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Abstract Let Pn,d,D denote the graph taken uniformly at random from the
set of all labelled planar graphs on {1, 2, . . . , n} with minimum degree at least
d(n) and maximum degree at most D(n). We use counting arguments to in-
vestigate the probability that Pn,d,D will contain given components and sub-
graphs, showing exactly when this is bounded away from 0 and 1 as n → ∞.
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1 Introduction

Random planar graphs have recently been the subject of much activity, and
many properties of the standard random planar graph Pn (taken uniformly
at random from the set of all labelled planar graphs on {1, 2, . . . , n}) are now
known. For example, in [6] it was shown that Pn will asymptotically almost
surely (that is, with probability tending to 1 as n tends to infinity) contain
at least linearly many copies of any given planar graph. By combining the
counting methods of [6] with some rather precise results of [5], obtained using
generating functions, the exact limiting probability for the event that Pn will
contain any given component is also known.

More recently, attention has turned to the graph Pn,m taken uniformly
at random from the set of all labelled planar graphs on {1, 2, . . . , n} with
exactly m(n) edges, and the probability that Pn,m will contain given compo-
nents/subgraphs has been investigated in [1] and [4].
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Clearly, Pn,m can be thought of as a random planar graph with a re-
striction on the average degree. In this paper, we shall instead study a ran-
dom planar graph with restrictions on the maximum and minimum degrees,
again investigating the probability that such a graph will contain given com-
ponents/subgraphs. As with Pn and Pn,m, we shall work solely with labelled
graphs.

Given functions d(n) and D(n), let P(n, d,D) denote the set of all la-
belled planar graphs on {1, 2, . . . , n} with maximum degree at most D(n) and
minimum degree at least d(n) (i.e. with all degrees between d(n) and D(n),
inclusive) and let Pn,d,D denote a graph taken uniformly at random from this
set (thus, Pn,0,n−1 = Pn, the standard random planar graph). Note that all
graphs with maximum degree at most 2 are planar, and so the interest lies
with the case when D(n) ≥ 3 for all n.

The structure of this paper shall be based on that of [6], where the stan-
dard random planar graph was studied. Hence, we will start in Section 2 by
establishing a lower bound for the probability that Pn,d,D will be connected
(and, hence, an upper bound for the probability that it will contain any given
component). In Section 3 we shall use this to show that there exists a non-zero
finite ‘growth constant’ for |P(n, d,D)|, and in Section 4 we will use this second
fact to show that Pn,d,D is likely to have many special ‘appearance’-type copies
of certain graphs. In Section 5, we shall then use this last result to deduce a
lower bound for the probability that Pn,d,D will contain given components.
Finally, in Section 6, we will prove that Pn,d,D has linearly many copies of
most, but not all, planar H satisfying ∆(H) ≤ lim inf D(n) (see Table 1).

δ(H) = D(n) for all n ⇒

{

lim infP > 0 (Theorem 13)
& lim supP < 1 (Theorem 2)

δ(H) < D(n) for all n
& 6 ∃n : d(n) = D(n) = 4

}

⇒ P → 1 (Theorem 17)

δ(H) < D(n) for all n
& d(n) = D(n) = 4 for all n

}

⇒

{

P → 1 if ∃ 4-regular planar G ⊃ H (Theorem17)
P = 0 otherwise (trivial observation)

Table 1 A description of P := P[Pn,d,D will have a copy of H] for connected planar H

with ∆(H) ≤ lim inf D(n).

2 Connectivity

We will start by examining the probability that our random graph is connected.
Not only is this topic interesting in its own right, but the results given here
will also be important ingredients in later sections.

Recall that we must have D(n) ≥ 3 for planarity to have any impact. The
main result of this section (Theorem 2) will be to show that, given this, the
probability that Pn,d,D will be connected is bounded away from 0.
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The proof will be based on that of Theorem 2.1 of [6], but will be slightly
more complicated, as the bound on the maximum degree means that P(n, d,D)
is not edge-addable (i.e. the class P(n, d,D) is not closed under the operation
of inserting an edge between two components). Hence, we shall first prove a
very helpful result on short cycles:

Lemma 1 Let k < 1
15 , and let S be a planar graph with at most k|S| vertices

of degree ≤ 2. Then S must contain at least
(

1−15k
28

)

|S| cycles of size ≤ 6. In

particular, if S has at most |S|
43 vertices of degree ≤ 2 then S must contain at

least |S|
43 cycles of size ≤ 6.

Proof Fix a planar embedding of S. We shall first show that this embedding
must have at least

(

1−15k
14

)

|S| faces of size ≤ 6 (where, as usual, the ‘size’
of a face denotes the number of edges in the associated facial boundary, with
an edge counted twice if it appears twice in the boundary), and we will later
deduce the lemma from this fact.

We shall argue by contradiction. Let fi denote the number of faces of size
i and suppose that

∑

i≤6 fi <
(

1−15k
14

)

|S|. We have

2e(S) =
∑

i

ifi

≥ 7
∑

i≥7

fi

> 7

(

∑

i

fi −

(

1− 15k

14

)

|S|

)

, by our supposition

= 7

(

e(S)− |S|+ κ(S) + 1−

(

1− 15k

14

)

|S|

)

, by Euler’s formula

> 7

(

e(S)−

(

15(1− k)

14

)

|S|

)

.

Thus,
(

15(1−k)
2

)

|S| > 5e(S). But e(S) ≥ 3(1−k)|S|
2 , since S contains at least

(1−k)|S| vertices of degree ≥ 3, and so 5e(S) ≥
(

15(1−k)|S|
2

)

. Thus, we obtain

our desired contradiction, and so it must be that we have at least
(

1−15k
14

)

|S|
faces of size ≤ 6.

Let us now consider these faces of size ≤ 6. Note that the boundary of a
face of size ≤ 6 must contain a cycle of size ≤ 6 as a subgraph unless it is
acyclic, in which case it must be the entire graph S. But if S were acyclic,
then at least half of the vertices would have degree ≤ 2 (since we would have
e(S) ≤ |S|− 1), and this would contradict the conditions of this lemma. Thus,
for each of our faces of size ≤ 6, the boundary must contain a cycle of size ≤ 6
as a subgraph.

Each edge of S can only be in at most two faces of the embedding, and
so each cycle can only be in at most two faces. Thus, S must contain at least
(

1−15k
28

)

|S| distinct cycles of size ≤ 6.
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We shall now use Lemma 1 to obtain our aforementioned main result:

Theorem 2 There exists a constant c > 0 such that

P[Pr,d,D will be connected] > c

for all constants r, d,D ∈ N ∪ {0} satisfying D ≥ 3 and P(r, d,D) 6= ∅.

Sketch of Proof We shall show that there are many ways to construct a
graph in P(r, d,D) with k − 1 components from a graph in P(r, d,D) with k
components, by combining two components. Our stated lower bound for the
proportion of graphs with exactly one component will then follow by ‘cascad-
ing’ this result downwards.

IfD > 6, we shall see that we may obtain sufficiently many ways to combine
components simply by inserting edges between them that don’t interfere with
this upper bound on the maximum degree.

