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Abstract

The Max Cut problem is an NP-hard problem and has been studied extensively. Alon et
al. studied a directed version of the Max Cut problem and observed its connection to the
Hall ratio of graphs. They proved, among others, that if an acyclic digraph has m edges and
each vertex has indegree or outdegree at most 1, then it has a directed cut of size at least
2m/5. Lehel et al. extended this result to all digraphs without directed triangles. In this
paper, we characterize the acyclic digraphs with m edges whose maximum dicuts have exactly
2m/5 edges, and our approach gives an alternative proof of the result of Lehel et al. We also
show that there are infinitely many positive rational numbers β < 2/5 for which there exist
digraphs D (with directed triangles) such that each vertex of D has indegree or outdegree at
most 1, and any maximum directed cut in D has size precisely β|E(D)|.
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1 Introduction

The Max Cut Problem has been studied extensively from both combinatorial and computational
perspectives. This problem is one of the Karp’s original NP-complete problems [12], and remains
NP-hard even when restricted to triangle-free cubic graphs [17]. It is shown in [3] that it is NP-
hard to approximate the Max Cut problem on cubic graphs beyond the ratio of 0.997. Goemans
and Williamson [9] used semidefinite programming to give a randomized algorithm with expected
performance guarantee of 0.87856. Feige, Karpinski, and Langberg [8] gave a similar randomized
algorithm that improves this bound to .921 for subcubic graphs. A graph is subcubic if it has
maximum degree at most three.

Edwards [7] proved that every graph of size m has a cut of size at least m/2+
√

m/8 + 1/64−
1/8, and this lower bound is attained by complete graphs of odd order. Alon [1] showed that
Edwards’ bound is essentially best possible in the sense that there is a constant c > 0 such that
for every integer m > 0, there exists a graph of size m in which any maximum cut has size at
most m/2+

√

m/8+cm1/4. On the other hand, Edwards’ bound has been improved substantially
for subcubic graphs. See, for example, [4, 10, 14–16]. Some of these results on subcubic graphs
will be used later in this paper.

A digraph version of the Max Cut problem is to find, in a digraph, a directed cut (dicut for
short) with maximum number of edges. Let D be a digraph, and let S ⊆ V (D). We use (S, S̄)
to denote the dicut which consists of all edges in D that are directed from S to S̄ := V −S. It is
easy to see from Edwards’ bound above that every digraph of size m has a dicut of size at least
m/4+

√

m/32 + 1/256−1/16, and the regular orientations of complete graphs of odd order show
that this bound is tight.

This lower bound can be improved for acyclic digraphs. Alon et al. [2] observed that maximum
dicuts of acyclic digraphs are related to the Hall ratio of graphs [5, 6, 11], and proved that every
acyclic digraph of size m has a dicut of size m/4 + Ω(m4/5). They also showed that this bound
can be improved further by adding restrictions on vertex degrees. For positive integers k and l, let
D(k, l) denote the family of digraphs such that every vertex has indegree at most k or outdegree
at most l. It is proved in [2] that every digraph in D(k, l) of size m has a dicut of size at least
(k + l + 2)m/(4k + 4l + 6).

In this paper, we are primarily concerned with the class D(1, 1), which includes those digraphs
whose underlying graphs are subcubic. Let D be a digraph. We use ε(D) to denote the number
of edges in D, and define the dicut density of D as

γ(D) := max{|(S, S̄)|/ε(D) : S ⊆ V (D)}.

Alon et al. [2] showed that if D ∈ D(1, 1) and D is acyclic then γ(D) ≥ 2/5; and the bound
is attained by the digraph A which consists of the directed path x0x1x2x3x4 and a directed edge
from x1 to x3 (see Figure 5). In fact, the digraph A and the directed pentagon are the only two
digraphs that have at most 5 edges, contain no directed triangles, and have dicut density exactly
2/5. Recently, Lehel et al. [13] showed that if D ∈ D(1, 1) and D contains no directed triangles
then γ(D) ≥ 2/5

One result in this paper is a characterization of all acyclic digraphs in D(1, 1) with dicut
density 2/5. (This problem was suggested to us by Lehel.) Our approach also gives an alternative
proof of the result of Lehel et al. Moreover, for each integer i ≥ 0 we find a digraph in D(1, 1)
with dicut density (1 + 2i)/(3 + 5i) < 2/5. So there are infinitely many rational numbers in the
interval [1/3, 2/5] which could serve as the dicut density of a digraph in D(1, 1).
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Let D be a digraph. When the underlying graph of D is subcubic, we say that D is subcubic.
We use Dr to denote the digraph obtained from D by reversing the orientation of every edge in
D. It is easy to see that γ(D) = γ(Dr). We use (x, y) to denote a directed edge from the vertex
x to the vertex y. Let u be a vertex of D. Then d+

