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Abstract

The minimum clique partition (MCP) problem is that of partitioning the vertex set of a
given graph into a minimum number of cliques. Given n points in the plane, the corresponding
unit disk graph (UDG) has these points as vertices, and edges connecting points at distance
at most 1. MCP in unit disk graphs is known to be NP-hard and several constant factor
approximations are known, including a recent PTAS. We present two improved approximation
algorithms for minimum clique partition in unit disk graphs:

(I) A polynomial time approximation scheme (PTAS) running in time n®(/ ). This im-

proves on a previous PTAS with n®(/¢") running time [22].

(IT) A randomized quadratic-time algorithm with approximation ratio 2.16. This improves
on a ratio 3 algorithm with O(n?) running time [7].

1 Introduction

Unit disk graphs (UDGs) can be defined in three equivalent ways, as follows [8]: (i) For n points
in the plane, form a graph with n vertices corresponding to the n points, and an edge between
two vertices if and only if the distance between the two points is at most 1. (ii) For n unit circles
in the plane, form a graph with n vertices corresponding to the n circles, and an edge between
two vertices if and only if one of the corresponding circles contains the other’s center. (iii) For n
circles of unit diameter in the plane, form a graph with n vertices corresponding to the n circles,
and an edge between two vertices if and only if the two circles intersect. If in definition (iii) above,
the (interiors of the) circles are non-overlapping, the unit disk graph is called a wunit coin graph,
see [7]. The three models for the above definitions are known as: (i) the prozimity model, (ii) the
containment model, and (iii) the intersection model.

Most applications of unit disk graphs arise in wireless network research: usually, two nodes can
directly communicate if they lie in the unit disks placed at each others’ centers. There is a vast
literature on algorithmic problems studied on UDGs, here we mention only a few: [I}[7, [8, 10, 11 18],
20, 22]. A recent survey is [2]. The seminal paper by Clark et al. [8] studies of complexities of several
classical graph optimization problems, known to be NP-complete in general, in the setting of unit
disk graphs: coloring, clique, independent set, vertex cover, domination, independent domination,
and connected domination. For instance, it is shown there [8] that in unit disk graphs a maximum
clique can be found in polynomial time. On the other hand, some closely related problems, such as
finding a proper 3-coloring, remain NP-complete even in this setting [8]. Breu and Kirkpatrick [4]
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later showed that the problem of recognizing unit disk graphs is NP-hard, and thereby answered
one of problems left open in [§].

Given a set S of n points in the plane, a partition of S into ¢ sets Cy,Cy,...,Cy is called a
g-clustering, and the individual sets are called its clusters; see [5]. Feder and Greene [12] have
shown that it is NP-hard to find a ¢-clustering in which the maximum diameter of the clusters
is within a factor of 1.97 of the optimum. Clustering is a broad area in graph optimization, that
is particularly relevant to wireless networks: typically one wants to find large groups that can
mutually communicate with each other. Mutual proximity of nodes in a cluster is therefore a
key criterion, and cliques as clusters describe it the best. The minimum clique partition (MCP)
problem is that of partitioning the vertex set of a given graph into a minimum number of cliques.
For general graphs, MCP is equivalent to minimum graph coloring of the complement graph, which

is known to be inapproximable within n'~¢, for any ¢ > 0, unless P=NP [24]. The best known
approximation algorithm for the graph coloring problem is an O(n%
to Halldérsson [15].

Supowit has shown that the MCP problem in UDGs is NP-complete [23]. Cerioli et al. [7]
have shown that the problem remains NP-complete even for unit coin graphs. They also gave a
3-approximation algorithm for MCP in UDGs running in quadratic time. Recently, Pirwani and
Salavatipour [22] have devised a PTAS for MCP in unit disk graphs, that relies on the separability
property of an optimal clique partition, first established by Capoyleas et al. [5] in the early 1990s.

The authors of [22] rediscovered this property, apparently being unaware of the old solution.

)-approximation, due

Theorem 1. (Capoyleas, Rote and Woeginger [0]). Given a finite point set S in the plane, there
exists an optimal clique partition where the convex hulls of the cliques are non-overlapping.
Our Results. By refining the ideas used in [5] and [22], in Section B we obtain an n®(/*)
(polynomial) time approximation scheme (PTAS) for MCP. This improves on the previously best
algorithm, which has running time n®1/=") [22].