If D ≤ 6, we will sometimes also delete an edge from a small cycle in
order to maintain ∆ ≤ D. We shall use Lemma 1 to show that we have lots
of choices for this small cycle, and then the fact that it is small (combined
with the knowledge that D < 7) will help us to bound the amount of double-
counting.

Full Proof Choose any r, d,D ∈ N ∪ {0} with D ≥ 3 and P(r, d,D) 6= ∅. We
shall show that there exists a strictly positive constant c, independent of r, d
and D, such that P[Pr,d,D will be connected] > c.

Let Pt(r, d,D) denote the set of graphs in P(r, d,D) with exactly t com-
ponents. For k > 1, we shall construct graphs in Pk−1(r, d,D) from graphs in
Pk(r, d,D).

Let the graph G ∈ Pk(r, d,D) and let us denote the k components of G
by S1, S2, . . . , Sk, where |Si| = ni for all i. Without loss of generality, we may
assume that S1, S2, . . . , Sk are ordered so that Si contains at least

ni

43 vertices
of degree < D iff i ≤ l, for some fixed l ∈ {0, 1, . . . , k}. Note that we must
have l = k if D > 6, since (by planarity) e(Si) < 3ni and so we can only have
at most 6ni

7 vertices of degree ≥ 7.
For 1 ≤ i < j ≤ k, let us construct a new graph Gi,j ∈ Pk−1(r, d,D) as

follows:

Case (a): if j ≤ l (note that this is always the case if D > 6)
Insert an edge between a vertex in Si of degree < D (we have at least ni

43
choices for this) and a vertex in Sj of degree < D (we have at least

nj

43 choices
for this). See Figure 1.

The constructed graph Gi,j (see Figure 1) is planar and has exactly k − 1
components. It is also clear that we have d ≤ δ(Gi,j) ≤ ∆(Gi,j) ≤ D, since we
have not deleted any edges from the original graph and have only inserted an
edge between two vertices with degree < D. Thus, Gi,j ∈ Pk−1(r, d,D).
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✣ ✢✣ ✢ ✣ ✢✣ ✢

✲r r r r
Si Sj

Fig. 1 Constructing the graph Gi,j in case (a).

Case (b): if j > l and ni > 1 (in which case D ≤ 6)
If j > l, then Sj contains less than

nj

43 vertices of degree < D. Thus, by
Lemma 1, Sj must contain at least

nj

43 cycles of size ≤ 6. Delete an edge uv in
one of these cycles (we have at least 3

D+D2+D3+D4

nj

43 ≥ 3
6+62+63+64

nj

43 choices
for this edge, since each cycle must contain at least 3 edges and each edge is
in at most (D − 1)m−2 < Dm−2 cycles of size m), insert an edge between u
and a vertex w ∈ Si (we have ni choices for w), delete an edge between w
and x ∈ Γ (w) (we have at least one choice for x, since ni > 1), and insert an
edge between x and v (planarity is preserved, since we may draw Sj so that
the face containing u and v is on the outside, and similarly we may draw Si

so that the face containing w and x is on the outside). See Figure 2.

✤ ✜✤ ✜ ✤ ✜✤ ✜
✣ ✢✣ ✢ ✣ ✢✣ ✢

✲r r r rr r r r✟✠ ✟✠u

v

w

x

u

v

w

x

Si Sj

Fig. 2 Constructing the graph Gi,j in case (b).

Since the deleted edge uv was in a cycle, it was not a cut-edge, and so
the vertex set V (Sj) is still connected. The deleted edge wx may have been
a cut-edge in Si, but since we have also inserted edges from w to u ∈ V (Sj)
and from x to v ∈ V (Sj) it must be that the vertex set V (Si) ∪ V (Sj) is now
connected. Thus, the constructed planar graph Gi,j has exactly k − 1 compo-
nents. By construction, the degrees of the vertices have not changed, and so
we have d ≤ δ(Gi,j) ≤ ∆(Gi,j) ≤ D. Thus, Gi,j ∈ Pk−1(r, d,D).

Case (c): if j > l and ni = 1 (in which case D ≤ 6)
Delete any edge uv in Sj (we have at least nj choices for this, since Sj cannot
be a forest if j > l) and insert edges uw and vw, where w is the unique vertex
in Si (see Figure 3).

The constructed graph Gi,j is planar and has exactly k − 1 components.
Note that the degrees have not changed, except that we now have deg(w) = 2.
But since D ≥ 3, we still have d ≤ δ(Gi,j) ≤ ∆(Gi,j) ≤ D. Thus, we have
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✲ ✘✘✘
❳❳❳

r rr r rru

v

w
u

v

w

Si Sj

Fig. 3 Constructing the graph Gi,j in case (c).

Gi,j ∈ Pk−1(r, d,D).

Let z = 3
43(6+62+63+64) = min

{

(

1
43

)2
, 3
43(6+62+63+64)

}

. Then in all cases

we have at least zninj choices when constructing the new graph. Thus, from
our initial graph G, we have at least

∑

i<j zninj = z
∑

i<j ninj ways to con-

struct a graph in Pk−1(r, d,D). Note that if x ≤ y then xy > (x−1)(y+1), so
∑

i<j ninj is at least what it would be if one component in G had order r−(k−
1) and the other k−1 components were isolated vertices. Thus, z

∑

i<j ninj ≥

z
(

1
2 (k − 1)(k − 2) + (k − 1)(r − k + 1)

)

= (k− 1)
(

r − k
2

)

z. Hence, for k > 1,

we have at least (k− 1)
(

r − k
2

)

z|Pk(r, d,D)| ≥ (k− 1) r2z|P
k(r, d,D)| ways to

construct (not necessarily distinct) graphs in Pk−1(r, d,D).

Let us now consider the amount of double-counting:

Given one of our constructed graphs, there are at most 3 possibilities for
how the graph was obtained (case (a), (b) or (c)).

If case (a) was used (which must be so if D > 6), then we can re-obtain
the original graph simply by deleting the inserted edge, for which there are at
most r − (k − 1) < r possibilities, since it must now be a cut-edge. Thus, if
case (a) was used, we have less than r possibilities for the original graph.

If case (b) was used, then we can re-obtain the original graph by locating
the vertices u, v, w and x, deleting the two inserted edges (uw and vx) and
re-inserting the two deleted edges (uv and wx). Note that we have at most r
possibilities for which vertex is u. We know that u and v were originally on a
cycle of size ≤ 6, and so v is still at distance at most 5 from u. Since the graph
has maximum degree at most D, we therefore have at most D2+D3+D4+D5

possibilities for v. Once we have located u and v, we then have at most D
possibilities for w and at most D possibilities for x, since w and x are now
neighbours of u and v, respectively. Thus, if case (b) was used, we have at
most D2(D2 +D3 +D4 +D5)r ≤ 36(62 + 63 + 64 + 65)r possibilities for the
original graph.

