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Continuous Blooming of Convex Polyhedra

Erik D. Demaine · Martin L. Demaine ·
Vi Hart · John Iacono · Stefan Langerman ·
Joseph O’Rourke

Abstract We construct the first two continuous bloomings of all convex polyhedra.

First, the source unfolding can be continuously bloomed. Second, any unfolding of a

convex polyhedron can be refined (further cut, by a linear number of cuts) to have a

continuous blooming.

1 Introduction

A standard approach to building 3D surfaces from rigid sheet material, such as sheet

metal or cardboard, is to design an unfolding : cuts on the 3D surface so that the re-

mainder can unfold (along edge hinges) into a single flat non-self-overlapping piece.

The advantage of this approach is that many (relatively cheap) technologies—such as

NC machining/milling, laser cutters, waterjet cutters, and sign cutters—enable man-

ufacture of an arbitrary flat shape (with hinges) from a sheet of material. As a result,

existence of and algorithms for unfolding have been studied extensively in the mathe-

matical literature.

Often overlooked in this literature, however, is the second manufacturing step: can

we actually fold the flat shape along the hinges into the desired 3D surface, without
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self-intersection throughout the motion? Some unfoldings have no such motion [BLS05,

Theorem 4]. In this paper, we develop such motions for large families of unfoldings

of convex polyhedra. In particular, we establish for the first time that every convex

polyhedron can be manufactured by folding an unfolding.

Unfolding. More precisely, an unfolding of a polyhedral surface in 3D consists of a

set of cuts (arcs) on the surface whose removal result in a surface whose intrinsic

metric is isometric to the interior of a flat non-self-overlapping polygon, called the

development or unfolded shape of the unfolding. We demand that no two interior points

of the polygon coincide, but the boundary of the polygon may self-touch. The cuts in

an unfolding of a convex polyhedron form a tree, necessarily spanning all vertices

of the polyhedron (enabling them to flatten) [BDE+03]. All unfoldings we consider

allow cuts anywhere on the polyhedral surface, not just along polyhedron edges. Four

general unfolding algorithms are known for arbitrary convex polyhedra: the source

unfolding [SS86,MP08], the star unfolding [AO92], and two variations thereof [IOV10,

IOV09]. Positive and negative results for unfolding nonconvex polyhedra can be found

in [BDE+03,DFO07,O’R08].

Blooming. Imagine the faces of the cut surface in an unfolding as rigid plates, and the

(sub)edges of the polyhedron connecting them as hinges. A continuous blooming of an

unfolding is a continuous motion of this plate-and-hinge structure from the original

shape of the 3D polyhedron (minus the cuts) to the flat shape of the development,

while avoiding intersection between the plates throughout the motion. In 1999, Biedl,

Lubiw, and Sun [BLS05] gave an example of an unfolding of an orthogonal (nonconvex)

polyhedron that cannot be continuously bloomed. In 2003, Miller and Pak [MP08,

Conjecture 9.12] reported the conjecture of Connelly that every convex polyhedron has

a nonoverlapping unfolding that can be continuously bloomed. He further conjectured

that the blooming can monotonically open all dihedral angles of the hinges. More

recently, Pak and Pinchasi [PP09] describe a simple blooming algorithm for convex

polyhedra, which they show works for the finite class of Archimedean solids (excluding

prisms and antiprisms, by extending existing bloomings of Platonic solids) but fails

on other polyhedra. Aloupis et al. [ADL+08] analyze the unfoldings of polyhedral

bands, formed by the intersection of the surface of a convex polyhedron with the space

between two parallel planes, as long as this space does not contain any vertices of

the polyhedron. For the case where the orthogonal projection of the band boundaries

are nested, they show that the band can be continuously bloomed. The result was

later generalized to the case of arbitrary bands by Aloupis [Alo05]. No other nontrivial

positive results have been established.

Our results. We prove Connelly’s conjecture by giving the first two general algorithms

for continuous blooming of certain unfoldings of arbitrary convex polyhedra, which also

monotonically open all hinge dihedral angles. Both of our algorithms have a relatively

simple structure: they perform a sequence of linearly many steps of the form “open one

dihedral angle uniformly by angle α”. Thus our algorithms open angles monotonically,

uniformly (at constant speed), and one at a time. The challenge in each case is to prove

that the motions cause no intersection.