D(u) denotes the outdegree of u, and d−D(u)
denotes the indegree of u. The vertex u is said to be a k-vertex in D if d+

D(u) + d−D(u) = k. For
convenience, we define

D = {D ∈ D(1, 1) : D is connected and contains no directed triangle}.

Note that all connected acyclic digraphs in D(1, 1) belong to D.
In section 2, we prove two structural lemmas. We then give an alternative proof of the result

of Lehel et al. [13] by performing a simple operation on digraphs and applying a result of Bondy
and Locke [4]. We also show that there are infinitely many rational numbers in the interval
[1/3, 2/5] which could serve as the dicut density of a digraph in D(1, 1). In section 3, we use
the structural lemmas to study those digraphs with dicut density 2/5. We show that when the
operation introduced in section 2 is applied to an extremal graph, the resulting graph is also
extremal. We then show that there are only two extremal graphs which are irreducible (and
neither is acyclic), which enables us to characterize all extremal graphs that are acyclic.

2 Structural lemmas

Alon et al. showed that acyclic digraphs in D have dicut density at least 2/5. The goal of this
section is to prove two lemmas that will be used to characterize the extrmal graphs. As a by-
product, we also give an alternative proof of the result of Lehel et al. that all digraphs in D have
dicut density at least 2/5.

First, we define an operation on digraphs. Let D be a digraph, x ∈ V (D), and (x, yi) ∈ E(D)
(i = 1, 2), and assume that d−D(x) ≤ 1 and d+

D(yi) ≤ 1 for i ∈ {1, 2}. Let D′ be obtained from
D − {(x, y1), (x, y2)} by further deleting the possible edge directed towards x and the possible
edges directed away from y1 or y2. We say that D is reducible (to D′), and denote this by
D′ := R(D,x, y1, y2). We say that D is irreducible if neither D nor Dr is reducible.

Lemma 2.1 Let D and D′ := R(D,x, y1, y2) be defined as above. Then

(a) D′ has a maximum dicut (S′, S′) such that x ∈ S′ and {y1, y2} ⊆ S′, and

(b) γ(D′) ≥ 2/5 implies γ(D) ≥ 2/5.

Proof. Since d−D(x) ≤ 1 and d+

D(yi) ≤ 1 for i ∈ {1, 2}, ε(D′) ≥ ε(D) − 5 and d−D′(x) = d+

D′(y1) =
d+

D′(y2) = 0. Let (S, S̄) be a maximum dicut in D′. Let S′ := (S − {y1, y2}) ∪ {x}. Since
d−D′(x) = d+

D′(y1) = d+

D′(y2) = 0, we see that |(S, S)| = |(S′, S′)|. So (S′, S′) gives the desired
maximum dicut in D′.

Suppose γ(D′) ≥ 2/5. Then D′ has a dicut of size at least (2/5)ε(D′). By (a), such a dicut
in D′, say (S, S̄), may be chosen so that x ∈ S and {y1, y2} ⊆ S̄. Now (S, S̄), when viewed as a
dicut in D, also contains (x, y1) and (x, y2); and hence has at least (2/5)ε(D′) + 2 ≥ (2/5)ε(D)
edges (since ε(D′) ≥ ε(D)− 5).

Given a digraph D, we let V1(D) = {u ∈ V (D) : d+

D(u) ≥ 2} and V2(D) = {u ∈ V (D) :
d−D(u) ≥ 2}. Further, let Bi(D) denote the subgraph of D induced by Vi(D). When no confusion
arises, we simply use Vi and Bi instead of Vi(D) and Bi(D).
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Lemma 2.2 Let D ∈ D(1, 1), and assume that D is irreducible and V1 ∪ V2 6= ∅. Then

(a) each nonempty Bi consists of vertex disjoint directed cycles,

(b) (V1, V1) = ∅ = (V2, V2),

(c) each vertex in V1 (respectively, V2) is incident with exactly one edge in (V1, V1) (respectively,
(V2, V2)),

(d) the vertices in V1 ∪ V2 are precisely the 3-vertices of D, and

(e) D is subcubic, and if D ∈ D then D is triangle-free.

