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Abstract A graph G has a tank-ring factor F'if F' is a connected spanning subgraph
with all vertices of degree 2 or 4 that consists of one cycle C and disjoint triangles
attaching to exactly one vertex of C such that every component of G — C contains
exactly two vertices. In this paper, we show the following results. (1) Every supere-
ulerian claw-free graph G with 1-hourglass property contains a tank-ring factor. (2)
Every supereulerian claw-free graph with 2-hourglass property is Hamiltonian.

Keywords Connected even factor - Cycle - Claw-free graph - Tank-ring factor
1 Introduction
We will consider the class of undirected finite graphs without loops or multiple edges,

and use [1] for terminology and notation not defined here. Let G be a graph. We denote
by A(G) the maximum degree of G. For a vertex v of G, the neighborhood of v is the

Supported by Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP)

under grant No.: 200801410028 by Nature Science Foundation Project of Liaoning under

Grant No.: 2201102038, and by Nature Science foundation of China (NSFC) under Grant No.: 61175062,
61100194.

M. Li - L. Yuan - H. Jiang ()

School of Software Technology, Dalian University of Technology, Dalian, Liaoning, 116620,
People’s Republic of China

e-mail: jlanghe @dlut.edu.cn

M. Li
e-mail: li_mingchu@yahoo.com

B. Liu
Department of Mathematics, Shenyang Polyechnic College, Shenyang 110045,
People’s Republic of China

H. J. Broersma
Department of Computer Science, University of Durham, Durham DH1 3LE, UK

@ Springer



600 Graphs and Combinatorics (2013) 29:599-608
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Fig. 2 Tank-ring Factor

set of all vertices that are adjacent to v, and will be denoted by N (v). For a subgraph
H of a graph G and a subset S of V(G), we denote by G — H and G[S] the induced
subgraphs of G by V(G) — V(H) and S, respectively. We denote by Ny (S) the set
of all vertices of H adjacent to some vertex of S, and let N(S) = |, s N(x) and
dy(S) = |Np(S)|. For a cycle C with a fixed orientation, and two vertices x and
y on C, we define the segment C(x, y) to be the set of vertices on C from x to y
(excluding x and y), and x™ and x~ denote the successor and the predecessor of x
according to the orientation of C, respectively. A cycle of length k is called a k-cycle.
A Hamiltonian cycle in a graph is a cycle that passes through all vertices of the graph.
A graph s called claw-free if it does not contain a copy of K 3 as an induced subgraph.
An hourglass is the unique graph with degree sequence 4,2,2,2.2 (i.e., two triangles
meeting in exactly one vertex) (see Fig. 1). The vertex of degree 4 in an hourglass is
called the center of the hourglass, and in labelling an induced hourglass we always
use its center as first vertex of an induced hourglass. A connected factor of a graph
is its connected spanning subgraph. A connected even [2,2s]-factor of a graph G is
a connected factor with all vertices of degree i(i = 2,4,...,2s), where s > 1 is
an integer. In particular, a connected even factor with all vertices of degree 2 or 4 is
called a connected [2,4]-factor. A graph G has a tank-ring factor F if F is a connected
spanning subgraph with all vertices of degree 2 or 4 that consists of one cycle C and
disjoint triangles attaching to exactly one vertex of C such that every component of
G — C contains exactly two vertices (see Fig. 2). Thus a Hamiltonian cycle is a con-
nected even [2,2]-factor, and is a tank-ring factor without triangles. A connected even
factor F' can be decomposed into edge disjoint cycles Cp, C3, ..., Ck, which are said
a cycle decomposition of F. A trail is a sequence ugpejuies ... e u, with alternative
vertices and edges and with no repeated edges and ¢; = u;_ju; (1 <i <r). A graph
G is supereulerian if G has a spanning closed trail (not necessary to contain every
edge). Matthews and Sumner [8] made the following conjecture.
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Conjecture 1 [8]. Every 4-connected claw-free graph is Hamiltonian.
Broersma et al. [2] proved the following results.
Theorem 2 [2] Every 4-connected claw-free graph has a connected [2,4]-factor.

Every 4-edge-connected graph is supereulerian [4] (also see [3]). Theorem 2 has
been generalized as follows in [6]

Theorem 3 [6]. Every supereulerian claw-free graph contains a connected even [2,4]-
factor.

A graph G is said to have 1-hourglass property (or hourglass property) if one pair
of nonadjacent vertices of every induced hourglass H in G has a common neighbor
outside H. A graph G is said to have 2-hourglass property if there are two pairs {vy, v3}
and {vy, v4} of nonadjacent vertices of every induced hourglass H in G such that each
pair has a common neighbor outside H and vjv; and v3vy are two disjoint edges in
H. Obviously, 2-hourglass property implies 1-hourglass property. Recently, Kaiser et
al. [5] showed the following result using hourglass property, which is a special case
of Conjecture 1.

Theorem 4 [5]. Every 4-connected claw-free graph with 1-hourglass property is
Hamiltonian.

