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Abstract. Given a convex polyhedron P of n vertices inside a sphere Q,
we give an O(n3)-time algorithm that cuts P out of Q by using guillotine
cuts and has cutting cost O(log2 n) times the optimal.
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1 Introduction

The problem of cutting a convex polygon P out of a piece of planar material Q
(P is already drawn on Q) with minimum total cutting length is a well stud-
ied problem in computational geometry. The problem was first introduced by
Overmars and Welzl in 1985 [13] but has been extensively studied in the last
decades [2–5,8,9,11,13–15] with several variations, such as P and Q are convex
or non-convex polygons, Q is a circle, and the cuts are line cuts or ray cuts. This
type of cutting problems have many industrial applications such as in metal sheet
cutting, paper cutting, furniture manufacturing, ceramic industries, fabrication,
ornaments, and leather industries. Some of their variations also fall under stock
cutting problems [4].

If Q is another convex polygon with m edges, this problem with line cuts
has been approached in various ways [3–6, 9, 10, 13, 14]. If the cuts are allowed
only along the edges of P , Overmars and Welzl [13] proposed an O(n3+m)-time
algorithm for this problem with optimal cutting length, where n is the number
of edges of P . The problem is more difficult if the cuts are more general, i.e.,
they are not restricted to touch only the edges of P . In that case, Bhadury and
Chandrasekaran showed that the problem has optimal solutions that lie in the
algebraic extension of the input data field [4], and due to this algebraic nature of
this problem, an approximation scheme is the best that one can achieve [4]. They
also gave an approximation scheme with pseudo-polynomial running time [4].

After the indication of Bhadury and Chandrasekaran [4] to the hardness of
the problem, many people have given polynomial time approximation algorithms.
Dumitrescu proposed an O(log n)-approximation algorithm with O(mn+n logn)
running time [9,10]. Then, Daescu and Luo [6] gave the first constant factor ap-
proximation algorithm with ratio 2.5 + ||Q||/||P ||, where ||P || and ||Q|| are the

⋆ An earlier version appeared in Proc. WALCOM 2010, LNCS, Springer, 2010.
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perimeters of P and the minimum area bounding rectangle of P respectively.
Their algorithm has a running time of O(n3 + (n + m) log (n+m)). The best
known constant factor approximation algorithm is due to Tan [14] with an ap-
proximation ratio of 7.9 and running time of O(n3 +m). In the same paper [14],
the author also proposed an O(log n)-approximation algorithm with improved
running time of O(n+m). As the best known result so far, very recently, Bereg,
Daescu and Jiang [3] gave a polynomial time approximation scheme (PTAS) for

this problem with running time O(m+ n6

ǫ12 ). Recently, Ahmed et.al. [2] have given
similar constant factor and O(log n)-factor approximation algorithms where Q
is a circle. As observed in [2], algorithms for Q being a convex polygon are not
easily transferred for Q being a circle, as the running time of the formers depend
upon the number of edges of Q.

For ray cuts, Demaine, Demaine and Kaplan [8] gave a linear time algorithm
to decide whether a given polygon P is ray-cuttable or not. For optimally cutting
P out of Q by ray cuts, if Q is convex and P is non-convex but ray-cuttable,
then Daescu and Luo [6] gave an almost linear time O(log2 n)-approximation
algorithm. If P is convex, then they gave a linear time 18-approximation algo-
rithm. Tan [14] improved the approximation ratio for both cases as O(log n) and
6, respectively, but with much higher running time of O(n3 + m). See Table 1
for a summary of these results.

Dim. Cut Type Q P Approx. Ratio Running Time Reference

2D

Line

Convex Convex O(log n) O(mn + n log n) [9, 10]
Convex Convex 2.5 + ||Q||/||P || O(n3 + (n + m) log (n + m)) [6]
Convex Convex 7.9 O(n3 + m) [14]

Convex Convex (1 + ǫ) O(m + n
6

ǫ12
) [3]

Circle Convex O(log n) O(n) [2]
Circle Convex 6.48 O(n3) [2]

Ray

- Non-convex Ray-cuttable? O(n) [8]
Convex Convex 18 O(n) [6]
Convex Non-convex O(log2 n) O(n) [6]
Convex Convex 6 O(n3 + m) [14]
Convex Non-convex O(log n) O(n3 + m) [14]

3D
Hot-wire - Non-convex Cuttable? O(n5) [11]

Guillotine Sphere Convex O(log2
n) O(n3) This paper

Table 1. Comparison of the results.