Proof. Since D ∈ D(1, 1), d−D(x) ≤ 1 for all x ∈ V1, and d+

D(y) ≤ 1 for all y ∈ V1. Since D is
irreducible, every vertex in V1 is incident with at most one edge in (V1, V1). Then d+

B1
(x) ≥ 1 for

all x ∈ V1. By definition, d−B1
(x) ≤ d−D(x) ≤ 1 for all x ∈ V1. Hence

|V1| ≤
∑

x∈V1

d+

B1
(x) =

∑

x∈V1

d−B1
(x) ≤ |V1|.

This implies that d+

B1
(x) = d−B1

(x) = d−D(x) = 1 for all x ∈ V1. So (a)–(c) hold for V1, and the
vertices of V1 are 3-vertices of D.

By applying the same argument to Dr and noting that V1(D
r) = V2(D), we can show that

(a)–(c) also hold for V2, and the vertices of V2 are 3-vertices of D.
Clearly, V2 ⊆ V1 (since D ∈ D(1, 1)), and every vertex y ∈ V1−V2 has degree at most 2 (since

d+

D(y) ≤ 1 and d−D(y) ≤ 1). So (d) holds, and D is subcubic.
Now assume D ∈ D. It remains to show that D is triangle-free. Let B denote the subgraph

of D induced by V1 − V2. Recall that for all y ∈ V (B), we have d−D(y) ≤ 1 ≥ d+

D(y). So if B
contains a cycle then it must be a directed cycle and is a component of D, which is impossible
since D is connected and V1 ∪ V2 6= ∅. Hence B contains no cycles.

Now suppose that D contains a triangle, say T . Then, T 6⊆ B because B has no cycles. Since
D ∈ D, T is not a directed triangle. So by (a), T 6⊆ Bi for i ∈ {1, 2}.

If |V (T ) ∩ V1| = 1 (or |V (T ) ∩ V2| = 1) then by (b), the vertex in V (T ) ∩ V1 (or V (T ) ∩ V2)
is incident with two edges in (V1, V1) (or (V2, V2)), contradicting (c). If |V (T ) ∩ V1| = 2 and
|V (T )∩V (B)| = 1 then by (b), the vertex in V (T )∩V (B) has indegree at least 2, a contradiction.
So |V (T )∩V2| = 2 and |V (T )∩V (B)| = 1. Then by (b), the vertex in V (T )∩V (B) has outdegree
at least 2, a contradiction.

We need a result of Bondy and Locke [4] on max cuts in triangle-free subcubic graphs.

Theorem 2.3 (Bondy and Locke [4]) If G is a triangle-free subcubic graph, then G has a cut of
size at least (4/5)ε(G), and such a cut can be found in O(|V (G)|2) time.

We now give an alternative proof of the result of Lehel et al.

Theorem 2.4 (Lehel et al. [13]) If D ∈ D then γ(D) ≥ 2/5.
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Proof. It is straightforward to check that the assertion of the theorem holds when ε(D) ≤ 5,
as well as when D is a directed cycle or directed path. So we may assume that ε(D) ≥ 6 and
V1 ∪ V2 6= ∅, and that the assertion of the theorem holds for digraphs in D with size less than
ε(D).

If there exist x ∈ V1 and distinct y1, y2 ∈ V1 such that {(x, y1), (x, y2)} ⊆ E(D), then every
nontrivial component of D′ := R(D,x, y1, y2) belongs to D. By applying induction to each
nontrivial component of D′, we can show that γ(D′) ≥ 2/5. It follows from Lemma 2.1(b) that
γ(D) ≥ 2/5.

So we may assume D is not reducible. By applying the same argument to Dr, we may also
assume that Dr is not reducible. Therefore, D is irreducible. So by Lemma 2.2(e), D is subcubic
and triangle-free. By Theorem 2.3, the underlying graph of D has a cut of size at least (4/5)ε(D).
Hence γ(D) ≥ 2/5.

Note that the lower bound in Theorem 2.4 is attained by the digraph A in Figure 5 and by
the directed pentagon. The proof of Theorem 2.4 gives the following algorithm which, given a
digraph from D, finds a dicut with at least (2/5)ε(D) edges.

