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Vadim E. Levit

Ariel University Center of Samaria, Israel

levitv@ariel.ac.il

Eugen Mandrescu

Holon Institute of Technology, Israel

eugen m@hit.ac.il

Abstract

A set S of vertices is independent in a graph G, and we write S ∈ Ind(G), if no
two vertices from S are adjacent, and α(G) is the cardinality of an independent set of
maximum size, while core(G) denotes the intersection of all maximum independent
sets [18].

G is called a König–Egerváry graph if its order equals α(G)+µ(G), where µ(G)
denotes the size of a maximum matching. The number def(G) = |V (G)| − 2µ(G)
is the deficiency of G [22].

The number d(G) = max{|S| − |N(S)| : S ∈ Ind(G)} is the critical difference
of G. An independent set A is critical if |A| − |N(A)| = d(G), where N(S) is the
neighborhood of S, and αc(G) denotes the maximum size of a critical independent
set [27].

In [15] it was shown that G is König–Egerváry graph if and only if there exists
a maximum independent set that is also critical, i.e., αc(G) = α(G).

In this paper we prove that:
(i) d(G) = |core(G)| − |N(core(G))| = α(G)−µ(G) = def (G) for every König–

Egerváry graph G;
(ii) G is König–Egerváry graph if and only if every maximum independent set

of G is critical.
Keywords: independent set, maximum matching, critical difference, critical

independent set, deficiency, core.

1 Introduction

Throughout this paper G = (V,E) is a finite, undirected, loopless and without multiple
edges graph with vertex set V = V (G) and edge set E = E(G). If X ⊂ V , then G[X ]
is the subgraph of G spanned by X . By G −W we mean the subgraph G[V −W ] , if
W ⊂ V (G). For F ⊂ E(G), by G− F we denote the partial subgraph of G obtained by
deleting the edges of F , and we use G− e, if W = {e}. If A,B ⊂ V and A∩B = ∅, then
(A,B) stands for the set {e = ab : a ∈ A, b ∈ B, e ∈ E}. The neighborhood of a vertex
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v ∈ V is the set N(v) = {w : w ∈ V and vw ∈ E}, while N(A) = ∪{N(v) : v ∈ A} and
N [A] = A ∪N(A) for A ⊂ V .

A set S ⊆ V (G) is independent if no two vertices from S are adjacent, and by Ind(G)
we mean the set of all the independent sets of G. An independent set of maximum size
will be referred to as a maximum independent set of G, and the independence number of
G is α(G) = max{|S| : S ∈ Ind(G)}.

Let us denote the set {S : S is a maximum independent set of G} by Ω(G), and let
core(G) = ∩{S : S ∈ Ω(G)} [18]. A set A ⊆ V (G) is a local maximum independent set
of G if A ∈ Ω(G[N [A]]) [17].

Theorem 1.1 [23] Every local maximum independent set of a graph is a subset of a
maximum independent set.

A matching (i.e., a set of non-incident edges of G) of maximum cardinality µ(G) is a
maximum matching, and a perfect matching is one covering all vertices of G.

It is well-known that ⌊|V | /2⌋+1 ≤ α(G)+µ(G) ≤ |V | hold for any graph G = (V,E).
If α(G) + µ(G) = |V |, then G is called a König-Egerváry graph. We attribute this
definition to Deming [7], and Sterboul [26]. These graphs were studied by Korach [12],
Lovasz [21], Lovasz and Plummer [22], Bourjolly and Pulleyblank [3], Pulleyblank [25],
and generalized by Bourjolly, Hammer and Simeone [2], Paschos and Demange [24].
Several properties of König-Egerváry graphs are presented in [16], [19], [20].

According to a well-known result of König [11], and Egerváry [9], any bipartite graph
is a König-Egerváry graph. This class includes non-bipartite graphs as well (see, for
instance, the graphs H1 and H2 in Figure 1).
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Figure 1: Only H3 is not a König–Egerváry graph, as α(H3)+µ(H3) = 4 < 5 = |V (H3)|.

