ℓ−1

⌋

disjoint subsets, each consisting of 2ℓ− 1 consecutive

points, and the convex hull of each subset contains a point in Ai. Since the convex hulls

of these subsets of Ai−1 are disjoint,

|Ai| ≥
⌊ |Ai−1|
2ℓ− 1

⌋

>
|Ai−1|
2ℓ− 1

− 1 ,

implying

(5) |Ai−1| < (2ℓ− 1)(|Ai|+ 1) .

Suppose that Ai = ∅ for some i ∈ [2, ℓ]. By (5), |Ai−1| < 2ℓ − 1 and |Ai−2| <

(2ℓ− 1)2 + (2ℓ− 1), and by induction,

|A1| <
i−1
∑

j=1

(2ℓ− 1)j <
(2ℓ− 1)i − 1

2ℓ− 2
≤ (2ℓ− 1)ℓ − 1

2ℓ− 2
= k ,

which is a contradiction. Now assume that Ai 6= ∅ for all i ∈ [ℓ]. Fix a point z ∈ Aℓ.

Note that if |Ai| ≤ 2 for some i ∈ [ℓ− 1] then Ai+1 = ∅. Thus we may assume that

|Ai| ≥ 3 for all i ∈ [ℓ − 1]. Consider each such set Ai to be ordered clockwise around

conv(Ai). If x and y are consecutive points in Ai with y clockwise from x then we say

that the oriented segment −→xy is an arc of Ai.

Let −→xy be an arc of Ai for some i ∈ [ℓ− 2]. We say that −→xy is empty if ∆(x, y, z) ∩
Ai+1 = ∅, as illustrated in Figure 6(a). In this case, the intersection of the boundary

of conv(Ai+1) and ∆(x, y, z) is contained in an arc −→pq. We call −→pq the follower of −→xy.

x y

z

p q

Ai Ai+1

(a)

x y

z

r

p q

(b)

Figure 6.

Claim 12. If −→pq is the follower of an empty arc −→xy, then {x, y, p, q} is a 4-hole and −→pq
is empty.

Proof. Say −→xy is an arc of Ai, where i ∈ [ℓ− 2]. Let S := {x, y, p, q}. Since p and q are

in the interior of conv(Ai), both x and y are corners of S. Both p and q are corners of
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S, as otherwise −→xy is not empty. Thus S is in strictly convex position. S is empty by

the definition of Ai+1. Thus S is a 4-hole.

Suppose that −→pq is not empty; that is, ∆(p, q, z) ∩ Ai+2 6= ∅. Let r be a point in

∆(p, q, z) ∩ Ai+2 closest to pq. Thus ∆(p, q, r) ∩ P = ∅. Since {x, y, p, q} is a 4-hole,

{x, y, p, q, r} is a 5-hole, as illustrated in Figure 6(b). This contradiction proves that −→pq
is empty. �

As illustrated in Figure 7(a)–(c), we say the follower −→pq of −→xy is:

• double-aligned if p ∈ xz and q ∈ yz,

• left-aligned if p ∈ xz and q 6∈ yz,

• right-aligned if p 6∈ xz and q ∈ yz.

x y

z

p q

(a) double-aligned

x y

z

p q

(b) left-aligned

x y

z

p q

(c) right-aligned

x y

z

r

p q

(d) neither

Figure 7.

Claim 13. If −→pq is the follower of an empty arc −→xy, then −→pq is either double-aligned or

left-aligned or right-aligned.

Proof. Suppose that −→pq is neither double-aligned nor left-aligned nor right-aligned, as

illustrated in Figure 7(d). Since −→xy is empty, p 6∈ ∆[x, y, z] and q 6∈ ∆[x, y, z]. Let

D := (P ∩∆[p, q, z])−{p, q}. Thus z ∈ D and D 6= ∅. Let r be a point in D closest to

pq. Thus ∆(r, p, q) is empty. By Claim 12, {x, y, p, q} is a 4-hole. Thus {x, y, p, q, r} is

a 5-hole, which is the desired contradiction. �

Suppose that no arc of A1 is empty. That is, ∆(x, y, z) ∩A2 6= ∅ for each arc −→xy of

A1. Observe that ∆(x, y, z) ∩ ∆(p, q, z) = ∅ for distinct arcs −→xy and −→pq of A1 (since

these triangles are open). Thus |A2| ≥ |A1|, which contradicts the minimality of A1.

Now assume that some arc −−→x1y1 of A1 is empty. For i = 2, 3, . . . , ℓ − 1, let −−→xiyi be
the follower of −−−−−→xi−1yi−1. By Claim 12 (at each iteration), −−→xiyi is empty. For some

i ∈ [2, ℓ − 2], the arc −−→xiyi is not double-aligned, as otherwise {x1, x2, . . . , xℓ−2, z} are

collinear and {y1, y2, . . . , yℓ−2, z} are collinear, which implies that {x1, x2, . . . , xℓ−1, z}
are collinear or {y1, y2, . . . , yℓ−1, z} are collinear by Claim 13. Let i be the minimum

integer in [2, ℓ− 2] such that −−→xiyi is not double-aligned. Without loss of generality, −−→xiyi
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is left-aligned. On the other hand, −−→xjyj is not left-aligned for all j ∈ [i + 1, ℓ − 1], as

otherwise {x1, x2, . . . , xℓ−1, z} are collinear. Let j be the minimum integer in [i+1, ℓ−1]

such that −−→xjyj is not left-aligned. Thus −−−−−−→xj−1yj−1 is left-aligned and −−→xjyj is not left-

aligned. It follows that {xj−2, yj−2, yj−1, yj, xj−1} is a 5-hole, as illustrated in Figure 8.

This contradiction proves that P contains ℓ collinear points or a 5-hole. �

xj−2 yj−2

z

xj−1 yj−1

yj

Figure 8.

We expect that the lower bound on |P | in Theorem 3 is far from optimal. All known

point sets with at most ℓ collinear points and no 5-hole have O(ℓ2) points, the ℓ× ℓ grid

for example. See [11, 23] for other examples.

Open Problem. For which values of ℓ is there an integer n such that every set of at

least n points in the plane contains ℓ collinear points or a 6-hole?

This is true for ℓ = 3 by the empty hexagon theorem. If this question is true for a

particular value of ℓ then Conjecture 4 is true for k = 6 and the same value of ℓ. For

k ≥ 7 different methods are needed since there are point sets in general position with

no 7-hole.
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[14] Paul Erdős. Some old and new problems in combinatorial geometry. In Applica-

tions of discrete mathematics, pp. 32–37. SIAM, 1988.
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