Our results The generalization of this problem in 3D is very little known. To the
best of our knowledge, the only result is to decide whether a polyhedral object
can be cut out form a larger block using continuous hot wire cuts [11]. In this
paper we attempt to generalize the problem in 3D. We consider the problem of
cutting a convex polyhedron P which is fixed inside a sphere Q by using only
guillotine cuts with minimum total cutting cost. A guillotine cut, or simply a
cut, is a plane that does not pass through P and partitions Q into two smaller
convex pieces. After a cut is applied, Q is updated to the piece that contains P .
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The cutting cost of a guillotine cut is the area of the newly created face of Q.
We give an O(n3)-time algorithm that cuts P out of Q by using only guillotine
cuts and has cutting cost no more than O(log2 n) times the optimal cutting cost.
Also see Table 1.

The rest of the paper is organized as follows. We give some preliminaries in
Section 2, then Section 3 gives the algorithms, and finally Section 4 concludes
the paper with some future work.

2 Preliminaries

A cut is a vertex/edge/face cut if it is tangent to P at a single vertex/a single
edge/a face respectively. We call P to be cornered (within Q) if it does not
contain the center o of Q, otherwise it is called centered. For cornered P , the
D-separation of P is the minimum-cost (single) cut that separates P from o.

We represent an orthogonal projection of a convex polyhedron P by the cor-
responding projection direction coming towards the origin from a view point at
infinity. A face f of P is visible in an orthogonal projection if the view point
lie in the half space that is defined by the supporting plane of f and does not
contain P . An orthogonal projection of P is called non-degenerate if the pro-
jection direction is not parallel to any face of P . An orthogonal projection of P
is a convex polygon. If the projection is non-degenerate, then each edge of the
projected convex polygon corresponds to an edge of P .

3 The algorithm

Let C∗ be the optimal cutting cost. We shall have two phases in our algorithm:
box cutting phase and carving phase. In the box cutting phase, we shall cut a
minimum volume rectangular box B containing P out of Q with cutting cost no
more than a constant factor of C∗. Then in the carving phase we shall cut P
out of B with cutting cost bounded by O(log2 n) times of C∗.

3.1 Box cutting phase

We first deal with cornered P . If P is cornered, we shall first apply the D-
separation toQ. The following lemma gives a characterization of the D-separation,
which will help finding it quickly.

Lemma 1. For cornered P , let x be the closest point of P from o. Then the
D-separation of P is the plane that is perpendicular to the line segment ox at x.

Proof. A D-separation is a tangent to P that separates P from o and is farthest
form o. Let π be the plane that is perpendicular to the line segment ox at x. To
prove that π is the D-separation, we first prove that π is tangent to P . Suppose
not. Then there exists some portion of P in the neighborhood of x that lies in
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the half space of π containing o. Then there must be a point y in that portion
that is closer to o than x, which is a contradiction that x is closest to o.

We next prove that π is the farthest tangent of P from o that separates x
from o. To separate x from o, π must intersect ox. Now, any other plane that
intersects ox and is not perpendicular to ox at x is closer to o than π. Therefore,
π is the farthest. ⊓⊔

Observe that since P is convex, the closest point x of P from o is unique,
and therefore, the D-separation of P is also unique. However, x can be a vertex,
or a point of an edge or a face.

Lemma 1 The D-separation can be found in O(n) time.

Proof. By Lemma 1, we need to find the closest point x of P from o. We first
find the closest vertex v from o in O(n) time. Then for each edge e, we find the
closest point oe of e from o as follows: Let le be the line passing through e. Draw
a line segment oo′ perpendicular to le. If o

′ is a point of e, then oe is o
′, otherwise

oe is the end point of e that is closer to o′. Finding oe can be done in constant
time. For all edges of P , it takes O(n) time. Similarly, for each face f , we find
the closest point of of f from o as follows: Let πf be the supporting plane of f .
Draw a line segment oo′ perpendicular to πf . If o

′ is a point of f , then of is o′,
otherwise of is among the closest point of the edges of f or among the vertices
of f . Finding of can be found in O(df ) time, where df is the number of edges
of f . For all faces of P , it takes

∑
f O(df ) = O(n) time. Finally, x is the closest

among v, all oe’s and of ’s. ⊓⊔

For cornered P , after the D-separation is applied, Q is a spherical segment
and let r be the radius of the base circle of that segment. The following lemma
relates for cornered P the cost of D-separation and C∗.