If case (c) was used, then we can re-obtain the original graph by locating
the vertices u, v and w, deleting the two inserted edges (uw and vw) and
re-inserting the deleted edge (uv). We have at most r possibilities for which
vertex is w, and given w we then know which edges to delete and insert, as v
and w are the only vertices adjacent to u. Thus, if case (c) was used, we have
at most r possibilities for the original graph.
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Therefore, there are less than r possibilities for the original graph if D > 6,
since case (a) must have been used, and less than r+36(62+63+64+65)r+r =
2r(1+18(62+63+64+65)) possibilities for the original graph if D ≤ 6, since
any of case (a), case (b) or case (c) may have been used.

Let α = z
4(1+18(62+63+64+65)) = min

{

z
2 ,

z
4(1+18(62+63+64+65))

}

. Then we

have shown that we can construct at least α(k−1)|Pk(r, d,D)| distinct graphs
in Pk−1(r, d,D)|, and so |Pk−1(r, d,D)| ≥ α(k − 1)|Pk(r, d,D)| for all k > 1.

Let us define pk to be |Pk+1(r,d,D)|
|P(r,d,D)| and let p = p0 = |P1(r,d,D)|

|P(r,d,D)| = P[Pr,d,D

will be connected]. From the previous paragraph, we know |Pk+1(r, d,D)| ≤
|Pk(r,d,D)|

αk for all k > 0, and so pk ≤ p
αkk!

for all k ≥ 0. We must have

∑

k≥0 pk = 1, so
∑

k≥0
p

αkk! ≥ 1 and hence p ≥

(

∑

k≥0
( 1

α )
k

k!

)−1

= e−
1
α .

3 Growth Constants

We shall now look at the topic of ‘growth constants’, which will play a vital
role in the proofs of Section 4.

It is known from [6] that there exists a finite constant γl > 0 such that
(

|P(n,0,n−1)|
n!

)1/n

→ γl as n → ∞. In this section, we shall use our connec-

tivity bound from Theorem 2 to also obtain (in Theorems 4 and 5) growth
constants for P(n, d,D) for the case when d(n) is a constant and D(n) is any
monotonically non-decreasing function (it will turn out that the result for this
restricted case is all that will be required for later sections).

We shall follow the proof of Theorem 3.3 of [6], which will require us to
first state the following useful lemma:

Proposition 3 (see, for example, Lemma 11.6 of [7]) Let f : N → R+

be a function such that f(n) > 0 for all large n and f(i + j) ≥ f(i) · f(j) for
all i, j ∈ N. Then (f(n))1/n → supn

(

(f(n))1/n
)

as n → ∞.

We may now use Proposition 3 to obtain our growth constant result:

Theorem 4 Let d ∈ {0, 1, . . . , 5} be a constant and let D(n) be a mono-
tonically non-decreasing integer-valued function that for all large n satisfies
D(n) ≥ max{d, 3} and (d,D(n)) /∈ {(3, 3), (5, 5)}. Then there exists a finite
constant γd,D > 0 such that

(

|P(n, d,D)|

n!

)
1
n

→ γd,D as n → ∞.

Proof We shall follow the method of proof of Theorem 3.3 of [6]. Let c be the

constant given by Theorem 2 and let g(n, d,D) = c2|P(n,d,D)|
2·n! for all n ∈ N.
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We shall show that g(n, d,D) satisfies the conditions of Proposition 3, which
we will then use to deduce our result.

To show g(n, d,D) > 0 for all large n, it clearly suffices to prove that
P(n, d,D) is non-empty for all large n. This is true, but fairly tedious to
demonstrate and so we will omit the details (see [2] for a full discussion).

Let us now show that g satisfies the supermultiplicative condition:
Let i, j ∈ N and let us denote by Pc(i, d,D) and Pc(j, d,D) the set of

connected graphs in P(i, d,D) and P(j, d,D), respectively. Then, by The-
orem 2, we know that there exists a constant c > 0 such that we have
|Pc(i, d,D)| ≥ c|P(i, d,D)| and |Pc(j, d,D)| ≥ c|P(j, d,D)|. We may form a

graph in P(i+j, d,D) by choosing i of the i+j vertices
((

i+j
j

)

choices
)

, plac-

ing a connected planar graphG1 with |G1| = i and d ≤ δ(G1) ≤ ∆(G1) ≤ D(i)
on the chosen vertices (|Pc(i, d,D)| ≥ c|P(i, d,D)| choices), and then placing
a connected planar graph G2 with |G2| = j and d ≤ δ(G2) ≤ ∆(G2) ≤ D(j)
on the remaining j vertices (|Pc(j, d,D)| ≥ c|P(j, d,D)| choices). If i = j, then
we need to divide by two to avoid double-counting. Note that the constructed
graph will have maximum degree at most max{D(i), D(j)} and so will indeed
be in P(i+ j, d,D), since D is a monotonically non-decreasing function. Thus,

|P(i+ j, d,D)| ≥
c2

2

(

i+j
j

)

|P(i, d,D)| · |P(j, d,D)| for all i, j

and, therefore,

g(i+ j, d,D) =
c2|P(i+ j, d,D)|

2(i+ j)!

≥
c4
(

i+j
j

)

|P(i, d,D)||P(j, d,D)|

4(i+ j)!

=
c2|P(i, d,D)|

2 · i!

c2|P(j, d,D)|

2 · j!

= g(i, d,D) · g(j, d,D).

Let γd,D = supn
(

(g(n, d,D))1/n
)

. By Proposition 3, it now only remains
to show that γd,D < ∞. But clearly P(n, d,D) ⊂ P(n, 0, n− 1), the set of all

labelled planar graphs on {1, 2, . . . , n}, and it is known that
(

|P(n,0,n−1)|
n!

)
1
n

converges to a finite constant as n → ∞ (see [6]), so we are done.

By the same proof, we may also obtain an analogous result to Theorem 4
for the case when D(n) = d ∈ {3, 5} for all n:

Theorem 5 Let D ∈ {3, 5} be a constant. Then there exists a finite constant
γD,D > 0 such that

(

|P(2n,D,D)|

(2n)!

)
1
2n

→ γD,D as n → ∞.
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4 Appearances

We shall now look at special subgraphs in Pn,d,D called ‘appearances’, with
the aim of turning some of these into components in Section 5.

We will produce separate results for the cases when we have d(n) < D(n)
for all n (Theorem 8) and when d(n) = D(n) for all n (Theorem 10), because
for the latter case it will be more awkward to later convert these subgraphs
into components without violating our bound on the minimum degree.

We will deal with the d(n) < D(n) case first. The main work will be done
in Lemma 7, where we shall follow the lines of a proof of [6] (using the growth
constants of Section 3) to obtain an appearance result for the case when d(n)
is a constant and D(n) is a monotonically non-decreasing function. We shall
then extend this into a more general form in Theorem 8, before finally noting
that the d(n) = D(n) case follows from a similar proof.

We start with a definition of appearances:

Definition 6 Let H be a graph on the vertex set {1, 2, . . . , h}, and let G be
a graph on the vertex set {1, 2, . . . , n}, where n > h. Let W ⊂ V (G) with
|W | = h, and let the ‘root’ rW denote the least element in W . We say that
H appears at W in G if (a) the increasing bijection from 1, 2, . . . , h to W
gives an isomorphism between H and the induced subgraph G[W ] of G; and
(b) there is exactly one edge in G between W and the rest of G, and this edge
eW = rW vW is incident with the root rW .

