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Abstract

Let P(t) denote an infinitely long right triangular prism whose base is an
equilateral triangle of edge length t. Let F(t) be the family of those subsets
of P(t) that are congruent to a regular tetrahedron of unit edge. We present
complete classification of the members of F(t) modulo rigid motions within
the prism P(t), for every t > 0.

1 Introduction

Problems related to embedding or inscribing simplices into circular cylinders are
considered by many authors, mostly to study the outer j-radii of simplices, or to
compute the cylinders through the vertices of a simplex. See, e.g., Brandenberg,
et al. [2, 3], Devillers, et al. [4], Pukhov [8], Schomer, et al. [9]. Maehara [7] treats
embedding itself, and proved that all embeddings of a regular tetrahedron in a
circular cylinder are equivalent modulo rigid motions within the cylinder.

In this paper, we classify the congruent embeddings of a regular tetrahedron
in a right prism whose base is an equilateral triangle. This study arouse from the
investigation [1] of the minimum size of an equilateral triangular hole in a plane
through which a regular tetrahedron of unit edge can pass.

A regular tetrahedron with unit edge is simply called a unit tetrahedron. A
right triangular prism P = A x R with equilateral triangular base A is called
simply a prism. The size of a prism P, size(P), is the length of the edge of A.
A prism of size t is denoted by P(t). An embedding of a unit tetrahedron in P
means such a subset of P that is congruent to a unit tetrahedron. Two embeddings
Ty, T, C P of a unit tetrahedron in P are said to be equivalent (written as T; ~ T, in
P) if it is possible to superpose T; on T, by a continuous rigid motion of T; within
P. More precisely, Ty ~ T, in P if there is a continuous map F : Ty x [0,1] — P
such that

(1) for every t € [0,1], the map f; : Ty — P defined by f;(x) = F(x,t) gives an
isometry from T to f;(T7), and



(2) fois the inclusion map, and f1(T7) = Tp.

The relation ~ in P is clearly an equivalence relation. Let v(¢) denote the maxi-
mum number of mutually non-equivalent embeddings of T in P(¢). We prove the
following.

Theorem 1.1.
0 for t< tg:=11¥2
V(t) _ 6 fOT’ to <t< t = \/54—63\6
18 for t1 <t<1
1 for 1<t

Thus, a unit tetrahedron can be embedded in P(#) if and only if ¢ > %ﬁ. This

fact is used in [1] to prove that a unit tetrahedron can pass through an equilateral
triangular hole in a plane if and only if the edge length of the triangular hole is at

least H—\f'

Let v5(t) denote the number of equivalence classes of the embeddings of a unit
tetrahedron into an infinite circular cylinder of diameter t modulo rigid motions
within the cylinder. The number v, (t) is determined in [7]: v, (f) = 0 forr < 1,
and v5(t) = 1 for r > 1. Let vg(t) be the number of equivalence classes of all
embeddings of a unit tetrahedron into a square prism whose base is a square with
diameter t, modulo rigid motions within the prism. Since a square of diagonal ¢
can be inscribed in a circle of diameter , v, (t) = 0 for r < 1 implies that vg(t) =0
for t < 1, see also Itoh, et al. [5].

Problem. Determine v(t) for t > 1.

Throughout this paper, prisms are assumed to be vertically placed in IR?, that
is, their generators are parallel to the z-axis. Hence the intersection of a prism P
and the xy-plane is an equilateral triangle.

2 A cross embedding and a tangential embedding

Lemma 2.1. Let tg = (1 4+ /2)/+/6. Then P(ty) contains a unit tetrahedron.

Proof. Puth = ty/2 = (1++/2)/+/24, and let A be the triangle on the xy-plane
with vertices (£h,0,0), (0,v/3k,0). Then A is an equilateral triangle of edge
length t(, as easily verified. Put k = (\/E —-1)/ V24, ¢ = 1/+/2, and define four
points A, B,C, D by

A= (k{,—h), B = (—h,0,—k), C= (h,0,k), D= (—k ¢,h).