First we show in Section 2 that every unfolding can be refined (further cut, by

a linear number of cuts) into another unfolding with a continuous blooming. Indeed,

we show that any serpentine unfolding (whose dual tree is a path) has a continuous
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blooming, and then standard techniques can refine any unfolding into a serpentine

unfolding.

Next we show in Section 3 that one particularly natural unfolding, the source

unfolding, has a continuous blooming. It is in the context of the source unfolding that

Miller and Pak [MP08] described continuous blooming.

Finally we mention in Section 4 an unsolved more-general form of continuous

blooming for the source unfolding that resembles Cauchy’s arm lemma.

2 Blooming a Refinement of Any Unfolding

In this section, we show that any unfolding can be refined into an unfolding with a

continuous blooming. An unfolding U is a refinement of another unfolding U ′ if the

cuts in U form a superset of the cuts in U ′. Our approach is to make the unfolding

serpentine: an unfolding is serpentine if the dual tree of the faces is a path. Here

“faces” is a combinatorial notion, not necessarily coinciding with geometry: we allow

artificial edges with flat dihedral angles. We do require, however, that every two faces

adjacent in the dual path form a nonflat dihedral angle; otherwise, those faces could

be merged. We use the term facet when referring to the original geometric facets of

the polyhedron Q.

Lemma 1 Every unfolding can be refined by a linear number of additional cuts into a

serpentine unfolding.

Proof: The polyhedron and unfolding together define faces bounded by polyhedron

edges and by cuts in the unfolding. For every two such faces that share an uncut edge,

we refine by adding a cut from the centroid of each face to the midpoint of the shared

edge. Figure 1 shows an example. These cuts form a tree isomorphic to the dual tree of

the unfolding, with a node for each face and an arc connecting two faces that share an

uncut edge in the original unfolding. Thus, after the refinement, the remaining subfaces

can be connected together in a Hamiltonian cycle via an Euler tour around the tree

of added cuts. (This powerful trick originates in [AHMS96, Theorem 2.4] for the case

of triangulations.) Finally, we make one additional cut along a (sub)edge to divide the

dual cycle into a dual path. If the original polyhedron and unfolding define f faces, the

total number of added cuts is 2(f − 1) + 1 = 2f − 1.

We observe that any refinement that preserves connectivity (such as this one) also

preserves that the cuts form a valid unfolding, with a non-self-overlapping development.

The additional cuts in the refinement are intrinsic to the surface metric, so they can

be applied to the unfolding just as well both on the 3D polyhedron and developed in

the plane. Hence the refined unfolding develops in the plane to a region with exactly

the same closure as the original unfolding, implying that the refined unfolding has no

(interior) self-overlap if and only if the original unfolding has none. 2

It remains to prove that such a refinement suffices:

Theorem 1 Any serpentine unfolding can be continuously bloomed.

Corollary 1 Any unfolding of a polyhedron can be refined by a linear number of ad-

ditional cuts into an unfolding with a continuous blooming.

Toward Theorem 1, we start with the following simple blooming algorithm. Figure 2

shows an example of the algorithm in action.
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Fig. 1 Refinement of the Latin cross unfolding of a cube to a serpentine unfolding. The dashed
cut at the base of the cross is the one additional cut that divides the cycle to a path.

Algorithm 1 (Path-Unroll) Suppose we are given a serpentine unfolding of a poly-

hedron Q whose dual path is P = 〈f0, f1, . . . , fk〉. For i = 1, 2, . . . , k in sequence,

uniformly open the dihedral angle between fi−1 and fi until those two faces become

coplanar.

The Path-Unroll algorithm is almost what we need: we show below that it only

causes touching, not crossing, between faces that are coplanar with a facet of Q and

touching between faces whose supporting planes intersect in a line supporting an edge

of Q. Precisely, two (convex) sets are noncrossing if there is a plane H such that both

sets lie in opposite closed halfspaces bounded by H, while two sets touch if they have

a common intersection but are noncrossing.