Lemma 2 For cornered P , cost of the D-separation, which is πr2, is at most
C∗.

Proof. Consider an optimal cutting sequence C with cutting cost C∗. C must
separate P from o. However, it may do that by using a single cut or by using more
than one cut. If it uses a single cut, then it is in fact doing the the D-separation,
since the D-separation is the minimum cost single cut that can separate P from
o. Therefore, C∗ ≥ πr2.

If C uses more than one cut, then let C = C1, C2, . . . , Ck, . . . with Ck being
the first cut that separates o from P . Observe that Ck can not be the very first
cut of C, since otherwise it is doing a D-separation and we are in the previous
case. Replace C = C1, C2, . . . , Ck by a single cut Ck

′ whose plane is the same
as that of Ck. We will show that cost of Ck

′ is smaller than the total cost of
C1, C2, . . . , Ck.

Consider the first two cuts C1 and C2. Replace C1 and C2 by a single cut C2
′

whose plane is the same as that of C2. Since C1 does not separate P from o, the
portion of Q that is created due to C1 and that does not contain P is no larger
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than a half sphere of Q. It implies that the portion of C2
′ that is not present in

C2 is smaller than C1 (also see Fig. 1). That means the cost of C2
′ is smaller

than the total cost of C1 and C2. Similarly, we can show that replacing C2
′ and

C3 with a single cut C3
′ in the plane of C3 has smaller cost than the total cost

of C2
′ and C3. Repeating this for k − 1 times would show that Ck

′ has smaller
cost than the total cost of C1, C2, . . . , Ck. Therefore, using more than one cut to
separate P from o is even worse than using a single cut, and we already proved
that an optimal way to use a single cut is to use the D-separation. Thus the
lemma holds. ⊓⊔

C2, C2
′

P

C1

o

Q

Fig. 1. 2D view of C1, C2 and C′
2. Broken line represents the part of C′

2 that is
not in C2; This portion is smaller than C1.

We now deal with centered P . A lemma that is similar to the previous one
and gives lower bound for centered P is the following.

Lemma 3 For centered P , it holds that C∗ ≥ πR2, where R is the radius of Q.

Proof. For centered P , Q remains a sphere. Since P contains the center o of
Q, any cutting sequence, starting from the boundary of Q, must “wrap” P and
finally get out of Q by a plane different from the starting plane. That means the
wrapping must enclose the center o. In the best case when P is simply a point
that lies in the center o of P , the cutting sequence must traverse at least 1

2πR
2

area to reach P and then to traverse another 1
2πR

2 area to finish the cutting. In
the worst case, when P is almost the sphere Q, the sequence must traverse the
whole area of Q, which is 4πR2. ⊓⊔

We next find a minimum volume rectangular bounding box B of P in O(n3)
time by the algorithm of O’Rourke [12]. Then we cut out this box from Q by
applying six cuts along the six faces of B.

Lemma 4 Cost of cutting B out of Q is at most 3C∗ for cornered P and at
most 4C∗ for centered P .
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Proof. Consider Q before B was cut out of it. We denote the area of Q by |Q|1.
For cornered P , since Q is no bigger than a half sphere, it holds that |Q| ≤ 3πr2,
which by Lemma 2 becomes |Q| ≤ 3C∗. For centered P , since we do not apply
D-separation, we have |Q| = 4πR2, which by Lemma 3 becomes |Q| ≤ 4C∗.
While cutting along the faces of B, for each cut c let Q′ be the portion of Q that
does not contain P . Let q′ be the portion of the surface of Q′ that is “inherited”
from Q, i.e., that was a part of the surface of Q. One important observation is
that the cost of c is no more than the area of q′. Moreover, over all six cuts, sum
of these inherited surface area is |Q|. Therefore, the lemma holds. ⊓⊔

Once the minimum area bounding box B has been cut, a lower bound on C∗

can be given in terms of the area of B.

Lemma 5 C∗ ≥ 1
6 |B|, where |B| is the area of B.