An example in [5] shows that the 4-connectivity condition in Theorem 6 is required.
Thus, a natural problem is that if the condition of 4-connectivity is reduced, then what
conclusions can we obtain? In this paper, we will explore the problem and obtain the
following results.

Theorem 5 Every supereulerian claw-free graph with 1-hourglass property contains
a tank-ring factor.

Corollary 6 Every4-edge-connected claw-free graph with 1-hourglass property con-
tains a tank-ring factor.

Corollary is best possible in the sense that the edge-connectivity of a graph G cannot
be reduced to 3. To see this, we copy an example from [5]. Let k be a negative integer
and G (k) the graph obtained from the Petersen graph PT Sio by adding at least k
edges to every vertex and subdividing every original edge of PT Sjg. Then the line
graph L(G(k)) is 3-edge-connected claw-free graph and has no induced hourglass
(and hence has 1-hourglass property). But G (k) contain no tank-ring factors.

A graph G is said to have weak 2-hourglass property if there are two pairs of non-
adjacent vertices of every induced hourglass H in G such that each pair has a common
neighbor outside H. Obviously, 2-hourglass property implies weak 2-hourglass prop-
erty. The graph in Figure 3 is a supereulerian graph with weak 2-hourglass property
but not Hamiltonian, which shows that 2-hourglass property in Theorem 7 is required.
If we replace 1-hourglass property in Theorem 5 by 2-hourglass property, we obtain
the following result.

Theorem 7 Every supereulerian claw-free graph with 2-hourglass property is
Hamiltonian.
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Fig. 3 A non-hamiltonian
claw-free graph with weak
2-hourglass property.

{vr, v3} {vr1, va}
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Corollary 8 Every 4-edge-connected claw-free graph with 2-hourglass property is
hamiltonian.

To show the sharpness of Corollary 8, we copy an example from [5]. Let k be an nega-
tive integer and G (k) the graph obtained from the Petersen graph P T S1¢ by adding at
least k edges to every vertex and subdividing every original edge of PT S;g. Then the
line graph L(G (k)) of G (k) is 3-edge-connected claw-free graph and has no induced
hourglass (and hence has 2-hourglass property). But L(G (k)) is not hamiltonian.

2 Proofs of Main Results

In this section, our aim is to prove our results. In order to prove our other theorems, we
first show the following lemmas. Recall that if a connected even factor F' can be decom-
posed into edge disjoint cycles Cq, Ca, ..., Ci, then we say that C1, Ca, ..., Cyisa
cycle decomposition of F. The proofs of Lemmas 2.1-2.2 were given in [7]. However,
the paper [7] was unpublished, so we provide these simple proofs for confirming the
correction here.

Lemma 2.1 Let F be a connected [2,4]-factor with minimal number of vertices of
degree 4 in a claw-free graph G. Then every vertex of degree 4 in F is the center of
an induced hourglass in G.

Proof If F has no vertex of degree 4, then we are done. Let S be a set of vertices of
degree 4 in F. Let v be any vertex of degree 4 in F, and let Nr (v) = {vy, v2, v3, v4}.
Without loss of generality, assume that vy, v, v2 and v3, v, v4 are contained in two
distinct cycles with a common vertex v, respectively, of a cycle decomposition of
F. If viv3 € E(G), then F — vv; — vv3 + vqvs is a connected [2,4]-factor with
fewer vertices of degree 4 than F, a contradiction. Hence viv3 ¢ E(G). By sym-
metry, viv4, V203, V24 are not edges of G. Since G is claw-free, this fact implies
that vjv, and v3vg are edges of G. Thus v is the center of the induced hourglass
Glv, v, v2, v3, v4]. Thus Lemma 2.1 is true. O

Lemma 2.2 [7] Let F be a connected [2,4]-factor with minimal number of vertices
of degree 4 in a claw-free graph G and Cy, Cy, ..., Cp be a cycle decomposition of
F. Then any pair of cycles C; and C in F meets at most one vertex.
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Proof Assume that P = {C1, Ca, ..., Cp}. If |[V(C;) N V(C;)| = 2(i # j), then at
least one of {C;, C;} has order at least 4 (say C;). Letu € V(C;) N V(C;). Then u
is the center of the induced hourglass G[Nr(u) U {u}] by Lemma 2.2 Let Nr(u) =
{ur,uz, uz, usg} and uy, up € V(C;) and u3, uy € V(Cj), and let ujuy € E(G). If
uiuy ¢ E(F), then F' = F — uyu — upu + uyus is a [2,4]-factor with fewer vertices
of degree 4 than F. Since |V (C;) N V(C;)| > 2 and C; contains at least 4 vertices, F’
is connected. This contradiction shows uuy € E(F). Thus uujupu is a triangle in ¥
anddr(u1) = dr(u2) = 4, and so C; contains at least 4 vertices. Removing the edges
uuy, uiuy, upu from F, we obtain a new [2, 4]-factor F” containing fewer vertices
of degree 4 than F. Since |V (C;) N V(C;)| > 2, F” is connected. This contradiction
shows [V (C;) N V(C;)| < 1. This completes the proof of Lemma 2.2. O

A cycle C of a graph G is said to have 2-component property if every component of
G — C contains at most two vertices. In the following, we will prove a stronger result
than Theorem 5. That is,

Theorem 2.3 Let G be a connected claw-free graph with 1-hourglass property and
contain a connected [2,4]-factor. Then G contains a tank-ring factor.