Lemma 2 The Path-Unroll algorithm causes no crossing between faces of the unfold-

ing. Furthermore, (two-dimensional) touching between faces can occur only at the end

of step i between faces coplanar with the facet containing fi, and between the beginning

and the end of step i at the edge of Q shared by fi−1 and fi.

Proof: The Path-Unroll algorithm has the invariant that, at step i of the algorithm,

the prefix f0, f1, . . . , fi−1 of faces lies entirely in the plane containing fi−1, and because

this planar prefix appears as a subset of the final (nonoverlapping) unfolding, it does not
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Fig. 2 The Path-Unroll algorithm applied to the refined cube unfolding of Figure 1, after the
first i = 3 steps.

self-intersect. The suffix fi, fi+1, . . . , fk of faces is a subset of the original polyhedral

surface, so does not self-intersect.

It remains to show that the prefix and suffix do not cross each other and inter-

sections occur only as described in the statement of the lemma. At the beginning of

step i of the path unroll algorithm, the plane containing fi−1 intersects the polyhedron

at precisely the facet of Q containing fi−1. At the end of step i, the plane intersects

the polyhedron at precisely the facet of Q containing fi. In the middle of step i, the

plane intersects the polyhedron at precisely the edge of Q bounding fi−1 and fi; at all

times, the plane remains tangent to the polyhedron. Thus the prefix f0, f1, . . . , fi−1
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only touches the suffix fi, fi+1, . . . , fk at a facet of Q at the beginning and end of step

i, and at an edge of Q during step i. 2

To avoid touching at faces, we modify the algorithm slightly.

Algorithm 2 (Path-TwoStep) Suppose we are given a serpentine unfolding of a poly-

hedron Q whose dual path is P = 〈f0, f1, . . . , fk〉. Let 0 < φi < π be the dihedral

angle between fi−1 and fi, let ψi = π − φi be the required unfolding angle, and let

Ψi =
∑i

j=1 ψj be the prefix sum for i = 1, 2, . . . , k. Choose ε > 0 small enough.

– At time t ∈ [0, Ψ1 − ε], uniformly open the dihedral angle between f0 and f1 until

they form a dihedral angle of π − ε.
– For i = 2, 3, . . . , k (see the timing diagram in Figure 3):

– At time t ∈ [Ψi−1− ε, Ψi− 2ε], uniformly open the dihedral angle between fi−1

and fi until they form a dihedral angle of π − ε.
– At time t ∈ [Ψi − 2ε, Ψi − ε], uniformly open the dihedral angle between fi−2

and fi−1 until those two faces become coplanar.

– At time t ∈ [Ψk − ε, Ψk], uniformly open the dihedral angle between fk−1 and fk

until those two faces become coplanar.

fi−1, fi → ̟−ε

fi−2, fi−1 → ̟

Ψi−2 Ψi−1−2ε −ε Ψi−2ε −ε

fi−1, fi → ̟−ε

fi, fi+1 → +δ
fi−2, fi−1→ ̟

Ψi−2 Ψi−1−2ε −ε

+δ +δ

Ψi−2ε −ε

+δ +δ

Fig. 3 Timing diagrams for Path-TwoStep (top) and Path-Waltz (bottom).

This algorithm avoids two-dimensional touching but may still cause one-dimensional

touching.

Lemma 3 The Path-TwoStep algorithm causes no crossing between faces of the un-

folding. Furthermore, touching can occur only at time t = Ψi − ε for i = 1, 2, . . . , k at

the edge of Q shared by fi−1 and fi.