Proof. Let h be a maximum area face of B. Project P orthogonally from the di-
rection perpendicular to h. P projects to a convex polygon X . In this projection,
h is the minimum area bounding rectangle of X , since otherwise we could rotate
the four faces of B that are not perpendicular to h and would get a bounding
rectangle smaller than h, which in turn would give a bounding box smaller than
B, but that would be a contradiction that B is the smallest bounding box. It
implies that the area of X is at least 1

2 |h|. Now, C
∗ is at least twice the area of

X , and |B| ≤ 6|h|. Therefore, C∗ ≥ 2|X | ≥ 2 · 1
2 |h| ≥

1
6 |B|. ⊓⊔

3.2 Carving phase

Let T = B\P be the portion of B that we would achieve if P were removed
from B. Then, T is a polyhedral object. T may be convex or non-convex and
possibly disconnected. The outer surface of T is the surface of T that existed in
B when P was not removed from B. Our idea is to apply an edge cut through
each edge of P , and we shall do that in two types of rounds: face rounds and
edge rounds. Face rounds will find polygonal chains that will partition the faces
of P into smaller sets and edge rounds will apply edge cuts through the edges
of those polygonal chains. There will be O(log n) face rounds, and within each
face round there will be a number of edge rounds but their total cost will be
O(C∗ logn). Once we have applied edge cuts through all the edges of P , each
face f of P will have a small “cap”-like portion of T over it, which we shall cut
at a cost of the area of f to get P , giving a cost of O(C∗) for all faces.

Face rounds Let F be a set of faces of P . From now on, we use the term face
set to represent a set of faces of P . At the very first face round i = 0, F consists
of all the faces of P . We find a chain of edges P ′ that will partition F into two
smaller face sets F1 and F2 by the following lemma.

1 In the subsequent text, we use | · | to denote the area of a 3D object.
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Lemma 6 Let l be the number of faces in a face set F . It is always possible to
find in O(l log l) time a non-degenerate orthogonal projection of P such that the
two sets of visible and invisible faces of F contain at least ⌊ l

2⌋ faces each.

Proof. For this proof we shall move on to the surface of an origin-centered sphere
s. For each face f ∈ F , its normal point is the intersection point of s and the
outward normal vector of f when the vector is translated to the origin. Each
point of s also represents an orthogonal projection direction of P . So, a non-
degenerate orthogonal projection of P can be represented by a great circle of s
that does not pass through the normal points of the faces of P . We need one such
great circle satisfying an additional criterion that its two hemispheres contain
at least ⌊ l

2⌋ normal points each. There exists infinitely many such great circles
and one of them can be found in O(l log l) time as follows. Take as poles any two
antipodal points that are not normal points of the faces of P . Take a great circle
g through these two poles and rotate it around these poles until the number of
normal points in its two hemisphere differ by at most one. If it happens that
some normal points fall on g when we stop, then slightly change the poles as
well as g so that the normal points on g are distributed into two hemispheres
as necessary. For running time, all we need to do is to sort the normal points
according to their angular distance with the plane of initial position of g at the
origin. The resulting projection is the one from the perpendicular direction of
the plane of final position of g. ⊓⊔

The projection direction achieved by the above lemma is called the zone
direction of F . P ′ is the chain of edges in the boundary of the above projection
whose corresponding edges in P have both adjacent faces (one is visible and
another is invisible) in F . We call P ′ a separating chain of F . F1 and F2 are the
two sets of faces separated by P ′. In the next face round i + 1, we shall apply
Lemma 6 for each of F1 and F2 recursively and thus get two separating chains
and four face sets. We shall repeat the same procedure for each of these four face
sets. We shall continue like this until each face set has only one face. Clearly, we
need O(log n) face rounds.

Edge rounds Let P ′ = e1, e2, . . . , ek be the separating chain of a particular
face round with its two ends, which are two vertices of e1 and ek, touching the
outer surface of T . Observe that for the very first face round i = 0, P ′ is a cycle
and the two ends are the same. We shall apply edge cuts through the edges of
P ′ such that all of them are parallel to a particular direction. Such a direction
can be the corresponding zone direction. We shall call this set of k edge cuts a
zone of cuts and their direction of cuts the zone cut direction. We shall apply
these cuts in O(log k) edge rounds. At the very first edge round j = 0, we apply
an edge cut through ek/2 in the zone cut direction. This cut will partition the

edges of P ′ into two sub chains of size at most ⌊k
2⌋. In the next edge round j+1,

we apply two edge cuts through the two middle edges of these two sub chains,
which will result into four sub chains. Then in the next round we apply four
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similar cuts to the four sub chains. We continue like this until each sub chain
has only one edge. Clearly, we need O(log k) edge rounds for P ′.

Lemma 7 After all the face rounds and their corresponding edge rounds are
completed, all edges of P get an edge cut.