We call eW the associated cut-edge of the appearance, and we say that
TEW := E(G[W ])∪{eW } is the total edge set of the appearance (see Figure 4).

When working in P(n, d,D), we say that the appearance is cut-able if we
have min{degG rW , degG vW } > d, and we let fH(G) denote the number of
cut-able appearances of H in G (that is, the number of sets W ⊂ V (G) such
that there is a cut-able appearance of H at W ).

We are now ready to give our first result on appearances in Pn,d,D. We
shall start by assuming that d(n) is constant and D(n) is monotonically non-
decreasing, as in Section 3, but we will later (in Theorem 8) get rid of these
conditions. The statement of the result may seem complicated, but basically
it just asserts that for any ‘sensible’ choice of H , there will probably be lots of
cut-able appearances of H in Pn,d,D. Clearly, ‘sensible’ entails that we must
have δ(H) ≥ d, ∆(H) ≤ D(n) and degH(1) + 1 ≤ D(n), and as always we
will require that D(n) ≥ 3 (note that it follows from these conditions that we
must also have d < D(n)). The proof is based on that of Theorem 4.1 of [6].

Lemma 7 Let H be a (fixed) connected planar graph on {1, 2, . . . , h}. Then
there exists a constant α(h) > 0 such that, given any constant d ≤ δ(H)
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☛
✡

✬
✫
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✩
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r
r

r
rG \W

G[W ] G[W ]

G TEW

eW

vW

rW

eW

vW

rW

Fig. 4 An appearance at W in G and its total edge set.

and any monotonically non-decreasing integer-valued function D(n) satisfying
lim infn→∞ D(n) ≥ max{∆(H), degH(1) + 1, 3}, we have

P[fH(Pn,d,D) ≤ αn] < e−αn for all sufficiently large n.

Sketch of Proof We choose a specific α and suppose that the result is false
for n = k, where k is suitably large. Using Theorem 4, it then follows that
there are many graphs G ∈ P(k, d,D) with fH(G) ≤ αk.

From each such G, we construct graphs in P((1 + δ)k, d,D), for a fixed
δ > 0. If G has lots of vertices with degree < D(k), then we do this simply
by attaching appearances of H to some of these vertices. If G has few vertices
with degree < D(k), then we attach appearances of H to small cycles in G
and also delete appropriate edges. By Lemma 1, we have lots of choices for
these small cycles and, since G has few vertices with degree < D(k), we may
assume that we don’t interfere with any vertices of minimum degree.

The fact that the original graphs satisfied fH ≤ αk, together with the
knowledge that any deleted edges were in small cycles, is then used to show
that there is not much double-counting, and so we find that we have con-
structed so many graphs in P((1 + δ)k, d,D) that we contradict Theorem 4.

Full Proof Let p ∈
(

0, 1
7(62+63+64+65)

)

, let β =
344e2(h+7)(62+63+64+65)h!(γd,D)h

p ,

and let α ∈
(

0, p

344e2(h+7)(62+63+64+65)h!(γl)
h

)

, where we recall that γl ≈

27.2268 denotes the growth constant for P(n, 0, n − 1). Clearly γd,D ≤ γl,
so αβ < 1 and hence there exists an ǫ ∈

(

0, 13
)

such that (αβ)α = 1− 3ǫ.

By Theorem 4, there exists an N such that

(1− ǫ)nn! (γd,D)
n ≤ |P(n, d,D)| ≤ (1 + ǫ)nn! (γd,D)

n
for all n ≥ N. (1)

Suppose (aiming for a contradiction) that we can find a value k > N such that
P[fH(Pk,d,D) ≤ αk] ≥ e−αk, and let G denote the set of graphs in P(k, d,D)
such that G ∈ G iff fH(G) ≤ αk. Then we must have |G| ≥ e−αk|P(k, d,D)| ≥

e−αk(1− ǫ)kk! (γd,D)
k
.
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Let δ = ⌈αk⌉h
k . We may assume that k is sufficiently large that ⌈αk⌉ ≤ 2αk.

Thus, δ ≤ 2αh < 1 (by our definition of α). This fact will be useful later.

We shall construct graphs in P((1 + δ)k, d,D):

Choose δk special vertices (we have
(

(1+δ)k
δk

)

choices for these) and parti-

tion them into ⌈αk⌉ unordered blocks of size h (we have
(

δk
h,...,h

)

1
⌈αk⌉! choices

for this). On each of the blocks, put a copy of H such that the increasing bijec-
tion from {1, 2, . . . , h} to the block is an isomorphism betweenH and this copy.
Note that we may assume that k is large enough thatD(k) ≥ lim infn→∞ D(n),
and so the root, rB, of a block (i.e. the lowest numbered vertex in it) satis-
fies deg(rB) < D(k), by the conditions of the theorem. On the remaining k
vertices, we place a planar graph G with d ≤ δ(G) ≤ ∆(G) ≤ D(k) and
fH(G) ≤ αk (we have at least |G| choices for this).

We shall continue our construction in one of two ways, depending on the
number of vertices of degree D(k) in G:

Case (a): If G has at least pk
43 vertices of degree < D(k) (note that this is

certainly the case if D(k) ≥ 7).
For each block B, we choose a different non-special vertex vB ∈ V (G) with

deg(vB) < D(k) (we have at least
(

pk/43
⌈αk⌉

)

⌈αk⌉! choices for this, since cer-

tainly α < p
86 and we may assume that k is large enough that ⌈αk⌉ ≤ 2αk),

and we insert the edge rBvB from the root of the block to this vertex, creating
a cut-able appearance of H at B (see Figure 5). Note that we have not deleted

✲
☛ ✟
✡ ✠

✬ ✩

✫ ✪
☛ ✟
✡ ✠

✬ ✩

✫ ✪
r r r r

B GrB vB B GrB vB

Fig. 5 Creating a cut-able appearance of H at B in case (a).

any edges, so we shall still have minimum degree at least d, and we have only
inserted edges between vertices of degree < D(k), so we still have maximum
degree at most D(k), which is at most D((1 + δ)k) by monotonicity of D.
Thus, our new graph is indeed in P((1 + δ)k, d,D).

Hence, for each graph G with at least pk
43 vertices of degree < D(k), we find

that we can construct at least
(

(1+δ)k
δk

)(

δk
h...h

)

· 1
⌈αk⌉! ·

(

pk/43
⌈αk⌉

)

⌈αk⌉! different

graphs in P((1 + δ)k, d,D).