Proof: Let `j be the supporting line of the edge shared by fj−1 and fj . Let qj be the

intersection point (in projective space) between the lines `j and `j−1, which lie in the

common plane of fj−1. At times t ∈ [Ψi−1−ε, Ψi−ε], consider the central projection of

Q and the unfolding, from point qi onto a plane perpendicular to the bisector of `i and

`i−1, as shown in Figure 4. (If qi is a point at infinity, this projection is an orthogonal

projection onto a plane perpendicular to the direction of qi.) In that projection, Q

projects to a convex polygon Q′, and so the projection of the suffix fi, fi+1, . . . , fk
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Fig. 4 The central projection from point qi. During t ∈ [Ψi−1 − ε, Ψi − 2ε], rotation (marked
1 in the figure) occurs in projection about `′i. During t ∈ [Ψi − 2ε, Ψi − ε], rotation (marked 2)
straightens the angle at the new position of `′i−1.

of untouched faces is within that polygon. Face fi−1 projects to the segment f ′i−1

connecting the points `′i and `′i−1 representing the lines `i and `i−1. Just as in the

invariant of Lemma 2, the prefix f0, f1, . . . , fi−2 lies in the plane H of fi−2, which is

incident to `i−1 and thus projects to a line H ′.

At time t = Ψi−1 − ε, the face fi−1 is in its original position and so does not

intersect any of the faces fi, fi+1, . . . , fk. The projection of f0, f1, . . . , fi−2 is contained

in line H ′, which is tangent to Q′ at point `′i−1, assuming ε < ψi−1. When t ∈
[Ψi−1 − ε, Ψi − 2ε], as the angle between fi and fi−1 opens, the line containing edge

f ′i−1 remains tangent to Q′ while rotating about point `′i. Thus fi−1 touches Q exactly

at its edge connecting it to fi and avoids any intersection.

During the motion, H ′ remains tangent to the convex hull of Q′ and f ′i−1 at the

projection of `i−1, assuming ε is chosen so that π− ε is larger than the dihedral angle

of the edge in `i−1 of the convex hull of the suffix fi−1, fi, . . . , fk when the dihedral

angle between fi and fi−1 is π.

At times t ∈ [Ψi − 2ε, Ψi − ε], as the dihedral angle between fi−2 and fi−1 opens

until those two faces become coplanar, H ′ remains tangent to the convex hull of Q′ and

f ′i−1 at the projection of `i−1 and so does not intersect Q′ until time Ψi − ε, when H ′

becomes collinear with f ′i−1. At precisely that instant, H ′ touches Q′ at the projection

of `i, and so the faces in the prefix f0, f1, . . . , fi−1 might touch, but not cross, edges

still on Q at the edge between fi−1 and fi. 2

To avoid this one-dimensional touching, we modify the algorithm once more.
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Algorithm 3 (Path-Waltz) Suppose we are given a serpentine unfolding of a polyhedron

Q whose dual path is P = 〈f0, f1, . . . , fk〉. Let 0 < φi < π be the dihedral angle between

fi−1 and fi, let ψi = π − φi be the required folding angle, and let Ψi =
∑i

j=1 ψj be

the prefix sum for i = 1, 2, . . . , k. Choose ε > δ > 0 small enough.

– At time t ∈ [0, Ψ1 − ε], uniformly open the dihedral angle between f0 and f1 until

they form a dihedral angle of π − ε.
– At time t ∈ [Ψ1 − ε, Ψ1 − ε+ δ], uniformly open the dihedral angle between f1 and

f2 by an angle δ.

– For i = 2, 3, . . . , k − 1:

– At time t ∈ [Ψi−1 − ε+ δ, Ψi − 2ε], uniformly open the dihedral angle between

fi−1 and fi until they form a dihedral angle of π − ε.
– At time t ∈ [Ψi− 2ε, Ψi− 2ε+ δ], uniformly open the dihedral angle between fi

and fi+1 by an angle δ.

– At time t ∈ [Ψi− 2ε+ δ, Ψi− ε+ δ], uniformly open the dihedral angle between

fi−2 and fi−1 until those two faces become coplanar.

– At time t ∈ [Ψk−1− ε+ δ, Ψk − ε], uniformly open the dihedral angle between fk−1

and fk until those two faces become coplanar.

– At time t ∈ [Ψk− ε, Ψk], uniformly open the dihedral angle between fk−2 and fk−1

until those two faces become coplanar.