Theorem 2. There exists a PTAS for MCP in unit disk graphs, which computes an (1 + ¢)-
approrimation in nO1/e?) time.

In Section [3, we revisit the ratio 3 approximation algorithm of Cerioli et al. [7], which builds on
the ideas of Breu [3]. The ratio 3 approximation was the best achievable with a practical algorithm,
running in O(n?) time. Based on their idea, we show that a randomized variant of the algorithm
computes a 2.16-approximate solution within about the same running time.

Theorem 3. For any 0 < &,0 < 1, there is an algorithm for MCP in unit disk graphs, which
computes a solution at most 1 + 2/ V3 + € times the optimal with probability at least 1 — § in
0 (% 'ln% -n2) time. In particular, a %-appromimate solution can be computed with probability at

least 1 — § in O(In % - n?) time.

In Section @] we give a streamlined proof of Theorem [, which makes our paper self-contained.

Definitions and notations. We say that a set S of points in the plane is in general position
if no three of its points are collinear. For a point set S, let conv(S) be the convex hull of S. If
there is no danger of confusion, we use the same symbol to sometimes denote a polygonal region
(or, simply, polygon) and its boundary. Given a convex polygon P, let V(P) denote its vertex set.
For a given set S of input points, let G = G(S) denote the UDG defined by the set of unit disks



centered at the elements of S, and let z = 2(.5) denote the minimum number of cliques in a clique
partition of G, that is, the solution of the MCP problem for S (and for G = G(5)).

Two convex polygons A and B in the plane are said to be overlapping if area(A N B) > 0,
and non-overlapping otherwise. Analogously, we say that two cliques in some clique partition are
overlapping or non-overlapping.

2 A faster n°/¢)_time PTAS

In this section, we prove Theorem First notice that Theorem [ holds in a slightly stronger
form: there exists an optimal clique partition in which the (convex hulls) of the cliques are pairwise
disjoint, rather than simply non-overlapping. For any two cliques whose convex hulls share points
from S on two of their boundary edges, these points can be arbitrarily assigned to one of the cliques.
By repeatedly applying this operation, one can obtain a clique partition, where the convex hulls of
the cliques are pairwise disjoint. This operation is not necessary if the points are assumed to be in
general position. We start with two simple facts (the first one is well-known):

Lemma 1. Given two disjoint convex polygons P and @ in the plane, there exists a separating
(tangent) line determined by a pair of vertices in V(P) UV (Q).

Lemma 2. The size of an optimal solution for MCP for a set of points in a k x k square cell T is
at most 2k* + 3k.

Proof. Cover a k x k grid cell 7 by smaller square cells of size % X % Recall that £ € N, and

k > 6. The number of smaller cells is at most [kv/2]% < (kv/2 + 1)? < 2k% + 3k. Since any set of
points inside a % X % square forms a clique, it follows that an optimal clique partition consists

of at most 2k? + 3k cliques. O

Our PTAS, which follows the same overall structure of the PTAS in [22], is outlined below. Our
improvement in the running time comes from speeding up STEP 2.

STEP 1. Partition the region of the plane containing S using a randomly shifted grid whose
cell size is k X k, with k = (%] If k is large enough, the probability that any fixed clique in an
optimum clique partition is cut by this grid (and therefore belongs to two or more grid cells) is
small, namely O(1/k).

STEP 2. Compute an optimal clique partition in each cell 7 of the grid and return the union of
these cliques. The expected size of the solution is at most (1 + €)z.

By repeating these two steps in O(ln%) independent random trials, the solution is at most
(1 + €)z with probability at least 1 — ¢, for any prescribed 0 < § < 1.

We now show that STEP 2 can be performed in n®(/ ") time. For simplicity, we still use n to
denote the number of points of S in a fixed grid cell 7. It suffices to show that an optimal solution
in 7 can be computed in n@1/ e?) time, since the overall running time is then bounded by the same
expression. The details are as follows.