Case (b): If G has less than pk
43 vertices of degree < D(k) (in which case

D(k) < 7).
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Before describing the case (b) continuation of our construction, it shall first
be useful to investigate the number of short cycles in G:
If G has less than pk

43 < k
43 vertices of degree < D(k), then (by Lemma 1)

G contains at least k
43 cycles of size at most 6. A vertex can only be in at

most (D(k))2 +(D(k))3 +(D(k))4 +(D(k))5 ≤ 62 +63 +64 +65 cycles of size

at most 6, so G must have at most pk(62+63+64+65)
43 cycles of size at most 6

that contain a vertex of degree < D(k). In particular, G must have at least
(1−(62+63+64+65)p)k

43 cycles of size at most 6 that don’t contain a vertex of de-
gree d, since d ≤ δ(H) < degH(1)+1 ≤ D(k). Since a vertex can only be in at
most 62+63+64+65 cycles of size at most 6, each cycle of size at most 6 can
only have a vertex in common with at most 6(62 + 63 + 64 + 65) other cycles

of size at most 6. Thus, G must have a set of at least

(

1−(62+63+64+65)p

6(62+63+64+65)

)

k

43 > pk
43

vertex-disjoint cycles of size at most 6 that don’t contain a vertex of degree d
(

using the fact that p < 1
7(62+63+64+65)

)

. We shall call these cycles ‘special’.

Recall that we have ⌈αk⌉ blocks isomorphic to H . For each block B, choose

a different one of our ‘special’ cycles (we have at least
(

pk/43
⌈αk⌉

)

⌈αk⌉! choices for

this), delete an edge uBvB in the cycle and insert an edge rBvB from the root
of the block to a vertex vB that was incident to the deleted edge, creating an
appearance of H at B (see Figure 6). Note that the deleted edge was between

❳❳❳
✲

☛ ✟
✡ ✠

✬ ✩

✫ ✪
☛ ✟
✡ ✠

✬ ✩

✫ ✪
✟✠ ✟✠r rr r rrB GrB

vB

uB

B GrB vB

uB

Fig. 6 Creating a cut-able appearance of H at B in case (b).

two vertices of degree > d, so we still have minimum degree at least d (and
vB will still have degree > d, so the appearance will be cut-able). Recall that
the root of each block has degree < D(k), so we still have maximum degree
at most D(k), which is at most D((1 + δ)k) by monotonicity of D. Thus, our
constructed graph is indeed in P((1 + δ)k, d,D).

Thus, for each graph G with less than pk
43 vertices of degree < D(k), we find

that we can construct at least
(

(1+δ)k
δk

)(

δk
h...h

)

· 1
⌈αk⌉! ·

(

pk/43
⌈αk⌉

)

⌈αk⌉! different

graphs in P((1 + δ)k, d,D).

We have shown that, regardless of whether case (a) or case (b) is used, for
each G we can construct at least

(

(1+δ)k
δk

)(

δk
h...h

)

·
1

⌈αk⌉!
·
(

pk/43
⌈αk⌉

)

⌈αk⌉!
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=
((1 + δ)k)!

k!

1

(h!)⌈αk⌉

(

pk/43
⌈αk⌉

)

≥
((1 + δ)k)!

k!

1

(h!)⌈αk⌉
(pk/43− ⌈αk⌉+ 1)⌈αk⌉

⌈αk⌉!

≥
((1 + δ)k)!

k!

1

(h!)⌈αk⌉

(

pk

86

)⌈αk⌉
1

⌈αk⌉!
(

since certainly α <
p

86
and so

pk

43
− αk ≥

pk

86

)

≥
((1 + δ)k)!

k!

(

pk

86h!⌈αk⌉

)⌈αk⌉

≥
((1 + δ)k)!

k!

( p

172h!α

)⌈αk⌉

(since we may assume k is large enough that ⌈αk⌉ ≤ 2αk)

different graphs in P((1 + δ)k, d,D). Thus, recalling that we have at least

e−αk(1 − ǫ)kk! (γd,D)k choices for G, we find that we can in total construct

at least e−αk(1 − ǫ)k((1 + δ)k)! (γd,D)
k ( p

172h!α

)⌈αk⌉
(not necessarily distinct)

graphs in P((1 + δ)k, d,D).

We are now at the half way point of our proof, and it remains to investigate
the amount of double-counting, i.e. how many times each of our constructed
graphs will have been built. Given one of our constructed graphs, G′, there are
at most two possibilities for how the graph was obtained (case (a) or case(b)),
and we shall now examine these two cases separately:

If case (a) was used, then we can re-obtain the original graph, G, simply
by deleting the ⌈αk⌉ cut-able appearances that were deliberately added. Thus,
in order to bound the amount of double-counting under case (a), we only need
to investigate fH(G′):

Suppose W is a cut-able appearance of H in G′. We shall consider how
many possibilities there are for W :

(i) If we don’t have TEW ⊂ E(G), then the total edge set of W must
intersect the total edge set of one of our deliberately created appearances. Note
that the total edge set of an appearance of H can only intersect at most |H |
other total edge sets of appearances ofH (since there are at most |H | cut-edges
in the total edge set and each of these can have at most one ‘orientation’ that
provides an appearance of H), so we have at most (h + 1)⌈αk⌉ possibilities
for W (including the possibility that W is one of our deliberately created
appearances).

If TEW ⊂ E(G), then W must have been an appearance of H in G:
(ii) If W was a cut-able appearance of H in G, then there are at most ⌈αk⌉

possibilities for W , by definition of G.
(iii) If W was an appearance of H in G that was not cut-able, then the

unique vertex v ∈ V (G′)\W incident to the root ofW must have had deg(v) =
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d originally and must have been chosen as vB by some block B. Hence, we
have at most ⌈αk⌉ possibilities for v and thus at most d⌈αk⌉ possibilities for
W .

Thus, if case (a) was used, then fH(G′) ≤ (h + d + 2)⌈αk⌉, giving us at

most
(

(h+d+2)⌈αk⌉
⌈αk⌉

)

≤ ((h+ d+ 2)e)⌈αk⌉ ≤ ((h+ 7)e)⌈αk⌉ possibilities for G.

If case (b) was used, we can re-obtain the original graph, G, by deleting
the ⌈αk⌉ appearances that were deliberately added and re-inserting the ⌈αk⌉
deleted edges. Note that once we have identified the appearances that were de-

liberately added, we have at most
(

(D(k))2 +(D(k))3 +(D(k))4 +(D(k))5
)⌈αk⌉

≤ (62 + 63 + 64 + 65)⌈αk⌉ possibilities for the edges that were deleted, since
for each appearance we will automatically know one endpoint, v, of the cor-
responding deleted edge and we know that the other endpoint, u, will now be
at most distance 5 from v, since uv was originally part of a cycle of size ≤ 6.
Hence, as with case (a), it now remains to examine how many possibilities
there are for the ⌈αk⌉ appearances that were deliberately added.

Suppose W is a cut-able appearance of H in G′.

(i) If we don’t have TEW ⊂ E(G), then we have at most (h + 1)⌈αk⌉
possibilities for W , as with case (a).

(ii) If TEW ⊂ E(G) and W was an appearance of H in G, then note that
this appearance must have already been cut-able, since it is clear that we have
degG′ ≤ degG for all vertices that were in V (G). Hence, there are at most
⌈αk⌉ possibilities for W , by definition of G.