Algorithm DICUT

Input A digraph D whose components all belong to D.
Output A dicut (S, S̄) of size at least (2/5)ε(D).
Set i← 0 and D0 ← D

1. Find the sets V1(Di) and V2(Di).

2. If there exist x ∈ V1(Di) and distinct y1, y2 ∈ V1(Di) such that {(x, y1), (x, y2)} ⊆ E(Di),
then let Di+1 := R(Di, x, y1, y2). Set i← i + 1 and Di ← Di+1, and go to step 1.

3. If there exist x ∈ V2(Di) and distinct y1, y2 ∈ V2(Di) such that {(y1, x), (y2, x)} ⊆ E(Di),
then let Di+1 := (R(Dr

i , x, y1, y2))
r. Set i← i + 1 and Di ← Di+1, and go to step 1.

4. Suppose Di is irreducible. If V1(Di)∪ V2(Di) = ∅ then every component of Di is a directed
path or directed cycle, and we can find a dicut (Si, Si) in Di with at least (2/5)ε(Di) edges.
If V1(Di) ∪ V2(Di) 6= ∅ then Di is subcubic and triangle-free. Apply the Bondy-Locke
algorithm in Theorem 2.3 to find a max cut in the underlying graph of Di with at least
(4/5)ε(Di) edges. Then find a dicut (Si, Si) in Di with at least (2/5)ε(Di) edges.

5. Set j ← i.

6. If Dj = D then set S ← Sj and output (S, S̄); otherwise go to step 7.

7. If Dj is obtained from Dj−1 as in step 2 then modify (Sj , Sj) so that x ∈ Sj and {y1, y2} ⊆
Sj; if Dj is obtained from Dj−1 as in step 3, then modify (Sj , Sj) so that x ∈ Sj and
{y1, y2} ⊆ Sj. Set j ← j − 1, and Dj ← Dj−1, and go to step 6.

Note that steps 1, 2 and 3 each execute O(|E(D)|) time. Step 4 requires O(|V (D)|2). Steps
5, 6 and 7 each require constant time. So it is not difficult to see that the running time of the
above algorithm is O(|V (D)|3).

We now construct a sequence of subcubic digraphs X0,X1, . . . ,Xi . . ., such that for each i ≥ 0,
Xi contains exactly i+1 directed triangles and γ(Xi) = (1+2i)/(3+5i) < 2/5. Let X denote the
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X0X X1 X2

u1 u2

u3

u4

u5

t1 t2

Figure 1: Graphs X, X0, X1 and X2

digraph with V (X) = {u1, u2, u3, u4, u5} and E(X) = {(u1, u2), (u2, u3), (u3, u4), (u4, u5), (u5, u3)}.
See Figure 1.

For convenience, let X0 denote the directed triangle. We define Xi, i ≥ 1, in the following
recursive fashion. Let X1 be the digraph obtained from X0 and X by identifying u1 with a vertex
of X0. (Note that u2 is the unique 2-vertex of X (also of X1) that is not on any triangle.) For
i ≥ 1, Xi has a unique 2-vertex that is not on any triangle, and we denote it by ti. Let Xi+1 be
the digraph obtained from Xi and X by identifying ti with u1. X1 and X2 are given in Figure 1.

By definition, ε(Xi) = 3+ 5i. To show that γ(Xi) = (1+ 2i)/(3+ 5i), it suffices to prove that
every maximum dicut of Xi has exactly 1 + 2i edges. This is certainly true when i = 0. Now
assume for some k ≥ 1, every maximum dicut of Xk−1 has 1 + 2(k − 1) edges.

Since every maximum dicut of X has two edges, if Xk has a dicut of size l then Xk−1 has a
dicut of size at least l− 2. Hence, a maximum dicut of Xk has at most 1 + 2(k − 1) + 2 = 1 + 2k
edges.

Let x′ be the vertex of Xk which is the result of the identification of tk−1 and u1. Let (S, S̄)
be a maximum dicut of Xk−1. If tk−1 ∈ S then let S′ = (S −{tk−1})∪ {x

′, u4}; and otherwise let
S′ = S ∪ {u2, u4}. Then, (S′, S′) is a dicut of Xk and has 2k + 1 edges.

Therefore, we have shown that any maximum dicut of Xk has precisely 1 + 2k edges, and so,
γ(Xk) = (1 + 2k)/(3 + 5k).

3 Extremal graphs

By Theorem 2.4, every digraph in D has dicut density at least 2/5. In this section, we investigate
the extremal graphs. First, we show that when the operation introduced in the previous section
is applied to an extremal graph, the resulting graph (when nontrivial) is also extremal.