These four points span a unit tetrahedron, and their orthogonal projections on
the xy-plane lie on A, see Figure 1. Thus the unit tetrahedron ABCD is contained
inP(t)) = A xR. O



Figure 1: Top view of the tetrahedron in the triangular prism

This embedding is referred to as a cross embedding. Similarly, we can construct
six different cross embeddings (modulo translations) by changing the face o of
P(fp) containing the edge BC, and by changing the crossing type € (which can be
done by changing the signs of the z-coordinates of A, B, C, D). These six different
cross embeddings are denoted by

a(o,e) (0c=01,02,03, €=¢€1,6),
where 0, 03, 03 denotes the the faces of P(tp), and e; = /X, e; = X,

A tangential embedding T C P is an embedding such that some three vertices

of T lie on one and the same face of P.

Lemma 2.2. Let t; := (v/3 +3v/2)/6 ~ 0.99578. Then P(t|) contains a tangential
embedding of a unit tetrahedron.

Proof. Let Ay be the triangle on the xy-plane with vertices
A=(42,0,0), B=(—¥352,0,0), E = (—¥3¥2 V&1 ),

A straightforward calculation shows that A; is an equilateral triangle with edge
length t;. Let Ty = ABCD be the tetrahedron with vertices

A= (@,O,%), B = (—\@—gﬁlol \f66_1), C = (\/5%610’_@),
D = (0, %2,0).

Figure 2 shows how the face ABC is embedded in a face of P(t1), see also Figure
5 in Section 4. The vertex D lies on another face of P(t1). Then Tj is a tangential
embedding of T in P(#;). O

Similarly, we can construct different tangential embeddings by changing the
face o of P(t;) that contains ABC, and changing the embedding type ¢ of ABC in
o in the following four different ways:

< 7] v /e
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Figure 2: Face ABC in a face of P(t1)

Thus, there are 12 different tangential embeddings modulo translations in P(#7).
They are denoted by

,B(U/ (S) (U = 01,02,03, 6= 51/52/ 53/ 54)

From now on, we assume that the prisms P(t), t € R are nested in such a way
that they have the same center axis and parallel faces. Thus the sections of some
two prisms by a horizontal plane look like A\, Then an embedding T C P(s) is
naturally regarded as an embedding T C P(t) for s < f. Thus the embedding
a(o,€) C P(tg) is an embedding in P(t) for t > ty, and B(c,d) C P(#1) is an
embedding in P(t) for t > t;.

3 Conditions to reduce the containment size

An interior vertex of T C P is a vertex of T lying in the interior P° of P. A corner
vertex of T C P is a vertex lying on the corner line of P. For every point P € R3,
let z(P) denote the z-coordinate of P, and P denote the orthogonal projection of
P on the xy-plane.

Lemma 3.1. Let T C P be an embedding. If

(1) T has an interior vertex, or

(2) T has at most one corner vertex,
then T can be congruently moved into P°.

Proof. Let T = ABCD. A face of P that contains no vertex of T is called an empty
face. Note that if P has an empty face ¢, then we can push T slightly toward ¢ so
that T goes into P°.

(1) First, note that if T has two interior vertices, say, A, B, and P has no empty
face, then C, D must be corner vertices. In this case, a small rotation of T around
the line through the midpoint of CD and perpendicular to the face containing CD
makes two faces of P empty.



Now, suppose that A is an interior vertex. If one of B,C, D, say, D, is not a
corner vertex, then a small rotation of T around the line BC makes A, D interior
vertices. Suppose that B, C, D are all corner vertices. Then no two of them lie on
the same corner line, because the dihedral angle of a unit tetrahedron is greater
than 7t/6. Therefore, B, C, D lie in different corners, the equilateral triangle BCD
must be horizontal, and hence size(P) = 1. In this case, a small rotation around
the line BC makes A, D interior vertices.

(2) Let A be the section of P by the xy-plane. We may suppose that none of
A, B,C, D is an interior vertex, and P has no empty face.

If T has no corner vertex, then there is a face ¢ of P that contains two vertices
of T. Let ¢ be the line perpendicular to ¢ and passing through the midpoint of
the other two vertices. Then an appropriate rotation of T around ¢ sends the two
vertices not lying on ¢ into P°.