Figure 3 shows the timing diagram of the Path-Waltz algorithm. Path-Waltz avoids

all touching except that present in the original unfolding, proving our desired theorem

about serpentine unfoldings having continuous bloomings:

Proof of Theorem 1: We prove that Path-Waltz causes no intersection. Note that

during the times t ∈ [Ψi−1 − ε+ δ, Ψi − 2ε] for some i, the configuration is exactly the

same as in the Path-TwoStep algorithm, and so no intersection occurs during those

times.

Let Hi be the plane containing face fi. At time t = Ψi − 2ε, the configuration

occurs in Path-TwoStep, and thus does not self-intersect. Furthermore, the proof of

Lemma 3 shows that the plane Hi−2 does not intersect Q unless the edge shared by

fi and fi−1 has a common endpoint with the edge shared by fi−1 and fi−2 (and that

common endpoint would be qi−1). Assume for now that this is not the case. Because

the non-self-intersecting configuration space is open, δ can be chosen small enough

that, at times t ∈ [Ψi − 2ε, Ψi − 2ε + δ], as the angle between fi and fi+1 opens, no

faces intersect, and Hi−2 does not intersect Q. Note that during those times, the suffix

fi−1, fi, . . . , fk is in a configuration identical to that in the Path-Twostep algorithm at

times t′ ∈ [Ψi− ε, Ψi− ε+ δ] and again, by the proof of Lemma 3, the plane Hi−1 does

not touch the interior of Q. Therefore, the open double-wedge between Hi−1 and Hi−2

remains empty throughout the motion. When, at times t ∈ [Ψi− 2ε+ δ, Ψi− ε+ δ), the

angle between fi−2 and fi−1 opens, the faces in the suffix fi−2, fi−1, . . . , fk remain in

that open double-wedge and do not cause any intersection.

It remains to show that no intersections occur during the motion if the edge shared

by fi and fi−1 and the edge shared by fi−1 and fi−2 both have qi−1 as a common

endpoint. For this case, notice that an intersection can occur only in a small neigh-

borhood of point qi−1. The angle ε can be chosen small enough so that the normal

vectors to faces fi, fi−1, and fi−2 all have pairwise angles smaller than π/2, and so

the opening does not cause intersections with the double wedge. 2
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3 Blooming the Source Unfolding

This section proves that the following algorithm continuously blooms the source un-

folding of any convex polyhedron. Figure 5 shows a simple example of the algorithm

in action.

Algorithm 4 (Tree-Unroll) Let T be the tree of faces formed by the source unfolding,

rooted at the face containing the source s of the unfolding. For each face in the order

given by a post-order traversal of T , uniformly open the dihedral angle between the

face and its parent in T until the two faces become coplanar.

Fig. 5 Start of Algorithm Tree-Unroll applied to the source unfolding of a cube (with cuts
drawn in bold lines), with the source point in the center of the bottom face. The front subtree
rooted at the bottom face has been unfolded, and the leaf of the right subtree has been unfolded
to the plane of its parent face.

First we need some tools for arguing about shortest paths and source unfoldings.

Our first tool shows that source unfoldings change little when “growing” a polyhedron:

Lemma 4 If the interior of a convex polyhedron Q is contained in the interior of a

convex polyhedron Q′, and p and q are points on the boundary of both Q and Q′, then

the shortest path between p and q is at least as long on Q′ as on Q.

Proof: The shortest path in 3D between two points p and q on the boundary of a

convex polyhedron Q, while avoiding Q as an obstacle, lies entirely on the surface

of Q: otherwise, each connected part of the shortest path not intersecting Q would be
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a segment joining two points on the surface of Q, but then by convexity of Q, that

entire segment is in or on Q, a contradiction. Thus the shortest path between p and

q on the surface of Q is the same as the shortest 3D path between p and q avoiding

obstacle Q. Because the interior of Q is a subset of the interior of Q′, the set of 3D

paths from p to q avoiding obstacle Q′ is a subset of the set of 3D paths from p to

q avoiding obstacle Q, so the shortest path in the first set is at least as long as the

shortest path in the second set. 2

Next we consider the behavior of individual shortest paths during Tree-Unroll,

which degenerates to the Path-Unroll algorithm of Section 2:

Lemma 5 Suppose a shortest path on a convex polyhedron Q is the 3D polygonal path

P = 〈p0, p1, . . . , pk〉, with segment pi−1pi contained in face fi of Q and point pi on

an edge of Q for 0 < i < k. Consider the motion of the polygonal path P induced by

running the Path-Unroll algorithm on the faces f1, f2, . . . , fk. Then the path P does

not hit the plane containing fk (except at pk−1pk) until the very end of the motion,

when the whole path P hits that plane.