Lemma 3.1 Let D ∈ D and x ∈ V (D), let (x, yi) ∈ E(D) with d+

D(yi) ≤ 1 for i ∈ {1, 2}, and let
D′ := R(D,x, y1, y2). If γ(D) = 2/5 and ε(D) ≥ 10, then γ(D′) = 2/5 and d−D(x) = d+

D(y1) =
d+

D(y2) = 1.

Proof. Suppose γ(D) = 2/5 and ε(D) ≥ 10. Then ε(D) = 5k for some integer k ≥ 2. Since
D ∈ D and d+

D(x) ≥ 2, we have d−D(x) ≤ 1. So ε(D′) ≥ ε(D)− 5 = 5k− 5 ≥ 5 and each nontrivial
component of D′ belongs to D. By applying Theorem 2.4 to the nontrivial components of D, we
can show that γ(D′) ≥ 2/5.

Assume γ(D′) > 2/5, and let (S, S̄) be a maximum dicut of D′. Then, |(S, S̄)| > (2/5)ε(D′) ≥
(2/5)(5k − 5) = 2k − 2. Hence |(S, S̄)| ≥ 2k − 1. By Lemma 2.1, we may assume x ∈ S and
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y1, y2 ∈ S̄. Hence (S, S̄), when viewed as a dicut in D, also contains (x, y1) and (x, y2); and thus
has size at least (2k − 1) + 2 = 2k + 1, contradicting the assumption that γ(D) = 2/5.

Therefore, γ(D′) = 2/5. So ε(D′) is a multiple of 5; hence d−D(x) = d+

D(y) = d+

D(z) = 1.

However, if γ(D) > 2/5 then applying our operation to D or Dr may result in a digraph with
dicut density 2/5. For example, let Y denote the digraph with vertex set {x0, x1, . . . , x5} and
edge set {(x0, x1), (x1, x2), (x2, x3), (x1, x4), (x4, x5)}. See Figure 2. The digraphs D1 and D2 are
obtained by identifying the 1-vertices of Y with certain vertices of the directed pentagon. (The
edges of Y are thickened.) In each Di, the edges from squares to circles form a dicut, showing
that γ(Di) ≥ 1/2 > 2/5.
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Figure 2: Adding Y to the directed pentagon

To characterize the irreducible digraphs in D that have dicut density 2/5, we also need the
following result which was conjectured by Bondy and Locke [4], and proved recently by the present
authors [16].

Theorem 3.2 (Xu and Yu [16]) If the graph G is triangle-free and subcubic, and if each maxi-
mum cut of G has exactly (4/5)ε(G) edges, then G is one of the graphs in Figure 3.
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Figure 3: Extremal graphs for Theorem 2.3.
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Note that F6 is the Petersen graph and F7 is the dodecahedron. For each Fi in Figure 3, the
edges between squares and circles form a maximum cut of size (4/5)ε(Fi).

Also note that F6 consists of two disjoint pentagons C1, C2 (thickened) and a matching between
C1 and C2. Let P denote the orientation of F6 so that C1 and C2 are directed cycles, and the
matching edges are oriented from C1 to C2. Note that such an orientation of F6 is unique up to
isomorphism. Clearly, P = P r and P is irreducible.

Proposition 3.3 Let P be the digraph defined above. Then γ(P ) = 2/5.

Proof. Let V (C1) = {vi : 1 ≤ i ≤ 5} and E(C1) = {(vi, vi+1) : 1 ≤ i ≤ 5} where v6 = v1, and let
V (C2) = {ui : 1 ≤ i ≤ 5} such that (vi, ui) ∈ E(P ) for 1 ≤ i ≤ 5. Let (S, S̄) be a maximum dicut
in P , and for i = 1, 2, let Si ⊆ S consist of the vertices that are incident with i edges in (S, S̄).
Then S2 ⊆ V (C1), and S2 (if nonempty) is an independent set in P . Hence |S2| ≤ 2.

Since |(S, S̄)| ≥ 6 (by Theorem 3.2), it suffices to show that |(S, S̄)| ≤ 6. Assume to the
contrary that |(S, S̄)| ≥ 7. Then |S1| ≥ 7− 2|S2|.

If |S2| = 0, then |S1| ≥ 7, and hence |S̄| ≤ 3. However, this implies (by pigeon-hole principle)
that there is some v ∈ S̄ such that d−(v) ≥ 3, a contradiction.