Suppose that T has only one corner vertex, say, D. Let o be the face opposite
to D. Then one of A, B, C does not lie on ¢. To see this, suppose that A, B, C lie
on o. Let G be the barycenter of ABC. Then DG is horizontal. Suppose that
0 := /GDA > ZGDB > /GDC. Then 0 attains its minimum when C is the
midpoint of AB (i.e., when C = G). In this case, noting that |DC| = /2/3 and
|AC| =1/2,wehave tan6 = |AC|/|DC| = v/3/8 > \/1/3 = tan(71/6), and thus
0 > 7t/6. If D is a corner vertex, then it follows from ¢ 1. GD that 0 < 71/6, a
contradiction. Thus ¢ contains at most two of A, B, C.

If o contains two vertices of T, then a rotation of T around the line through D
and perpendicular to ¢ sends the remaining vertex into P°, and we are done. So,
we may assume that o contains only one vertex of T, say, C. If A, B lie on the same
face, say 7, then A, B, D lie on 7. Let DX be a line segment obtained by cutting T
horizontally, and let M be the midpoint of DX. Then a small rotation around the
line through M and perpendicular to T sends C into P°.

Thus, we may assume that A, B lie on different faces. In this case, A, B are
both lower (or both higher) than D, for otherwise, ZADB would be greater than
7t/3. So, we may suppose that z(A) < z(B) < z(D). Let F be the midpoint of
AB. Then z(A) < z(F) < z(B) < z(D), AD < BD and /DFA < ZDFB.

Figure 3: Just one corner vertex

To show that A and C lie in the same side of the line DF in the xy-plane,
suppose, on the contrary, that B and C lie on the same side. In this case, using
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/DFB > m/2 we have Z/BFC < m/2. Noting that /BFC = /2, we have
(z(B) >)z(F) > z(C). Similarly, using /DFC > /DFB > n/2 and ZDFC <
7t/2, we have (z(D) >)z(F) < z(C), a contradiction. Thus, A and C must lie on
the same side, see Figure 3.

Let us verify that z(A) < z(C). If ZAFC < /2, then this follows from
/AFC = 1t/2 and z(A) < z(F). Otherwise we have /DFC > ZAFC > n/2.
Then /DFC < 7mt/2 and z(D) > z(F) imply z(F) < z(C), and thus z(A) <
z(F) < z(C).

Thus, z(A) < z(B), z(A) < z(C), and AB L (the plane DFC). Now, if we
rotate T around the line DF so that the inclination of AB becomes steeper (B goes
up, A goes down in the z-direction), then A and B moves inward P. In this case

.+ C
A/*
B
A —DF
\
Figure 4: View in the direction from F to D

% —
the vertex C moves in the direction BA, see Figure 4, and thus, C moves in the

— _ o -
direction BA. Namely, C moves into the interior A° of A, because |AD| < |BD|,
see Figure 3. Therefore, C moves inward P. Hence all A, B, C become interior
points of P. H

4 Minimal containment size of a unit tetrahedron

Lemma 4.1. Let T = ABCD C P be an embedding such that T has at least two corner
vertices and has no interior vertex. Then the following holds.

(1) If T is a tangential embedding, then size(P) = t,, and the embedding is equivalent
to one of B(c, 9).

(2) If T is not a tangential embedding, then size(P) = to and the embedding is equiv-
alent to one of a (0, €).

Proof. Since two corner vertices cannot lie on the same corner line (because the
dihedral angle of T is greater than 7r/3), T cannot have three corner vertices, for
otherwise, size(P) would be 1 and one vertex would be an interior vertex. Hence
T has exactly two corner vertices.

(1) First suppose that T is a tangential embedding. Let A, B be the two corner
vertices of T, and let ¢ be the face of P that contains the edge AB. Then C or
D lies on ¢. This can be seen as follows: Suppose that none of C, D lies on .
Then, since T is a tangential embedding, C, D and one of A, B, say, B lie on the
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same face of P. Let Z be the barycenter of BCD. We may suppose that AZ lies
on the xy-plane. Now, when we rotate T around AZ, then the minimum value
6 of max{/ZAB,/ZAC,/ZAD} is attained in the case that one of B,C, D, say
D coincides with Z. In this case, since |BZ| = 1/2 and |AZ| = /2/3, we have
tan /ZAB = (1/2)/+/2/3 = /3/8 > \/1/3 = tan(7/6). Therefore, 6 > 71/6.
This implies that if A is a corner vertex, and BCD lie on the plane determined by
the opposite face of the corner where A is lying, then ABCD is never contained
in the prism P. Thus, one of C, D, say C lies on ¢.