Let 7 be a fixed grid cell. Let gmax = 2k? + 3k be the upper bound from Lemma 2 For
qg = 1,2,...,qmax, the algorithm checks whether there exists a clique partition of size ¢ for the
points in SN 7. Assume that ¢ is the optimal size. Consider an (unknown) optimal clique partition
with pairwise disjoint cliques C1,...,C; € SN 7. Write C; = {C1,...,C;}. Assume that we
are given g representative points ri,...,74 € S N7, where r; € C;. Define the prozimity graph
X = (R, F) with vertex set R = {ri,...,7,}, where r;r; € F if and only if |r;r;| < 2. Two key
steps are the following;:



Lemma 3. If rir; ¢ F, and p € S N1 satisfies |pri| <1, then p ¢ C;.

Proof. Assuming p € Cj yields |pr;| < 1. By the triangle inequality, we have |r;r;| < |pr;|+|pr;| < 2,
which contradicts the assumption r;7; ¢ F' in the lemma. O

Lemma 4. The maximum degree in X is at most 79.

Proof. Let r; be an arbitrary vertex of X, and let N(r;) be the set of vertices connected to r; by an
edge in X. Note that all cliques in C; whose representative points are in {r;} U N(r;) are contained
in the circle Q of radius 3 centered at r;. For a short argument, observe that the axis-aligned square
circumscribed around €2 has side length 6, and recall that C, is a minimum clique for the points in
S Nr7. Cover 7 by smaller rectangular cells of size % X %, aligned with 7. The number of smaller
cells is at most 10-8 = 80. Since any set of points inside a % X % rectangle forms a clique, it follows
that C; consists of at most 80 cliques. Hence |N(r;)| < 79, so the maximum degree in X is at most

79, as claimed. O

Note that, by Lemma/[Il for any pair of representatives 7;,7; € R, there exists a line separating
C; from C, that passes through two points of V' (conv(C;)) UV (conv(C})). In particular, this holds
for pairs r;,r; € R, such that r;r; € F' (that is, pairs in the proximity graph). Refer to Fig. [0l
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Figure 1: A clique partition in cell 7, with pairwise disjoint cliques, drawn as convex polygons. Lines
separating C; from other cliques C;, where r;r; € F' are drawn with dashed lines. Representative points in
each clique are drawn as filled circles.

Assume that we are given: (i) g representative points ri,...,rq € S N7, where r; € Cj; (ii) the
proximity graph X with vertex set R = {ry,..., 7.}, and (iii) the pairs of vertices (points in SN 7)
incident to each of the separating lines for the pairs r;r; € F.

Having all the above information, its validity can be verified in O(n?) time, that is, if it cor-
responds to a valid clique partition of the points in S N 7: more precisely, for each representative
point r;, the points in S at distance at most 1 from r;, and that lie on the same side as r; of the
separating lines for the pairs C;, C; corresponding to the edges r;r; € F', must form a clique.

Our algorithm simply generates all guesses of the above form, as specified by (i), (ii), and (iii),
and checks their validity. If at least one valid clique partition of size ¢ for the points in S N7, is
found, the algorithm terminates, since there is no need to try the larger values of ¢q. For discussing
the time complexity of the algorithm, we take into account the following elements:



1. There are at most (Z) < nf choices for the representative points.

2. Since the maximum degree in X is at most 79, the number of edges of X is at most

79¢/2 = 39.5¢q, and the total number of proximity graphs on vertices rq,...,ry, is at most
939.5¢ log ¢+0(q)

3. Given X, there are at most (7&;) < n™4/(79q!) choices for the separating lines: two endpoint
choices per separating segment.

4. Given X, say with m < 79¢/2 edges, and a set of m separating lines, there are at most
(39.5¢)! = 239-5¢1084+0(9) perfect matchings between them.

Recall that ¢ < gmax = 2k? + 3k, where k = O(%) We obtain the following overall upper bound

on the running time:
90(q) . ,,800 _ 9O(k?) | 160k*+0(k) _  O(1/e?)

The proof of Theorem [2]is now complete. O

Remark 1. For simplicity of the arguments and of the resulting bounds, we have often used
only rough estimates. For instance, in Lemma [2, one can get a better bound by using hexagonal
cells, and the degree bound in Lemma [l can also be reduced by a more careful argument. The
same applies to some of the bounds used in [22]; for example, in the analysis of STEP 1 of the
PTAS from [22], for a given clique partition of G, the probability that a clique is cut by both a
vertical and a horizontal line of the grid is only about O(k%) rather than O(4). So most of the
cliques are cut in two rather than four parts by the randomly shifted grid. The bottom line is that
for obtaining a practical PTAS, many theoretical aspects and implementation details need to be
addressed altogether at the same time.