(iii) If TEW ⊂ E(G) and W was not an appearance of H in G, then there
must have originally been either another edge between W and V (G)\W other
than eW , or another edge between vertices in W . This deleted edge must be of
the form uBvB for some block B, and so W must contain either uB or vB (or
both). However, if vB ∈ W then rBvB would belong to the total edge set of W ,
which would contradict our assumption that TEW ⊂ E(G). Thus, uB ∈ W
and vB /∈ W (see Figure 7). Recall that the deleted edge uBvB was originally

☛
✡

✬
✫

✟
✠

✩
✪

r
r

W

eW

vB

uB

Fig. 7 The appearance W in case (iii).

part of a cycle of size ≤ 6 and that no other edges from the same cycle were
deleted. Thus, there is still a uB − vB path in G′ consisting of the other edges
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in the cycle. But, since uB ∈ W , vB /∈ W and eW is the unique edge between
W and G′ \ W , it must be that eW belongs to this path, i.e. eW must have
been one of the other (at most 5) edges in the cycle. Thus, we have at most
5⌈αk⌉ possibilities for eW , and hence for W (since eW must be ‘oriented’ so
that vB /∈ W ).

Thus, if case (b) was used, then fH(G′) ≤ (h+ 7)⌈αk⌉, and so we have at

most
(

(h+7)⌈αk⌉
⌈αk⌉

)

(62 + 63 + 64 + 65)⌈αk⌉ ≤ ((h + 7)(62 + 63 + 64 + 65)e)⌈αk⌉

possibilities for G.

We have shown that each graph in P((1+ δ)k, d,D) is constructed at most
((h + 7)e)⌈αk⌉ + ((h + 7)(62 + 63 + 64 + 65)e)⌈αk⌉ ≤ 2((h+ 7)(62 + 63 + 64 +
65)e)⌈αk⌉ ≤ y⌈αk⌉ times, where y denotes 2e(h+d+2)(62+63+64+65). Thus,
the number of distinct graphs that we have constructed in P((1 + δ)k, d,D)
must be at least

e−αk(1− ǫ)k((1 + δ)k)! (γd,D)k
(

p

172h!αy

)⌈αk⌉

≥ e−αk(1− ǫ)k((1 + δ)k)! (γd,D)
(1+δ)k

(γd,D)
−⌈αk⌉h

(

p

172h!αy

)⌈αk⌉

,

since δk = ⌈αk⌉h

≥ (1− ǫ)k((1 + δ)k)! (γd,D)
(1+δ)k

(

172eh!αy (γd,D)
h

p

)−⌈αk⌉

,

since e−αk ≥ e−⌈αk⌉

≥ (1− ǫ)k((1 + δ)k)! (γd,D)
(1+δ)k

(αβ)−⌈αk⌉

≥ (1− ǫ)k((1 + δ)k)! (γd,D)
(1+δ)k

(αβ)−αk, since αβ < 1

=

(

1− ǫ

1− 3ǫ

)k

((1 + δ)k)! (γd,D)
(1+δ)k , since (αβ)α = 1− 3ǫ

≥

(

1− ǫ

1− 3ǫ

)k
|P((1 + δ)k, d,D)|

(1 + ǫ)(1+δ)k
, by (1)

>

(

1− ǫ

(1− 3ǫ)(1 + ǫ)2

)k

|P((1 + δ)k, d,D)|, since δ < 1 (page 11)

> |P((1 + δ)k, d,D)|, since (1 − 3ǫ)(1 + ǫ)2 = 1− ǫ− 5ǫ2 − 3ǫ3.

Hence, we have our desired contradiction.

As mentioned, we shall now see that we can actually drop the conditions
that d(n) is a constant and D(n) is monotonically non-decreasing:

Theorem 8 Let H be a (fixed) connected planar graph on {1, 2, . . . , h}. Then
there exists a constant α(h) > 0 such that, given any integer-valued functions
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d(n) and D(n) satisfying lim supn→∞ d(n) ≤ δ(H) and lim infn→∞ D(n) ≥
max{∆(H), degH(1) + 1, 3}, we have

P[fH(Pn,d,D) ≤ αn] < e−αn for all sufficiently large n.

Proof Suppose we can find a graph H and functions d(n) and D(n) that
satisfy the conditions of this lemma, but not the conclusion, and let α = α(h)
be as given by Lemma 7. Then there exist arbitrarily large ‘bad’ n for which
P[fH(Pn,d,D) ≤ αn] ≥ e−αn.

Let n1 be one of these bad n and let us try to find a bad n2 > n1 with
D(n2) ≥ D(n1). Let us then try to find a bad n3 > n2 with D(n3) ≥ D(n2),
and so on. We will either (a) obtain an infinite sequence n1, n2, n3 . . . with
n1 < n2 < n3 < . . . and D(n1) ≤ D(n2) ≤ D(n3) ≤ . . ., or (b) we will find a
value nk such that all bad n > nk have D(n) ≤ D(nk).

Note that we must have d(n) ∈ {0, 1, 2, 3, 4, 5} for all n. Hence, in case
(a) there must exist a constant d such that infinitely many of our ni satisfy
d(ni) = d (we shall call these ni ‘special’). Let the function D∗ be defined by
setting D∗(n) = D(n1) for all n ≤ n1 and D∗(n) = D(nj) for all n ∈ {nj−1 +
1, nj−1 + 2, . . . , nj} for all j > 1. Then D∗ is a monotonically non-decreasing
integer-valued function satisfying lim infn→∞ D∗(n) ≥ lim infn→∞ D(n) ≥
max{∆(H), degH(1) + 1, 3}. Hence, since d ≤ lim supn→∞ d(n) ≤ δ(H), by
Lemma 7 it must be that we have P[fH(Pn,d,D∗) ≤ αn] < e−αn for all
sufficiently large n. But recall that our infinitely many ‘special’ ni satisfy
(d,D∗(ni)) = (d(ni), D(ni)), and soP[fH(Pni,d,D∗) ≤ αni] = P[fH(Pni,d,D) ≤
αni] ≥ e−αi for these ni. Thus, we obtain a contradiction.

In case (b), note that we have d(ni) ∈ {0, 1, 2, 3, 4, 5} for all i and that
we also have D(ni) ∈ {3, 4, . . . , D(nk)} for all i ≥ k. Hence, there must exist
constants d and D such that infintely many of our ni satisfy (d(ni), D(ni)) =
(d,D). But by Lemma 7 we have P[fH(Pn,d,D) ≤ αn] < e−αn for all large n,
and so we again obtain a contradiction.

In the remainder of this section, we will look at the case when d(n) = D(n).
This time, we shall find it more convenient to introduce the concept of ‘2-
appearances’:

Definition 9 Let J be a connected graph on the vertices {1, 2, . . . , |J |}. Given
a graph G, we say that J 2-appears at W ⊂ V (G) if (a) the increasing bijection
from {1, 2, . . . , |J |} to W gives an isomorphism between J and the induced
subgraph G[W ] of G; and (b) there are exactly two edges, e1 = r1v1 and e2 =
r2v2, in G between W ⊃ {r1, r2} and V (G) \ W ⊃ {v1, v2}, these edges are
non-adjacent (i.e. r1 6= r2 and v1 6= v2), and v1 and v2 are also non-adjacent
(see Figure 8).

We will now give our result on 2-appearances in Pn,d,D. As the method is
very similar to that of Lemma 7, we omit the full details (see Lemma 87 of [2]
for a complete proof):



17

☛
✡

✬
✫

✟
✠

✩
✪

r
r

r
rG \W

G[W ]

G

e2

v2

r2

e1

v1

r1

Fig. 8 A 2-appearance at W in G.