Let G be the barycenter of ABC, and let T be the face containing D. Then,
GD is horizontal. We may suppose that GD lie on the xy-plane. Suppose that
A € TN, see Figure 5. Let us verify that this is f(c, d) for some ¢ given in the
proof of Lemma 2.2, and size(P7) = t;.

Yy

EAD

B GCc A ¢
Figure 5: Top view of Py and front view of ¢

Let ¢ = LAAG. Then size(P;) = |AB| = |AB|sin(ZAAB) = sin(LAAG +
/GAB) =sin(¢ + 71/6). On the other hand, using |GD| = v/2/3 and ZADG =
/6, we have |AG| = /2/3, and thus sin¢g = |AG|/|AG| = V2/3, cos¢ =
1/+/3. Hence

AB = sin(¢ 4 71/6) = sin¢gcos(77/6) + cos psin(/6) = (3v2+ /3)/6,
namely, size(P1) = |AB| = t;, which proves the tangential embedding case.

(2) Now we consider the non-tangential embedding case. Let B, C be the two
corner vertices of T. Then, none of A, D lies on the face of P that conains the edge
BC, and A, D lie on different faces of P.

Let us show that AD || BC. Let ¢ be the face of P that contains BC. Let IT
be the plane that perpendicularly bisects BC. Then A, D lie on I1. Let XYZ be
the section of P by I, YZ be the line segment I1 N ¢, X be the intersection point
of IT and the corner line of P opposite to o. Let M be the midpoint of BC (and
hence the midpoint of YZ). Then the segment XM is horizontal. Thus XYZ is an
isosceles triangle with base YZ, and A, D lie on XY U XZ. Since |MX| < /3/2
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and |BM| = |CM| = 1/2, the locus 7y of points on IT that are at unit distance
apart from B (and C) is a circle with center M, radius V/3/2. Since X lies inside
the circle 7, XY intersects <y at a single point, and also XZ intersects -y at a single
point. Thus (XY U XZ) N v consists of two points, and they must be A and D,
see Figure 6. Since XY Z is an isosceles triangle with base YZ, we have AD || YZ,
and hence AD || YZ. Since the two lines BC and YZ are the same line, we have
AD | BC.

Figure 6: On the plane II that bisects BC perpendicularly

Thus, ABCD (or DBCA) is a trapezoid in A with all vertices on dA, and BC is
an edge of A, just as shown in Figure 1. Let us find the edge length t = |BC| of
A. Since the height of the trapezoid is the distance between the opposite edges
of ABCD, it is equal to 1/+/2. Then, by comparing the heights of the equilateral
triangles ADX and BCX, we have |AD| : t = (v/3t/2 —1/+/2) : v/3t/2, and thus
|AD| =t — +/2/3. Let 6 be the angle of inclination of AD. Then, since AD || BC,
the angle of inclination of BC is 77/2 — 6. Hence t — /2/3 = |AD| = cos6 and
t = |BC| = sinf. Therefore, 1 = (t — v/2/3)? + t2, and solving this equation we
have t = (1 + v/2)/+/6. This proves that size(P) = ty and T is equivalent to one
of a(c,€). O

Lemma 4.2. For any embedding T C P(t), there is the minimum value sq such that T
is equivalent to To C P(sg) C P(t) in P(t). Moreover, sy = tg or so = 1.

Proof. Let sg = inf{s < t | 3T" C P(s)suchthatT ~ T’ in P(t)}. Then there
is a sequence of points (A, By, Cy, D) € R2,1n =1,2,3,...,and a sequence
spn € Ry, n=1,2,3,...,such that for each n,

1. T, := A;B,,C,,D,, is a unit tetrahedron contained in P(s,) N [-2 < z < 2],

2. T~ T,inP(t), and

3. lims, = s,
where [-2 <z < 2] := {(x,y,z) € R® | =2 <z <2}.Since P(t) N [-2 < z < 2]
is compact, a convergent subsequence (A, B, Ci, D) exists and converges to
(Ao, Bo, Co, Dg). Then Ty := AgBoCyDy is a unit tetrahedron contained in P(sp).