Proof. Let e be an edge that does not get an edge cut through it. Then the two
adjacent faces of e are in the same face set. But that is a contradiction that each
face set has only one face. ⊓⊔

Analysis We are now ready to find the approximation ratio and the running
time of our algorithm.

We define the box area of a face set F as follows. When F contains all faces
of P , its box area is B—the whole surface area of B. Zone of cuts through the
separating chain of F partitions F into F1 and F2 and T into two components,
say T1 and T2, respectively. Then the box area of F1 (F2) is the outer surface
area of T1 (T2), which we denote by by B1 (B2). Observe that |B1|+ |B2| ≤ |B|.
Box area of any subsequent face set is similarly defined. Moreover, two face sets
from the same face round have their box areas disjoint and in any face round
sum of all box area is at most |B|.

The following lemma bounds the cutting cost of an edge rounds in a particular
face round.

Lemma 8 Let P ′
m be the separating chain with k edges of an arbitrary face set

Fm to which we apply O(log k) edge rounds. Let Bm be the box area of Fm. At
each edge round j, total cost of 2j cuts is O(|Bm|). Over all O(log k) edge rounds,
total cost is O(|Bm| logn).

Proof. This proof is similar to that of Lemma 4. Consider a particular edge
round j. For each cut c the cost of c is no more than the portion of Bm that is
thrown away by c. Moreover, these cuts are pairwise disjoint, since they can at
best intersect the cut which is in between them and was applied in (j − 1)-th
round. It implies that the total cost of 2j cuts is at most |Bm|. Since k ≤ n, the
second part of the lemma follows. ⊓⊔

The next lemma bounds the total cutting cost over all face rounds.

Lemma 9 At each face round i, total cost of 2i zones of cuts is O(|B| log n).
Over all O(log n) face rounds, the total cost is O(C∗ log2 n).

Proof. At each face round i, we apply 2i zones of cuts to 2i face sets. By the
previous lemma, for a particular face set Fm, 0 ≤ m ≤ 2i, cost of the zone of

cuts applied to it is at most O(|Bm| logn). Since
∑2i

1 |Bm| ≤ |B|, cost of all

zone cuts is
∑2i

1 O(|Bm| logn) = O(|B| log n). Over all O(log n) face rounds, the
total cost is O(|B| log2 n), which by Lemma 5 is O(C∗ log2 n). ⊓⊔
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We now see the running time of our algorithm. Running time in face round
i involves finding 2i separating chains, each of size n

2i , plus applying a zone of
cuts to each of them. Each separating chain can be found in O( n

2i log
n
2i ) time by

Lemma 6. Each cut needs to update Q, which can be done in O(n) time assuming
that Q is represented by suitable data structures [7]. It gives that a zone of cuts

needs O(n
2

2i ) time. So, in round i total time is O(2i(n
2

2i + n
2i log

n
2i )) = O(n2).

Over all O(log n) rounds, it becomes O(n2 logn).
We summarize the result in the following theorem.

Theorem 1 Given a convex polyhedron P fixed inside a sphere Q, P can be cut
out of Q by using only guillotine cuts in O(n3) time with cutting cost O(log2 n)
times the optimal, where n is the number of vertices of P .

4 Conclusion

In this paper, we have given an O(n3)-time algorithm that cuts a convex poly-
hedron P with n vertices from a sphere Q, where P is fixed inside Q, by using
guillotine cuts with cutting cost O(log2 n) times the optimal.

This problem is well studied in 2D, where the series of results include several
O(log n) and constant factor approximation algorithms and a PTAS. The key
ingredients of the 2D algorithms involve three major steps: (1) take some approx-
imate vertex cuts through the vertices of P , (2) use dynamic programming to
find an optimal cutting sequence among the edge cuts, and the vertex cuts taken
in step (1), and (3) show that the cutting cost of the sequence obtained in step
(2) is within the desired factor of the optimal. Using the idea of 2D algorithms
may be a way to improve the approximation ratio of our algorithm. Among the
above three steps, it may not be difficult to generalize steps (1) and (3) for 3D,
but the most difficult part we find is the applying a dynamic programming.

An immediate future work would be to find approximation algorithms when
Q is another convex polyhedron. Recently, Ahmed et.al. [1] have studied a more
generalized version of the problem in 2D where the polygon P is not fixed inside a
circle Q. For that problem they have given several constant factor approximation
algorithms. It would be interesting to study that version of the problem in 3D.
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