It is easy to see that if G is a König-Egerváry graph, then α(G) ≥ µ(G), and that a
graphG having a perfect matching is a König-Egerváry graph if and only if α(G) = µ(G).

The number d(G) = max{|S|−|N(S)| : S ∈ Ind(G)} is called the critical difference of
G. An independent set A is critical if |A|−|N(A)| = d(G), and the critical independence
number αc(G) is the cardinality of a maximum critical independent set [27]. Clearly,
αc(G) ≤ α(G). The problem of finding a critical independent set is polynomially solvable
[1], [27].

Proposition 1.2 [14] If S is a critical independent set, then there is a matching from
N(S) into S.

If S is an independent set of a graph G and H = G − S, then we write G = S ∗H .
Evidently, any graph admits such representations. For instance, if E(H) = ∅, then
G = S ∗H is bipartite; if H is complete, then G = S ∗H is a split graph [10].

Proposition 1.3 [19] G is a König-Egerváry graph if and only if G = H1 ∗H2, where
V (H1) ∈ Ω(G) and |V (H1)| ≥ µ(G) = |V (H2)|.
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Let M be a maximum matching of a graph G. To adopt Edmonds’s terminology [8],
we recall the following terms for G relative to M . An alternating path from a vertex x
to a vertex y is a x, y-path whose edges are alternating in and not in M . A vertex x is
exposed relative to M if x is not the endpoint of a heavy edge. An odd cycle C with
V (C) = {x0, x1, ..., x2k} and E(C) = {xixi+1 : 0 ≤ i ≤ 2k − 1} ∪ {x2k, x0}, such that
x1x2, x3x4, ..., x2k−1x2k ∈ M is a blossom relative to M . The vertex x0 is the base of
the blossom. The stem is an even length alternating path joining the base of a blossom
and an exposed vertex for M . The base is the only common vertex to the blossom and
the stem. A flower is a blossom and its stem. A posy consists of two (not necessarily
disjoint) blossoms joined by an odd length alternating path whose first and last edges
belong to M . The endpoints of the path are exactly the bases of the two blossoms. The
following result of Sterboul, characterizes König-Egerváry graphs in terms of forbidden
configurations.

Theorem 1.4 [26] For a graph G, the following properties are equivalent:
(i) G is a König-Egerváry graph;
(ii) there exist no flower and no posy relative to some maximum matching M ;
(iii) there exist no flower and no posy relative to any maximum matching M .

In [21] is given a characterization of König-Egerváry graphs having a perfect match-
ing, in terms of certain forbidden subgraphs with respect to a specific perfect matching
of the graph. In [13] is given the following characterization of König-Egerváry graphs in
terms of excluded structures.

Theorem 1.5 [13] Let M be a maximum matching in a graph G. Then G is a König-
Egerváry graph if and only if G does not contain one of the forbidden configurations,
depicted in Figure 2, with respect to M .
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Figure 2: Forbidden configurations. The vertex v is not adjacent to the matching edges
(namely, dashed edges).

In [15] it was shown that G is a König-Egerváry graph if and only if αc(G) = α(G),
thus giving a positive answer to the Graffiti.pc 329 conjecture [6].

The deficiency of G, denoted by def(G), is defined as the number of exposed vertices
relative to a maximum matching [22]. In other words, def(G) = |V (G)| − 2µ(G).
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In this paper we prove that the critical difference for a König-Egerváry graph G is
given by

d(G) = |core(G)| − |N(core(G))| = α(G) − µ(G) = def(G),

and using this finding, we show that G is a König-Egerváry graph if and only if each of
its maximum independent sets is critical.

2 Results

Proposition 2.1 Any critical independent set is a local maximum independent set.

Proof. Suppose, on the contrary, that there is a critical independent set S such that
S /∈ Ψ(G), i.e., there exists some independent set A ⊆ N [S], larger than S. It follows that
|A ∩N(S)| > |S − S ∩ A|, and this contradicts the fact that, according to Proposition
1.2, there is a matching from A ∩N(S) to S, in fact, from A ∩N(S) to S − S ∩ A.