Letcy = 1/22+1/23 +---+1/2™. Since Ty, ~ Ty41 in P(t), there is a motion
Fn : Tm X [cm, cms1] — P(t) of Ty, that sends Ty, to Ty, 11 and a motion F : T X



[0,1/2] — P(t) that send T to T;. Connecting these motions, we have a motion
F:Tx[0,1) — P(t). This motion can be extended to F : T x [0,1] — P(¢) by
putting F(A,1) = Ao,...,F(D,1) = Dy and extending linearly for all x € T.
Then F is a continuous map and a motion of T to Ty. Since sy is the minimum
containment size, T satisfies neither (1) nor (2) of Lemma 3.2. Hence, by Lemma
4.1, we have sy = ty or sg = t1. ]

Corollary 4.1. For tg < s < t;, every embedding T C P(s) is equivalent to one of
a(o,€), and for t1 < t, every embedding T C P(t) is equivalent to one of (0o, €) or one

of B(c,9). O

5 Territories and borders in a prism

In a prism P, the territory of a corner of P consists of those points of P that are
nearer to the corner than to other corners. Each territory is a quadrilateral prism,
and the three territories are mutually congruent. A border is the intersection of
any two territories, see Figure 7.

border

Figure 7: Territories and borders of P, top view

Lemma 5.1. Let P be a prism of sizet < 1 and let T C P be a unit tetrahedron. Then no
vertex of T lies on a border.

Proof. Let T = ABCD and suppose that A lies on a border. We may assume that
z(A) = 0 < z(B). Let A be the section of P by the plane z = 0, G be the barycenter
of A, and L, M, N be the midpoints of the edges of A, see Figure 7. Then A lies on
GLUGM U GN. We may suppose that A lies on GM. Let Q) be the intersection
of P and the unit sphere with center A. This intersection () is the union of two
connected surfaces, Q7 in the half space z > 0 and )~ in the half space z < 0.
Figure 8 shows the upper surface Q. The vertex B lies on Q. Let P, Q, R be the
corner point such that |AP| = |AQ| = |AR| = 1and z(P) = z(Q) > z(R) > 0.

Then Q" intersects the faces of P in three circular arcs PQ, @, RP. Let S be the
corner point on the same corner line as R such that z(S) = z(P). (If A = G, then R



coincides with S.) Let the arcs RQ and RP cross SQ and SP at U, V, respectively.
IfA=GthenR=S=U = V,and if A = M, then U is the midpoint of SQ and
z(R) = v/1 — 3t2/4. Hence we have

ISU| = |SV| < t/2, 1/2</1-312/4<z(R) <z(P) < V1-12/4<1. (1)

Thus, QT is contained in the open half space z > 1/2. Similarly, Q™ is contained
in the open half space z < —1/2. Since B lies on )", the remaining vertices C, D
must also lie on Q.

From (1), we have |RU| = |[RV| < 1, [UV| < 1, |PQ| = |QS| = |SP| < 1.
Hence, we can deduce that

max{/PAQ, /PAS, /QAS, ZUAV, ZUAR, /VAR} < /3. )

Now, we divide Q" by the plane z = z(P) into two surfaces; Q)] ,the upper
part, and er , the lower part. Here, we note that if X, Y belong the tetrahedron
APQS, then ZXAY < max{ZPAQ, ZPAS, ZQAS}. (Proof of this fact will be ele-
mentary.) From this fact it follows that for any points X, Y & Q{L , LXAY < /3.
This implies that the diameter of ()] is less than 1, and hence Q)] cannot contain
more than one vertex of T. Similarly, the diameter of Q;r is less than 1, and it
cannot contain more than one vertex of T. Therefore, Q" cannot contain the three
vertices B, C, D, which is a contradiction. O