Proof: Let hi be the plane containing face fi, and let h+
i be the closed halfspace

bounded by hi and containing Q. We define the grown polyhedron Q[P ] = h+
1 ∩ h

+
2 ∩

· · · ∩ h+
k to be the intersection of these halfspaces (which may be unbounded). The

interior of Q[P ] contains the interior of Q, and the endpoints of P are on the boundary

of Q[P ], so by Lemma 4, P remains a shortest path in Q[P ]. The heart of our proof

will be maintaining this invariant throughout the motion.

Now consider executing the first step of Path-Unroll, that is, rotating the first face

f1 to open the dihedral angle between f1 and f2. As we perform the rotation, we keep

the first edge p′0p1 of the modified path P ′ on the rotating face f ′1 and we maintain

the grown polyhedron Q[P ′]. Below we prove the following invariant:

Claim 1 The modified path P ′ remains a shortest path on the grown polyhedron Q[P ′],
as long as P ′ remains on the surface of Q[P ′].

Assuming this claim for now, one problem can still arise: if p′0 reaches some plane

hi defining one of the other faces i > 2 (and thus enters that face), then we cannot

continue rotating f ′1 (leaving fi behind) while keeping P ′ on the boundary of Q[P ′]. But

if this happens, then P ′ could not actually be a shortest path, because there would be

a shortcut p′0pi that lies within hi, instead of following the path P ′ between p′0 and pi

(which is nonplanar because i > 2), contradicting the claim that P ′ is shortest.

Therefore the motion works all the way to the time at which the dihedral angle

between f1 and f2 becomes flat, reducing the number of faces in Q[P ′]. By induction,

we can continue all the way and flatten the entire path, and by the previous argument,

only at the end do we hit the final plane hk. 2

It remains to prove Claim 1:

Proof of Claim 1: Suppose for contradiction that there is a shorter path P̃ between

p′0 and pk on the grown polyhedron Q[P ′]; refer to Figure 6. Let p̃ be the last point

along the path P̃ that touches the plane h1. Such a point exists because p′0 and pk are

on opposite sides of h1, given that pk lies on the polyhedron Q[P ] and p′0 has been

rotated from a point p0 on h1 by less than 180◦ around a line h1 ∩ h2 on h1. Because

p̃ lies on the plane h1 and within the halfspaces h+
2 , h

+
3 , . . . , h

+
k (being on the surface

of Q[P ′]), p̃ is on the surface of Q[P ]. Thus the segment p0p̃ lies on the original face f1.
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Similarly, the subpath P̃ [p̃, pk] of P̃ from p̃ to pk lies on the surface of Q[P ], because

it lies on Q[P ′] and remains in the halfspace h+
1 . Because P is a shortest path from p0

to pk on Q, its length |P | = |p0p1|+ |P [p1pk]| is at most the length of any particular

path, namely, |p0p̃|+ |P̃ [p̃, pk]|.
We now show that |p′0p̃| ≥ |p0p̃|, which implies that |P̃ | = |p′0p̃| + |P̃ [p̃, pk]| ≥

|p0p̃|+ |P̃ [p̃, pk]| ≥ |P | = |P ′|, contradicting that P̃ was shorter than P ′. Consider the

triangle p0p1p̃, which lies in the plane h1, and the rotated version of that triangle in h′1,

p′0p1p̃
′. The quadrilateral p̃p0p

′
0p̃
′ is an isosceles trapezoid, because |p0p̃| = |p′0p̃′| and

p0p
′
0 is parallel to p̃p̃′ (both being perpendicular to the bisecting plane of h1 and h′1).