The converse of Proposition 2.1 is not true; e.g., the set {d, h} is a local maximum
independent set of the graph G1 from Figure 3, but it is not critical.

Using Theorem 1.1, we easily deduce the following result.

Corollary 2.2 [5] Every critical independent set is included in some maximum inde-
pendent set.

Theorem 2.3 If G is a König-Egerváry graph, then
(i) [19] G−N [core(G)] has a perfect matching and it is also a König-Egerváry graph.
(ii) [19] N(core(G)) = ∩{V (G)− S : S ∈ Ω (G)}.
(iii) [20] α(G) + |∩ {V (G)− S : S ∈ Ω (G)}| = µ(G) + |∩ {S : S ∈ Ω (G)}|.

Let us notice that for non-König-Egerváry graphs every relation between α(G)−µ(G)
and |core(G)| − |N(core(G))| is possible.
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Figure 3: α(G1) = 6, µ(G1) = 3, core(G1) = {a, b, d, g, f} and N(core(G1)) = {c, e},
while α(G2) = 4, µ(G2) = 3, core(G2) = {x, y, z}, and N(core(G2)) = {v}.

The non-König-Egerváry graphs from Figure 3 satisfy:

α(G1)− µ(G1) = 3 = |core(G1)| − |N(core(G1))|

and
α(G2)− µ(G2) = 1 < 2 = |core(G2)| − |N(core(G2))| .

The opposite direction of the above inequality may be found in G3 = K2n − e, n ≥ 3:

α(G3)− µ(G3) = 2− n > 4− 2n = 2− (2n− 2) = |core(G3)| − |N(core(G3))| .
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Theorem 2.4 If G is König-Egerváry graph, then

d(G) = |core(G)| − |N(core(G))| = α(G)− µ(G) = def(G).

Proof. Firstly, let us prove that α(G)−µ(G) ≥ |S|−|N(S)| holds for every S ∈ Ind(G),
i.e., d(G) ≤ α(G) − µ(G). If α(G) = µ(G), then G has a perfect matching and

|S| − |N(S)| ≤ 0 = α(G)− µ(G)

holds for every S ∈ Ind(G).
Suppose that α(G) > µ(G). Let S0 ∈ Ω(G) and M be a maximum matching, i.e.,

|M | = |V (G)− S0| = µ(G). Assume that S ∈ Ind(G) satisfies |S| − |N(S)| > 0. Then
one can write S = S1 ∪ S2 ∪ S3, where S3 ⊆ V (G) − S0, S1 ∪ S2 ⊂ S0, S1 ∩ S2 = ∅,
and S2 contains all v ∈ S matched by M with some vertex of V (G) − S0. Since M is a
maximum matching, we get |S2| − |N(S2)| ≤ 0 and |S3| − |N(S3)| ≤ 0. Consequently,
we obtain

α(G) − µ(G) = |S0| − |V (G)− S0| ≥ |S1| ≥ |S| − |N(S)| ,

as required (see Figure 4 for various examples of S).

✇ ✇ ✇ ✇ ✇ ✇ ✇ ✇
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�❅

❅
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x1 x2 x3 x4 x5 x6 x7 x8
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Figure 4: S0 = {xi : 1 ≤ i ≤ 8},M = {y1x4, y2x5, y3x6, y4x7, y5x8}, S = S1 ∪ S2 ∪ S3,
where S2 = {x5}, S3 = {y4, y5}, while S1 belongs to {{x1, x2}, {x1x3}, {x3}}.

Since core(G) is an independent set of G,

α(G) − µ(G) ≥ |core(G)| − |N(core(G))| .

Since G is a König-Egerváry graph

α(G) + µ(G) = |V (G)| = |core(G)| + |N(core(G))| + |V (G−N [core(G)])| .