Remark 2. Capoyleas et al. [5] proposed a different approach for computing a MCP in a UDG,
under the assumption that the number of cliques in the optimal partition is bounded by a constant.
Their proof is based on the following lemma of L. Fejes Téth [13] (see also Cassels [6], Heppes [17],
Edelsbrunner et al. [9], or [2I, p. 23]): Given a collection of pairwise disjoint closed convex sets
Ci,...,Cy in a square @, say, there exists a subdivision of () into convex pieces with a total number
of at most 6¢ sides such that each piece contains at most one C;.

Let C/ denote the piece containing C; in such a subdivision (1 < i < g). Define a graph G*
on the vertex set {C],...,C;} by connecting C; and C with an edge if and only if they share a
boundary segment. In the proof of their Theorem 9, Capoyleas et al. applied Fejes T6th’s lemma
to the convex hulls C; of ¢ cliques that form a clique partition, and suggested that a MCP can
be obtained by enumerating all possible planar graphs G* on ¢ vertices and trying all possible
connecting lines of the n input points, as potential sides of the convex polygonal pieces C!. Since
it is not at all obvious (to us) whether there exists a subdivision in which all sides belong to such
connecting lines, in our proof of Theorem 2] we decided to follow a different approach.

3 A randomized 2.16-approximation algorithm

In this section we prove Theorem Bl Following [3], a unit disk graph G is called a 7-strip graph,
if all the points lie in a parallel strip of width 7. As shown by Breu in his PhD thesis, a 7-strip
graph for 7 < v/3/2 is the complement of a comparability graph, therefore the minimum clique
partition problem can be solved (exactly) in polynomial time on such strip graphs [3]. Specifically
this amounts to coloring the complement G of G, and this takes O(n?) time [14].



A 3-approximation algorithm for MCP based on this idea is given in [7]: it partitions the plane
(the region containing all the points) into parallel (say, horizontal) strips of width v/3/2, then
computes an optimal clique partition in each strip, and finally outputs the union of all the cliques
computed. The algorithm runs in O(n?) time. Instead of strips of an irrational width, v/3/2, one
can use slightly thinner strips, say of width 0.8, and the same result still holds.

Here we present and analyze a randomized variant which uses strips of width a = v/3/2. The
system of strips is determined by placing a horizontal line at a random y-coordinate uniformly
chosen in the interval [0,a). In fact, the strips can be slightly thinner, so that their width is a
rational number, see below.

Proof of Theorem Bl Let £ =1+ %, where a = v/3/2. Let OPT = Cy U...C, be an optimal
clique partition. Obviously, we have z < n. For 1 <1i < z, let X; be the number of parts in which
C; is split by the system of horizontal strips, and let b; be the vertical width of C;. Obviously
b <1, and X; € {1,2,3}. Let X be the number of cliques output by the algorithm. Clearly,
X = Zle X; and z < X < 3z. We distinguish two cases:

Case 1: b; < a. Then X; € {1,2}, thus E[X;] <2 <1+ 1/a.

Case 2: b; > a. Then X; € {1,2,3}. It is easy to see that

Prob[X; = 3| = i 1, and Prob[X; <2]=2-— -

E[Xi]§2<2—@>+3<@—1>:1+@§1+1.
a a

thus

a a

Thus in both cases we have E[X;] < 1+ % It follows immediately by the linearity of expectation
that

E[X] =) E[X;] < (1 + 2) z=¢z. (1)
=1

Observe that .
(1 + g) E<E+e.

By Markov’s inequality [19], the probability that the solution output by the algorithm after one
round is larger than (£ + ¢)z, is bounded by:

5 € 1
> < > = < > < <
Prob[X > (£ + ¢)2] < Prob[X > (1 + 3) £2] < Prob[X > (1 + 3) BIX]) < 1= : 2)
Since the rounds are independent, it follows that
1 J
Prob[X > (£ +¢)z in j rounds] < <1 n 6) . (3)
3

Recall the standard inequality In (1 + z) > 0.9z, for 0 < z < 0.1. To make the above bound smaller
than 9, it is enough to choose

Ini In i
>0 _eg,j=|—2]. 4
T e margy 8 {0.4 )