Theorem 10 Let D ≥ 3 be a constant, let H be a (fixed) D-regular connected
planar graph on {1, 2, . . . , h}, and let f ∈ E(H) be a non cut-edge. Then there
exist constants α(h) > 0 and N(h) such that

P[Pn,D,D will not have a set of at least αn 2-appearances of H \ f ]

< e−αn

{

for all n ≥ N if D = 4
for all even n ≥ N if D ∈ {3, 5}.

Sketch of Proof We choose a specific α and suppose that the result is false
for n = k, where k is suitably large. Using Theorem 4/Theorem 5 (depending
on the parity of D), it then follows that there are many graphs G ∈ P(k,D,D)
with at most αk 2-appearances of H \ f .

From each such G, we construct graphs in P((1 + δ)k,D,D), for a fixed
δ > 0, by replacing some edges in G with 2-appearances of H \ f .

The fact that the original graphs had few 2-appearances of H \ f can then
be used to show that there is not much double-counting, and so we find that
we have built so many graphs in P((1 + δ)k,D,D) that we contradict Theo-
rem 4/Theorem 5.

5 Components

We shall now use our appearance results from the previous section to investi-
gate the probability of Pn,d,D having given components.

We already know from Section 2 that (assuming D(n) ≥ 3 for all n, as
always) lim inf P[Pn,d,D will be connected] > 0, so certainly it must be that
lim supP[Pn,d,D will have a component isomorphic to H ] < 1 for all H . In this
section, we will now see (in Theorem 13) that for all feasible H we also have
lim inf P[Pn,d,D will have a component isomorphic to H ] > 0.

As we are going to be using Theorems 8 and 10 from Section 4, we will
start by dealing with the d(n) < D(n) and d(n) = D(n) cases separately (in
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Lemmas 11 and 12, respectively), but we shall then combine these results in
Theorem 13.

We start with the case when d(n) < D(n) for all n:

Lemma 11 Let d(n) and D(n) be any integer-valued functions that for all n
satisfy D(n) ≥ 3 and d(n) < D(n). Then, given any (fixed) connected planar
graph H with lim supn→∞ d(n) ≤ δ(H) ≤ ∆(H) ≤ lim infn→∞ D(n), we have

lim inf
n→∞

P[Pn,d,D will have a component isomorphic to H ] > 0.

Proof Let N< denote the set of values of n for which δ(H) < D(n). We shall
start by proving the result for N<.

Without loss of generality (by symmetry), we may assume that we have
V (H) = {1, 2, . . . , |H |} and that degH(1) = δ(H). Thus, by Theorem 8, we
know there exist α > 0 and N1 such that P[fH(Pn,d,D) ≤ αn] < e−αn for
{n ∈ N< : n ≥ N1}. Hence, given any ǫ > 0, there certainly exists an N2

such that P[fH(Pn,d,D) ≥ αn] > ǫ for {n ∈ N< : n ≥ N2}. Let us suppose
that we can find an n ∈ N< satisfying n ≥ N2 for which P[Pn,d,D will have a
component isomorphic to H ] < ǫ

2 (if not, then we are done) and let G(n, d,D)
denote the set of graphs in P(n, d,D) which have both (i) at least αn cut-able
appearances of H and (ii) no components isomorphic to H .

We may construct a graph in P(n, d,D) with a component isomorphic to
H simply by taking a graph in G(n, d,D) (at least ǫ

2 |P(n, d,D)| choices) and
deleting the associated cut-edge from a cut-able appearance of H (at least
αn choices). Thus, we have at least ǫαn

2 |P(n, d,D)| ways to construct (not
necessarily distinct) graphs in P(n, d,D) with a component isomorphic to H
(see Figure 9).
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✬
✫

✟
✠

✩
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✠

✩
✪

r
r

Fig. 9 Using an appearance to construct a component isomorphic to H.

Given one of our constructed graphs, there will be at most two possibilities
for which is our deliberately created component (since there were no compo-
nents isomorphic to H in the original graph and we can have only created
at most two when we deleted the cut-edge) and then at most n possibilities
for the vertex in the rest of the graph that this component was attached to
originally. Hence, the amount of double-counting is at most 2n, and so we find
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that we can construct at least ǫα
4 |P(n, d,D)| distinct graphs in P(n, d,D) with

a component isomorphic to H , which is what we wanted to prove.
Now let N= denote the set of values of n for which δ(H) = D(n). It

only remains to prove the result for N=. If N= 6= ∅, then we must have
δ(H) ≥ 3, since D(n) ≥ 3. Hence, there exists a non cut-edge f ∈ E(H).
Let H ′ = H \ f and note that δ(H ′) = D(n) − 1 ≥ d(n) for all n ∈
N=. Thus, we may use Theorem 8 with H ′ and then follow the same proof
as with N< to find constants ǫ′ > 0 and N3 such that we have P[Pn,d,D

will have a component isomorphic to H ′] > ǫ′ for {n ∈ N= : n ≥ N3}.
Let us suppose that we can find an n ∈ N= satisfying n ≥ N3 for which
P[Pn,d,D will have a component isomorphic to H ] < ǫ′

2 (if not, then we are
done) and let H(n, d,D) denote the set of graphs in P(n, d,D) with a compo-
nent isomorphic to H ′ but without any components isomorphic to H .

Given a graph in H(n, d,D), we may construct a graph in P(n, d,D) with
a component isomorphic to H simply by choosing a component isomorphic to
H ′ and adding an appropriate edge. The amount of double-counting will be
at most 3|H |, since we will know exactly where the modified component is,
and so we find that the number of distinct graphs in P(n, d,D) with a com-

ponent isomorphic to H must be at least |H(n,d,D)|
3|H| ≥ ǫ′|P(n,d,D)|

6|H| , and so we

are done.

We shall now see an analogous result for when d(n) = D(n) for all n:

Lemma 12 Let D ≥ 3 be a constant and let H be a (fixed) D-regular con-
nected planar graph. Then there exist constants ǫ(H) > 0 and N(H) such
that

P[Pn,D,D will have a component isomorphic to H ]

> ǫ

{

for all n ≥ N if D = 4
for all even n ≥ N if D ∈ {3, 5}.

Proof In order to simplify parity matters, we shall just prove the result for
D = 4, but the D ∈ {3, 5} cases will follow in a completely analogous way.

Without loss of generality, we may assume that V (H) = {1, 2, . . . , |H |}.
Let f ∈ E(H) be an arbitrary non cut-edge. Then, by Theorem 10, we know
that there exists α > 0 and there exists N1 such that for all n ≥ N1 we have
P[Pn,D,D does not have ≥ αn 2-appearances of H \f ] < e−αn. Thus, given any
δ > 0, there certainly exists an N2 such that P[Pn,d,D has ≥ αn 2-appearances
ofH \f ] > δ for all n ≥ N2. Let us now suppose that we can find an n ≥ N2 for
which P[Pn,d,D will have a component isomorphic to H ] < δ

2 (if not, then we
are done) and let G(n, d,D) denote the set of graphs in P(n, d,D) which have
both (i) at least αn 2-appearances of H and (ii) no components isomorphic to
H .