Assuming that
α(G) − µ(G) > |core(G)| − |N(core(G))| ,

we obtain the following contradiction

2α(G) > 2 |core(G)|+|V (G−N [core(G)])| = 2 |core(G)|+2α(V (G−N [core(G)])) = 2α(G),

because |V (G−N [core(G)])| = 2α(V (G−N [core(G)])) by Theorem 2.3(i).
Therefore, we get that α(G)−µ(G) = |core(G)|−|N(core(G))|. Actually, this equality

immediately follows from Theorem 2.3(ii),(iii), but the current way of proof exploits
different aspects of Ind(G).
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Further, using the inequality d(G) ≤ α(G) − µ(G) and the equality

α(G) − µ(G) = |core(G)| − |N(core(G))| ,

we finally deduce that

|core(G)| − |N(core(G))| ≤ max{|S| − |N(S)| : S ∈ Ind(G)} = d(G)

≤ α(G) − µ(G) = |core(G)| − |N(core(G))| ,

i.e.,
α(G) − µ(G) = |core(G)| − |N(core(G))| = d (G) .

Since G is a König-Egerváry graph,

α(G)− µ(G) = α(G) + µ(G)− 2µ(G) = |V (G)| − 2µ(G) = def(G),

and this completes the proof.

Corollary 2.5 If G is a König-Egerváry graph, then d(G) = 0 if and only if G has a
perfect matching.

Remark 2.6 There exist non-König-Egerváry graphs enjoying the equalities

d(G) = |core(G)| − |N(core(G))| = α(G) − µ(G),

see, for instance, the graph G from Figure 5.

✇ ✇ ✇ ✇ ✇

✇ ✇ ✇
❅
❅
❅

a b

h

c d

e f

gG

Figure 5: G has α(G) = 4, µ(G) = 3, core(G) = {a, h} and N (core (G))= {b}.

Theorem 2.7 The following assertions are equivalent:
(i) G is a König-Egerváry graph;
(ii) there is S ∈ Ω(G), such that S is critical, i.e., αc(G) = α(G);
(iii) every S ∈ Ω(G) is critical.

Proof. (i) =⇒ (iii) Let S ∈ Ω(G), A = S−core(G) and B = V − S−core(G). By
Proposition 2.3, we get that |A| = |B|, since G − N [core(G)] has a perfect matching.
Hence, we obtain that:

|S| − |N(S)| = |A|+ |core(G)| − (|B|+ |N(core(G))|

= |core(G)| − |N(core(G))| .

In other words, according to Theorem 2.4(ii), the equality |S| − |N(S)| = d(G) is true
for each S ∈ Ω(G).

(iii) =⇒ (ii) It is clear.
(ii) =⇒ (i) This was done in [15]. For the sake of completeness we add the proof.
There is a critical independent set S with |S| = αc(G) = α(G). By Proposition 1.2,

there exists a matching M from N(S) into S, and clearly, |M | = |N(S)| = µ(G). Hence,
we finally obtain that |V (G)| = |S|+ |N(S)| = α(G) +µ(G), i.e., G is a König-Egerváry
graph.
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3 Conclusions

In this paper we give a new characterization of König-Egerváry graphs. On the one
hand, it is similar in form to Sterboul’s theorem [26]. On the other hand it extends
Larson’s finding [15]. We found that the critical difference of a König-Egerváry graph G
is given by

d(G) = |core(G)| − |N(core(G))| = α(G) − µ(G) = def(G).

It seems interesting to find other families of graphs satisfying these equalities.

References

[1] A. A. Ageev, On finding critical independent and vertex sets, SIAM J. Discrete
Mathematics 7 (1994) 293–295.

[2] J. - M. Bourjolly, P. L. Hammer, B. Simeone, Node weighted graphs having König-
Egervary property, Math. Programming Study 22 (1984) 44-63.

[3] J. M. Bourjolly, W. R. Pulleyblank, König-Egerváry graphs, 2-bicritical graphs and
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