The resulting running time of the algorithm is O (% . ln% . nz), as claimed.
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Note that having strips of width a = \/§/2 may be impractical, or may require additional
complications, since a ¢ Q. Then one may use strips of slightly smaller width. We analyze this
option below. First observe that if 0.8 < d < a = 0.866..., and a system of strips of width d < a
is chosen, the same algorithm can be used. Equation (II) becomes in this case:

E[X] = ZZ;E[XZ-] < (1 + %) . (5)

We use standard facts from number theory pertaining to approximations of irrational numbers
by continued fractions [16, Chapters X, XI|. Let £ = 1 + %, and r = p/q > & be a rational
approximation of £ from above. We will discuss shortly how a suitable such approximation can
be found. The algorithm randomly selects a strip partition, with strips of width d, where d is the

solution of
1—|—l:£, namelyd:L.
d ¢ pP—q
Here p and ¢, thus also d will depend on the given € > 0, and next we discuss their selection.
It is easy to see that £ satisfies the quadratic equation

1
=24 —
: 6+ ¢

thus its continued fraction expansion is periodic [16, pp. 143]:

£=1[2,6,2,6,2,6,...] =[2,6].
Write
=" 1=01,2,...
qt

for the convergents in the continued fraction expansion of £, obtained by Euclid’s algorithm. For
instance, the first four convergents of £ are:

p_2 n

18 pp 28 py_ 181
o84

o U ¢ 6 ¢ 13 g
By [16, Theorems 152,153,154,164], the convergents tend in the limit to &, and satisfy
1

o
4y

qt

with the odd convergents being strictly greater than &, decreasing to & in the limit, and satisfying

the recurrence
pe_ 13p—2+2q—2
bl

@ Op—2+ qi—2
Fix now ¢ > 0 to be the smallest odd positive integer for which

(t odd).




By substituting this bound in Equation (fl), we obtain that
Blx] < 2o < (g4 %) . (6)
q

Note also that

<£+§)<1+Z)§£+6, for £ <1.

Combining the previous bounds, we can obtain the analogues of (2]) and (B]):

Prob[X > (£ 4+ ¢)z] < Prob[X > <1 + i) <£ + %) z]

< ProblX > (1+ ) ELX]

1
< . 7
14 % @
1 J
Prob[X > (£ + ¢)z in j rounds] < <1 n E> . (8)
1
As in Equation (4]), we can make ensure that the error probability is at most §, by setting j =
Ini
’70.22656—‘ :

The special case with ratio 18% mentioned in the theorem corresponds to the second odd con-
vergent (t = 3). It uses strips of width %, and already gives ¢ < 10™*. This completes the proof of
Theorem [3 O

4 A short proof of Theorem [

Let C be a clique partition for point set S. As in [5] (or in [22]), define an appropriate “potential
function”, W, over the cliques in C. The value of ¥ for C equals the sum of the perimeters of the
convex hulls of the cliques in C:
U(C) = Z per(conv(C)).
ceC

Let C be a clique partition minimizing ¥(C) and assume for contradiction that C has overlapping
cliques. Let C,D € C be a pair of overlapping cliques, and let P = conv(C), and @ = conv(D).
Let I = PNQ, and L = PUQ. By definition, [ is a convex polygon with non-zero area. Let
P\ Q={Xy,...,Xr_1} be the set of connected regions of P\ @ in clockwise order. Similarly, let
B\ A ={Y),...,Ys_1} be the set of connected regions of @\ P in clockwise order, where X, Y} are
consecutive in this order. Each region Xj, or Y; is referred to as a petal (of P, or @, respectively; see
Fig. 2(left). Obviously, the number of petals of P is equal to the number of petals of @, as in the
above labeling. Two petals X; and Y; are said to be incompatible if there are vertices x; € C' N X,
and y; € D NYj, such that z;y; ¢ E; that is, the vertices of X; and Y; cannot be members of the
same clique. We also say that two such vertices are incompatible.

We construct a convex geometric graph H = (BU R, F) as follows: B and R are sets of k blue
(resp. red) points each, placed equidistantly and alternating on some circle Q (i.e., BU R is the
vertex set of a regular 2k-gon); refer to Fig. 2(middle). The blue points correspond to the petals
of P, while the red points correspond to the petals of ), and they are labeled in the same way. A
blue and a red point are connected by an edge in F' if their corresponding petals are incompatible.