Therefore the diagonal p̃p′0 is longer than the equal sides, proving the last claim. 2

p
1

p
0

p'
0

h
1

p'~

p~

h'
1

Fig. 6 Proof of Claim 1

Recasting Lemma 5 into the context of Tree-Unroll, we obtain the following:

Lemma 6 During the recursion of Tree-Unroll on some face f of the tree T , the

subtree Tf of faces in T rooted at f does not hit the plane containing the parent f̂ of

f in T until the algorithm has visited all of Tf , at which time the entire subtree Tf

simultaneously touches that plane.

Proof: Suppose for contradiction that, during the unfolding of Tf , some point p of Tf

touches the plane containing f̂ . By the definition of the source unfolding, the shortest

path from the source s to p passes through face f̂ , say at some point q, and through

face f . Then, because Tree-Unroll unfolds that shortest path one face at a time, from

p to q, Lemma 5 implies that the entire shortest path from q to p has already been

unfolded onto the plane containing f̂ (given that p is already there). But then face

f has also been unfolded onto the plane containing f̂ , which happens only when the

algorithm has completed the recursion on f . 2
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Finally we can prove the desired correctness of Tree-Unroll:

Theorem 2 The Tree-Unroll algorithm causes no intersection during the blooming

motion, for any source unfolding of any convex polyhedron.

Proof: Each step of the algorithm unfolds the faces of the subtree Tf rooted at some

face f onto the plane containing the parent f̂ of f . During this motion, all other faces

are either on the polyhedron Q, or on planes containing the faces of the ancestors of

f in T . Because the development of the subtree Tf is a subset of the development of

the entire source unfolding, the faces of the subtree Tf do not intersect each other

in the plane containing f . Because the faces of Tf are in a supporting plane of the

polyhedron Q, those faces do not intersect any of the faces still on Q that are not

coplanar with f̂ . More precisely, the plane containing the subtree Tf intersects Q at

the polyhedron face containing f at the beginning of the motion, intersects Q at the

edge between f and f̂ during the motion, and intersects Q at the polyhedron face

containing f̂ at the end of the motion. At the end, when Tf and f̂ become coplanar,

we know from the definition of the source unfolding that there is a shortest path from

any point of the developed Tf to a point of f̂ that crosses the edge between faces f

and f̂ . Thus, the developed Tf lies on the opposite side of the line containing this edge

compared to the entire (convex) polyhedron face containing f̂ , so f̂ and Tf do not

intersect in their shared plane. Finally, by Lemma 6, the faces of Tf do not intersect

any of the planes containing the faces of the ancestors of f , until the end of the motion

when they all hit the plane containing f̂ , and the previous argument applies. Therefore

the blooming motion causes no intersection. 2

4 Open Problems

Cauchy’s Arm Lemma states that opening the angles of a planar open chain initially

in convex position causes the two endpoints to get farther away. This claim generalizes

to 3D motions of an initially planar and convex chain that only open the joint angles

[O’R00]. Our continuous blooming of the source unfolding suggests the following related

problem, phrased in terms of instantaneous motions like Cauchy’s Arm Lemma (but

which would immediately imply the same about continuous motions):

Open Problem 1 Consider the chain of faces visited by a shortest path on the surface

of an arbitrary convex polyhedron. If we open each dihedral angle between consecutive

faces, carrying the edges of the shortest path along with their containing faces, does

the resulting path always avoid self-intersection?

Indeed, we might wonder whether every dihedral-monotonic blooming of the source

unfolding avoids intersection. This problem is equivalent to the following generalization

of Open Problem 1.

Open Problem 2 Consider two shortest paths from a common point s to points t and t′

on the surface of an arbitrary convex polyhedron, and consider the two chains of faces

visited by these shortest paths. If we open each dihedral angle between consecutive

faces in each chain, and transform the edges of the two shortest paths along with

their containing faces, do the resulting paths always avoid intersecting each other and

themselves?
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We were unable to resolve either open problem using our techniques, but it remains

an intriguing question whether these analogs of Cauchy’s Arm Lemma underlie our

positive results.1
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