If |S2| = 2, we may assume (by symmetry) S2 = {v1, v3}. Then {u1, u3, v2, v4} ⊆ S̄, {u5, v5} 6⊆
S1, and {u2, u4} 6⊆ S1. This forces |S1| ≤ 2, a contradiction since |S1| ≥ 7− 2|S2| = 3.

Assume |S2| = 1, and assume without loss of generality that S2 = {v1}. Then {u1, v2} ⊆ S̄
and |S1| ≥ 5. Since |{u2, . . . , u5} ∩ S1| ≤ 2 and |S1| ≥ 5, {v3, v4, v5} ⊆ S1. But this forces
{u3, u4, u5} ⊆ S̄, and thus |S1| ≤ 4, a contradiction.

Theorem 3.4 Let D ∈ D be irreducible. If γ(D) = 2/5, then D = P or D is the directed
pentagon.

Proof. Assume γ(D) = 2/5. Let G be the underlying graph of D. Recall Lemma 2.2 and related
notation. If V1 ∪ V2 = ∅ then G is a path or cycle, which implies that D is the directed pentagon
(since γ(D) = 2/5). So we may assume V1 ∪ V2 6= ∅. Then by Lemma 2.2(e), G is subcubic
and triangle-free. By Theorem 3, every maximum cut of G has size at least (4/5)ε(G). Since
γ(D) = 2/5, every maximum cut of G has size precisely (4/5)ε(G). So by Theorem 3.2, G is one
of the graphs in Figure 3. Since V1 ∪ V2 6= ∅, G 6= F1.

By symmetry between D and Dr, we may assume V1 6= ∅. By Lemma 2.2(c), V1 6= V (D),
and so V2 6= ∅. Hence by Lemma 2.2(a), each Bi consists of disjoint directed cycles. So by
Lemma 2.2(d), G /∈ {F2, F3, F4}; and by Lemma 2.2(b) and (c), D = P when G = F6. In view of
Propositions 3.3, it remains to show that G /∈ {F5, F7}.

Suppose G = F5. Note that the 3-vertices of G induce two disjoint hexagons (which are
thickened in Figure 3). By Lemma 2.2(a), each nonempty Bi consists of disjoint directed hexagons.
Let x be an arbitrary 2-vertex of G. Then d+

D(x) = 1 = d−D(x). Since both neighbors of x are
contained in the same directed hexagon, both neighbors of x must be contained in the same Bi.
This implies that either (V1, V1) 6= ∅ or (V2, V2) 6= ∅, contradicting Lemma 2.2(b). So G 6= F5.

Now assume G = F7. Note that the dodecahedron consists of two disjoint induced pentagons
C1 and C3, an induced cycle C2 of length 10, and a perfect matching from C1 ∪C3 to C2. See F7

in Figure 3, where C1, C2 and C3 are thickened. Note that, up to isomorphism, such a partition
of F7 is unique. By Lemma 2.2(a), C1, C2, C3 are all directed cycles in D. Since γ(D) = 2/5, V1

and V2 must be V (C1 ∪C3) and V (C2). By Lemma 2.2(b), either all matching edges are oriented
from C2 to C1 ∪ C3, or all matching edges are oriented from C1 ∪ C3 to C2. By a simple case
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analysis, we see that F7 has only six nonisomorphic orientations: three are shown in Figure 4,
and the other three can be obtained by reversing the orientations of all edges in those shown in
Figure 4. In each of these orientations, the edges between squares and circles form a dicut of size
13. This contradicts the assumption that γ(D) = 2/5. So G 6= F7.
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Figure 4: Three orientations of F7 with dicuts of size 13.

Note that the digraph A in Figure 5 is reducible. We now characterize all acyclic digraphs in
D(1, 1) with dicut density 2/5. We show that such a graph must contain A as a subgraph, and
can be obtained by gluing copies of A appropriately.