1

Figure 2: (a) Two overlapping cliques. (b) A hypothetical graph H. (c) Illustration to the proof of Lemma[Gt
P is shown in solid edges, and @ in dashed edges.

Lemma 5. H has no isolated vertices.

Proof. For contradiction, assume that b; be a blue isolated vertex (the argument is the same for red
vertices). The corresponding petal X; of P is compatible with all petals of (), thus D = DU (X;NS)
is a clique in G. Obviously C =C\(X;N8) is also a clique. Observe that CUD = C U D, that is,
C and D cover all the points in C' and D. It remains to show that ¥(C) 4 ¥(D) < ¥(C) 4 ¥(D),
which will contradict the minimality of WU(C).

Assume that a and b are the intersection points of P and ) at petal X;, and that cd and ef
are the common tangents to P and @ for the pairs of petals X;,Y; and X;,Y;_1; see Fig. 2(right).
With the notation from the figure, it is enough to check that

b
57 r’
’ :
Y
" b

Figure 3: Illustration to the proof of Lemma [6l Blue vertices are drawn as filled circles, red vertices are
drawn as empty circles.

[labl] + [lcd| + |de| + lef|] < [lad| + |de| + |eb] + [|ac| + [ab| + [bf]].

This follows immediately from the triangle inequality in Aapg and Abp'q’, namely |cd| < |ac|+|ad|,
and |ef| < |be| + |bf]. O

Two disjoint edges of H are said to be anti-parallel if the 4 endpoints have alternating color
around the circle, and parallel otherwise.

Lemma 6. H has no pair of disjoint edges.

Proof. We first show that H has no pair of anti-parallel edges; refer to Fig. B(left). Assume that
br and b'r’ are two anti-parallel edges. Let X and X’ be the petals of P corresponding to b and ¥/,



and Y and Y’ be the petals of Q corresponding to r and 7. Let z € X, 2’ € X', y €Y,y €Y' be
4 points of S. By the triangle inequality, we have

2 <oyl + |2'y| < |z’ + |yy| <2,

a contradiction.

We now show that H has no pair of parallel edges; refer to Fig. B(middle). Assume that br and
b'r’ are two parallel edges. Since the colors of vertices of H are alternating along the circle, there
exists a blue vertex, say b”, between r and r’. By Lemma [B] there exists a red vertex r”, so that
b"r" is an edge of H. It is easy to see that regardless on its position on the circle, either br and
b"r" are anti-parallel, or b'r’ and b”r" are anti-parallel, contradicting the first part of the proof. [

Lemma 7. Every vertex of H has degree one.

Proof. Assume that b is a blue vertex with (at least) two incident edges br and br’; see Fig. Blright).
As in the proof of Lemma [6] there exists a blue vertex, say b”, between r and 7/, and a red vertex
", so that b”r” is an edge of H (r” could be r or 7). Regardless on its position on the circle, either
br and b"r" are anti-parallel, or br’ and b”r" are anti-parallel, contradicting Lemma [6l d

By the three previous lemmas, H consists of a red-blue perfect matching M of k pairwise crossing
segments. Moreover, k must be odd, and this matching is unique: M = {b;r;y |2 i =0,...,k—1},
as in Fig. 2(middle). Observe that any halving line of the 2k points in BUR cuts all edges of M (i.e.,
all edges of H); take for instance, the halving line separating by from 7|, and the corresponding

chord s of I = P N Q connecting the two intersection points of P and @, as in Fig. 2(left). Let C
and D be be the set of “points of C'U D left and respectively right of the cutting line through s.
Let P = conv(C), and Q = conv(D). Since all edges of H are cut, there is no incompatible pair of
vertices in C or in D, thus both are cliques. To finish the proof of Theorem [, it remains to show
that (C) + ¥ (D) < ¥(C) 4+ (D), which will contradict the minimality of ¥(C). We make use of
the following simple but useful fact, noted in [5l 22]:

per(P) + per(Q) = per(L) + per(I) = per(P) + per(Q) + per(I) — 2|s|. (9)
Since area(I) > 0, we have per(I) > 2|s|, hence
U(C) 4 ¥(D) = per(P) + per(Q) < per(P) + per(Q) = ¥(C) + (D),

as claimed. It follows that C has no overlapping cliques, and the proof of Theorem [Ilis complete.
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