______
~~~~~~
~
Ss
~

R] |
ya

M
/}’,A
N~ |/ T

/!

Figure 8: A section by the unit sphere with center A

Let T C P be an embedding into a prism of size t < 1. Then, since P cannot
contain a horizontal line segment of length 1, we can label the vertices of T with
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A1, Ay, Az, Aysothat z(Ar) < z(Ap) < z(A3) < z(Ay). We call the vertex of label
A; the ith vertex of T. Notice that the labels of the vertices of T do not vary under
any continuous motion of T within P.

Lemma 5.2. Let Ty, T, C P(t) (tg < t < 1) be two embeddings of a unit tetrahedron.
If, for some i = 1,2,3,4, the ith vertex of Ty and the ith vertex of Ty lie in different
territories, then Ty and T, are not equivalent.

Proof. If Tyand T, are equivalent then there is a motion of Tj in P(#) which sends
the ith vertex of T to the ith vertex of T,. Since they belong different territories
in the begining, the ith vertex of T} must cross a border in the midway, which is
impossible by Lemma 5.1. O

Lemma 5.3. If T C P, size(P) = t < 1, then each territory of P contains a vertex of T.

Proof. Since the width of the union of two territories is ( \/Tg)t (see Figure 7) which

is smaller than 1/+v/2, the width of T (see [10] or [6]), the convex hull of two
territories cannot contain T. Hence each territory contains a vertex of T. O

Lemma 5.4. Let P be a prism of sizet < 1 and T C P be a unit tetrahedron. Suppose
that the vertices A1, Ay of T lie in the territory of a corner line £. Then the line A1Ay4 is
never parallel to (or never contained in) the plane that bisects the dihedral angle at {.

Proof. Suppose that A1 Ay is parallel to the plane H that bisects the dihedral angle
at £. We may suppose that H is the xz-plane in R?. Let K be the plane that
perpendicularly bisects the edge A1 A4. Then, K intersects H orthogonally. Hence
the section of P by K is an isosceles triangle XYZ with base YZ in the face of
P opposite to £. Then |YZ| = tand s := |XY| = |XZ| > t. Let L, M, N be
the midpoints of YZ, ZX, XY, respectively, and let G be the barycenter of XYZ
as shown in Figure 9. Since the width of a unit tetrahedron is 1/ \/§, we have
z(A4) —z(A1) > 1/+/2. Hence the angle between the line A; A4 and the xy-plane
is at least 77/4, and hence the angle between K and the xy-plane is at most 77 /4.

Therefore, | XL| is at most v/2 x (\/Tg)t, and hence s = |XZ| = | XY| < (4)1&

Y
N

L X
M

Z

Figure 9: Section of P by the perpendicular bisector of AD

Since Aj, A3 lie on the plane K, and hence lie on the isosceles triangle XY Z.
Since A1, A4 are in the territory containing X, the vertices Ay, A3 must lie in the
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pentagon YZMGN. On the other hand, by applying the parallelogram theorem,
we have

1 1
IYM|?> = |ZN|> = §|ZY|2+§|ZX|2—|XN|2

Lo 1, 1o, 1, 15
= = 2t gt =4
P M A L
1, 1,7, 15,
< —t —(—=f)" = —t 1.
-2 + 4( 2 ) 16 <
Hence the diamter of the pentagon YZMGN is less than 1. This implies that the
pentagon YZMGN cannot contain { A, A3}, a contradiction. O

6 Proof of the theorem

Lemma 6.1. If tg < t < 1, the six « = «(0, €) are mutually non-equivalent in P(t).

Proof. Let 01,07, 03 be the faces of P(t) such that A3 of a(0q, €1) (the cross embed-
ding constructed in the proof of Lemma 2.1) lies on the line o5 N 0. We prove
that 0(((71',6]‘), i =1,2,3,j = 1,2 are all non-equivalent in P(t). Proof is given by
the following table. Let us explain what means a number in a cell of the table.
Look at, for instance, the cell in the low of a (07, €;) and the column of a (o3, €1).
The number in this cell is 1. This means that the first vertex of a(0», €;) and the
first vertex of (o3, €1) lie in different territories. Then by Lemma 5.2, we have
a(0y,€2) % a(o3,€1) in P(t). Now it is easy to check that the entries in the cells
are all correct.

a(oy,€e1) | a(oy, €) | a(on,€1) | a(o, €2) | a(o3,€1) | a(o3,€2)