We may construct a graph in P(n, d,D) with a component isomorphic to
H simply by taking a graph G ∈ G(n, d,D) (at least δ

2 |P(n, d,D)| choices);
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choosing a 2-appearance W of H \ e (at least βn choices); deleting the two
edges of the form v1r1 and v2r2 for {r1, r2} ⊂ W and {v1, v2} ⊂ V (G) \W ;
and then finally inserting the two edges v1v2 and r1r2 (note that v1 and v2
were not originally adjacent, by the definition of a 2-appearance, and that r1
and r2 were also not originally adjacent, since they must be the two vertices
of degree D− 1 in G[W ], by D-regularity of G, and we know G[W ] is isomor-
phic to H \ f). Thus, we have at least δβn

2 |P(n, d,D)| ways to construct (not
necessarily distinct) graphs in P(n, d,D) with a component isomorphic to H
(see Figure 10).
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r1

Fig. 10 Using a 2-appearances to construct a component isomorphic to H.

Given one of our constructed graphs, there will be at most two possibilities
for which is our deliberately constructed component (since there were no com-
ponents isomorphic to H in the original graph and we can have only created
at most two). We then know which edge was inserted into it and have at most
3n (by planarity) possibilities for which edge was inserted in the rest of the
graph. We also have two further possibilities for how the vertices in these two
edges were connected originally. Hence, the amount of double-counting is at
most 12n, and so we find that we can construct at least δβ

12 |P(n, d,D)| distinct
graphs in P(n, d,D) with a component isomorphic to H , which is what we
wanted to prove.

We may now combine Lemmas 11 and 12 to obtain our full result:

Theorem 13 Let d(n) and D(n) be any integer-valued functions, subject to
D(n) ≥ 3 for all n and (d(n), D(n)) /∈ {(3, 3), (5, 5)} for odd n. Then, given
any (fixed) connected planar graph H satisfying lim supn→∞ d(n) ≤ δ(H) ≤
∆(H) ≤ lim infn→∞ D(n), we have

lim inf
n→∞

P[Pn,d,D will have a component isomorphic to H ] > 0.
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6 Subgraphs

We will now use the results of the previous two sections to investigate the
probability of Pn,d,D having subgraphs isomorphic to given connected planar
graphs. As always, we shall assume throughout that D(n) ≥ 3 for all n.

Clearly, for those values of n for which D(n) < ∆(H), we must have
P[Pn,d,D will have a copy of H ] = 0. For sufficiently large n, it turns out that
the only other time when we can have this is if d(n) = D(n) = 4 and H
happens to be a graph that can never be a subgraph of a 4-regular planar
graph.

Apart from the above exceptions, we shall see that the matter of whether
P[Pn,d,D will have a copy of H ] is bounded away from 0 and/or 1 actually de-
pends only on whether or not H is D(n)-regular. For those values of n for
which this is the case, any copy of H must be a component and so it already
follows from Sections 2 and 5 that the probability must indeed be bounded
away from both 0 and 1. If there aren’t arbitrarily large values of n for which
H is D(n)-regular, though, we shall be able to use our appearance results of
Section 4 to deduce (in Theorem 17) that P[Pn,d,D will have a copy of H ] → 1
(again, with the exception of the cases given in the previous paragraph).

We will start by working towards the d(n) = D(n) case:

Lemma 14 Let H be a (fixed) connected planar graph and let D ∈ {3, 4, 5} be
a constant. Suppose H is not D-regular, but that there exists a D-regular planar
graph H∗ that contains a copy of H. Then there exist constants β(H) > 0 and
N(H) such that

P[Pn,D,D will not have at least βn copies of H ] < e−βn

{

for all n ≥ N if D = 4
for all even n ≥ N if D ∈ {3, 5}.

Proof Since H is not D-regular, it must be that H∗ contains an edge f = uv
such that H∗ \f also contains a copy of H . Without loss of generality, we may
assume that f is not a cut-edge in H∗, since we could replace fi with a copy of
the appropriate graph from Figure 11 and in this way obtain a D-regular pla-
nar graph containing several non cut-edges that don’t interfere with our copy
of Hi. Thus, the result then follows from Theorem 10 with H∗ \ f .

If D ∈ {3, 5}, then it can easily be shown that there does always exist a
D-regular planar graph H∗ ⊃ H whenever ∆(H) ≤ D, since in these cases
there exist planar graphs that are D-regular except for exactly one vertex
with degree D− 1, and hence we can extend H into a D-regular planar graph
simply by attaching an appropriate number of these graphs to any vertices of
H that have degree less than D. This trick does not work for D = 4, however,
since clearly a graph that is 4-regular except for exactly one vertex of degree
3 would have to have an odd sum of degrees! In fact, the following example
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Fig. 11 Replacing the edge f = uv (cases D = 3, D = 4 and D = 5).

shows that there do actually exist some planar graphs with maximum degree
at most 4 that can’t ever be contained in a 4-regular planar graph:

Example 15 No 4-regular planar graph contains a copy of the graph K5 mi-
nus an edge.

Proof The graph K5 \ {u,w} is drawn with its unique planar embedding
(see [8]) in Figure 12.
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Fig. 12 The unique planar embedding of K5 \ {u, w}.

Consider any planar graph G ⊃ K5 \ {u,w} with ∆(G) = 4. Since we
already have degH(v) = degH(x) = degH(y) = 4, any new edge with at least
one endpoint inside the triangle given by vxy must have both endpoints in-
side. Hence, the sum of degrees inside this triangle must remain odd, and so
this region must still contain a vertex of odd degree. Thus,G is not 4-regular.

An O
(

|H |2.5
)

time algorithm for determining whether or not a given graph
H can ever be a subgraph of a 4-regular planar graph is given in [3].
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It now only remains for us to deal with the case when d(n) < D(n). But
note that this can be deduced easily simply by applying Theorem 8 to a
connected planar graphH ′ ⊃ H with sufficiently high minimum degree. Hence,
we have:

Lemma 16 Let H be a (fixed) connected planar graph. Suppose d(n) and D(n)
are integer-valued functions that for all large n satisfy (a) d(n) < min{6, D(n)},
and (b) D(n) ≥ max{∆(H), δ(H)+1, 3}. Then there exists a constant β(H) >
0 such that

P[Pn,d,D will not have at least βn copies of H ] = e−Ω(n).

Combining all the results of this section, we obtain our full result:

Theorem 17 Let H be a (fixed) connected planar graph. Suppose d(n) and
D(n) are integer-valued functions that for all n satisfy (a) d(n) ≤ min{5, D(n)},
(b) D(n) ≥ max{∆(H), δ(H)+ 1, 3}, (c) (d(n), D(n)) /∈ {(3, 3), (5, 5)} for odd
n, and also (d) (d(n), D(n)) 6= (4, 4) if H happens to be a graph that can never
be contained within a 4-regular planar graph. Then there exists a constant
β(H) > 0 such that

P[Pn,d,D will not have at least βn copies of H ] = e−Ω(n).
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