To be precise, we define an ordering on the vertices of any acyclic digraph as follows: x < y
iff there is a directed path from x to y (this is a partial ordering because the digraph is acyclic).
Given two acyclic digraphs D1 and D2, we can produce an acyclic digraph from D1,D2 as follows:
Take vertices x1 < x2 < . . . < xm of D1 and y1 < y2 < . . . < ym of D2, and identify xi with yi

for 1 ≤ i ≤ m. We say that the resulting digraph is obtained by gluing D1 and D2.
Let T denote the class of digraphs in D(1, 1) with at least one nontrivial component such that

every nontrivial component of each member of T can be obtained by gluing a finite number of
copies of A. Figure 5 shows several digraphs in T . The second digraph is obtained by identifying
the 1-vertices of two copies of A, the third is obtained by identifying a 1-vertex of A with a
1-vertex of another copy of A, and the fourth is obtained by identifying a 1-vertex of A with a
2-vertex of another copy of A.
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Figure 5: Directed graph A and three digraphs in T

Since Ar = A, T ∈ T iff T r ∈ T . We now show that every member of T has dicut density
2/5. Let T ∈ T . Without loss of generality, we may assume T is connected. By Theorem 2.4,
γ(T ) ≥ 2/5. By the definition of T , ε(T ) = 5k for some integer k ≥ 1. If k = 1 then T = A
and hence γ(T ) = 2/5. So we may assume that k ≥ 2, and γ(T ) = 2/5 when 5 ≤ ε(T ) < 5k.
Let T be obtained by gluing A and some T ′ ∈ T . Since every dicut of T contains at most two
edges from A, any maximum dicut of T ′ contains at least 5kγ(T )− 2 edges. If γ(T ) > 2/5, then
5kγ(T ) − 2 > 2k − 2. That means T ′ contains a dicut of size at least 2k − 1, a contradiction.
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Theorem 3.5 T consists of precisely those acyclic digraphs in D(1, 1) with dicut density 2/5.

Proof. Since T ⊆ D(1, 1) and γ(T ) = 2/5 for all T ∈ T , it suffices to show that every connected
acyclic digraph in D(1, 1) with dicut density 2/5 belongs to T . Let D ∈ D(1, 1) be a connected
acyclic digraph with γ(D) = 2/5. Then ε(D) = 5k for some integer k ≥ 1. If k = 1 then
D = A ∈ T . So we may assume k ≥ 2 and that D′ ∈ T for all connected acyclic digraphs
D′ ∈ D(1, 1) with γ(D′) = 2/5 and ε(D′) ≤ 5(k − 1).

We now prove A ⊆ D. By applying Lemma 3.1 repeatedly (starting with D, then the nontrivial
components of the resulting graph, and so on), we arrive at a digraph H whose components either
are trivial or irreducible, or have precisely 5 edges; and not all components are trivial. Let K be
any nontrivial component of H. Then by Lemma 3.1, γ(K) = 2/5. If K is irreducible then by
Theorem 3.4, K = P or K is the directed pentagon, a contradiction since D is acyclic. So K has
precisely 5 edges. Since K is acyclic and γ(K) = 2/5, we have K = A.

Let the vertices of A be labeled as in Figure 5. If (x2, x3) is the unique edge leaving x2,
then by Lemma 3.1, H = D − E(A) is an acyclic digraph in D(1, 1) with ε(H) = 5(k − 1) and
γ(H) = 2/5. By our induction hypothesis, H ∈ T . Hence D is obtained by gluing A and H,
which shows D ∈ T .

If d+

D(x2) ≥ 2, then (x1, x2) is the unique edge ending at x2. In Dr, (x1, x0) is the unique
edge leaving x1, (x2, x1) is the unique edge leaving x2. By applying the same argument as above
to Dr and Ar = A, we can show that Dr ∈ T . Hence D ∈ T .

As a consequence, we have an O(|E(D)|) algorithm which decides whether an acyclic digraph
D in D(1, 1) has dicut density 2/5.

Algorithm ACYCLIC

Input: Acyclic digraph D ∈ D(1, 1).
Output: YES, if γ(D) = 2/5; NO, if γ(D) > 2/5.

1. Search in D for maximal sequence of edge disjoint copies A1, . . . , Ak of A. If k = 0 then
stop and output NO. Otherwise, let the vertices of each Ai be labeled as in Figure 5, and
go to step 2.

2. Set D0 ← D. For each 1 ≤ i ≤ k, if d+

Di−1
(x2) = 1 then let Di := R(Di−1, x1, x2, x3), and if

d+

Di−1
(x2) ≥ 2 then let Di := (R(Dr

i−1
, x3, x1, x2))

r.

3. If Dk = ∅ then D ∈ T and output YES. Otherwise D /∈ T and output NO.

Clearly, step 1 runs in O(|E(D)|) time, and steps 2 and 3 each run in constant time. So the
running time of Algorithm ACYCLIC is O(|E(D)|).
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