06(0'1,61) - 2 1 1 1 1
a(0q,€2) 2 - 1 1 1 1
a(oy, €1) 1 1 - 2 1 1
a0y, €2) 1 1 2 - 1 1
a(0s, €1) 1 1 1 1 - 2
a(03,€2) 1 1 1 1 2 -

0
Lemma 6.2. Fort; < t < 1, the twelve B(c, §) are mutually non-equivalent in P(t).

Proof. Firstwe show that B(c,d;), i = 1,2,3,4 are all non-equivalent in P(#). Proof
is given by the following table.

— [ B(0,8) [ B0, 5) | B(e,3) | B0, 4)
B(c,51) - 1 2 1
,5(0',52) 1 - 1 2
B(0,83) 2 1 - 1
B(0,64) 1 2 1 -
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Now it will be sufficient to show that if o1 # o3, then B(01,d;) and B(2, 6;) are
not equivalent in P(t) for all 7,j. To make the argument clear, we may suppose
that o7 N 0y contains the vertex A4 (the highest vertex) of f(01,d1). Then, we have
the following incomplete table with two blank cells.

- B(o,01) | B(o2,62) | B(o2,03) | (o2, 0a)
ﬁ(O’l, 51) 1 2 1
B(71,0,) 1 1 1 1
B(cy1,93) 1 1 2
ﬁ(0'1,54) 1 1 1 1

Let us show that (cq,d1) and B(02,d4) (corresponding to the upper-right
blank cell) are not equivalent in P().

Note that in both B(c1, 1) and (03, d4), the vertices A1, A4 lie in the territory
of the corner line ¢ := 01 N 0,. Let H be the plane that bisects the dihedral angle at
the corner ¢ of P(t). Let d(P, H) denote the distance from a point P to the plane H.
Then, in B(01, 1), we have d(A1, H) > 0,d(A4, H) = 0, whereas, in B(02,d4), we
have d(A1,H) = 0, d(Ag, H) > 0. Therefore, if (071, 61) ~ B(02,d4), then on the
way of the motion of (07, 1) from its original position to the position of S(0y, d4),
there must be a moment d(Aq, H) = d(A4, H) holds. But this is impossible by
Lemma 5.4. Hence B(01,01) # B(02,64) in P(t). Similarly, it can be proved by
applying Lemma 5.4 that B(07,03) and B(02,92) (the ones corresponding to the
other blank cell) are not equivalent in P(¢). Thus, all twelve (o, §) are mutually
non-equivalent in P(t). O

Corollary 6.1. Let t; < t < 1. Then no B is equivalent to an « in P(t).

Proof. If some B is equivalent to some « in P(t), then every f would be equiv-
alent to an « in P(t). However, mutually non-equivalent twelve Bs cannot be
equivalent to six as. [

Proof of Theorem 1.1.

By Lemma 4.2, v(t) = 0 for t < ty, and by Corollary 4.1 and Lemma 6.1, we
have v(t) = 6 for tg < t < t;. By Corollary 4.1, Lemmas 6.1, 6.2 and Corollary
6.1, it follows that v(t) =6+ 12 =18 fort; <t < 1.

Now, suppose that + = 1. Then, every T C P(1) is equivalent to some « or
some 3 by Corollary 4.1. Suppose that T C P(1) is equivalent to some «, say, to
the cross embedding ABCD C P(tp) given in the proof of Lemma 2.1. Then by
applying a translation along the y-axis, we may suppose that the edge BC lies
on a face, say ¢ of P(1), and the line L passing through the midpoint of BC and
perpendicular to o meets the corner line opposite to the face ¢. Then, by rotating
around the line L, we can move ABCD within P(1) so that BC becomes horizon-
tal and AB becomes vertical. Now, rotating the resulting tetrahedron around the
horizontal line BC within P(1) so that a face of the tetrahedron becomes horizon-
tal, and one vertex lies above the horizontal face.
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Next, suppose that T C P(1) is equivalent to a f, say, to the tangential embed-
ding ABCD C P(t;) given in the proof of Lemma 2.2. We can translate ABCD so
that A comes to the corner line and ABC lie on a face o of P(1). Now, by rotating
ABCD around the line passing through A and perpendicular to the face o, we
can make the line AB horizontal. Then, rotate around the edge AB, we can make
one face of the tetrahedron horizontal, and one vertex lies above the face. Thus,
every embedding T C P(1) is equivalent to an embedding in which one face is
horizontal and one vertex is above the horizontal face. Therefore v(1) = 1, and
hence v(t) = 1 for t > 1. This completes the proof. O
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