Proof Let F be a connected [2, 4]-factor in a connected claw-free graph G. Fur-
thermore, assume that F contains least number of vertices of degree 4 in F' among
connected [2, 4]-factors of G. Let S be the set of vertices of degree 4 in F andm = |S§]|.
If m = 0, then we are done. Thus m > 1. By Lemma 2.1, every vertex of S is the
center of an induced hourglass of G. Let Cy, C3, ..., Cp be a cycle decomposition
of Fandlet P = {Cy, (2, ..., Cp}. Then, by Lemma 2.2, [V(C;) N V(C;)| < 1 for
i,j=12,..., p(i # j).Obviously,if V(C;)NV(C;) # @, then V(C;)NV(C;) C
S.

Since m > 1, p = |P| > 2. Without loss of generality assume that C; is a longest
cycle among {C1, C2, ..., C,} and C; contains as many vertices as possible. We say
that two distinct cycles C; and C; are adjacent if V(C;) N V(C;) # . Let

A| = {Cy € P : Cyis adjacent to C}.

Then we have the following fact.

Claim 1 Let F be a connected [2, 4]-factor with minimal value of |S|, and subject to
this, C1 a longest cycle. If C; € Ay, then |V (C;)| = 3.

Proof Otherwise, let v be a vertex such that v € V(C;) and v € V(Cy). Thenv € S,
and then v is the center of the induced hourglass H := G[Nr(v)U{v}] by Lemma 2.1.
Let v; be the same as in Lemma 2.1 fori = 1,2,3,4, and v;, v, € V(C;) and
v3,vq4 € V(Cp). Assumei = 2and C; = (v3...v4vv3) and Cr = (vvy ... v v), then
vy = v, vj =v(onCy)and v, = v, vf’ = v (on C3). Since v is the center of the
hourglass H, there is one vertex w outside of H such that w is adjacent to v3 or vg
and v or vy. By symmetry, without loss of generality assume that wvy, wvs € E(G).

Suppose that w € V(C;) for j > 3. If wrvy € E(G), then F — ww™ — vvy —
vvy +vaw+vaw™ is a connected [2, 4]-factor with fewer vertices of degree 4 than F,
a contradiction. Thus w v, € E(G). Removing the edges ww? (on C3), vvg (on Cy),
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vv; (on C,) and adding the edges vow ™, v4w into F, we obtain a new connected [2, 4]-
factor containing fewer vertices of degree 4 than F, a contradiction. Thus w ¢ V(C;)
for j > 3. We further have the following fact.

Claim 1.1 w ¢ V(C)), that is, w € V(C}).

Proof Assume thatw € V(C2).If |V (Ca(v2, w))| > 1, then removing vpv, vva from
F and adding wvy, wvy into F we obtain two new cycles C| and C} and C| con-
tains more vertices than Cy, a contradiction. Note that V(C}) N V(C}) = {w}. Thus
V(Cy(vy, w)) = @. That is, w = v;. Removing vvy, v, v;vz from F and add-
ing vivy, v2+ vg4 into F' we obtain a new connected [2, 4]-factor which contains fewer
vertices of degree 4 than F, a contradiction. Thus Claim 1.1 is true.

Now we complete the proof of Claim 1.

By Claim 1.1, w € V(Cy). If wTw™ € E(G), then replacing wTww™ by wTw™
and removing the edges vv; from C; and vv4 from C; and adding the path vowvs, we
obtain a new cycle C” and a new connected [2, 4]-factor F/' = C’ U]’zg C; contain-
ing fewer vertices of degree 4 than F, a contradiction. Thus w™w™ ¢ E(G). Since
Glw, w", w™,v] # K13, whvy € E(G) orw™ vy € E(G) (say whvy € E(G)). If
vv;' € E(G), thenreplacing vva v;' by UU;_ on C, we obtain a cycle C}, and replacing
ww™ by wu,w™ on C; we obtain a cycle C|. Note that C{UC) Uj.zg C; is aconnected
[2, 4]-factor with the same number of vertices of degree 4 as F' and C { contains more
vertices than Cy, a contradiction. Thus vvi|r ¢ E(G).

We have vw ¢ E(G) since otherwise, removing the edges vov, vvg, vv3 from F
and adding vow™, vw, v4v3 into F, we obtain a new connected [2, 4]-factor F’ which
contains fewer vertices of degree 4 than F, a contradiction. Thus vw ¢ E(G). Since
Glvy, v;, v, w] # Kj 3, v;w € E(G). Removing edges vzv;, ww™, vov, vuy from
F and adding the edges v;“ w, vowT, vyv; into F, we obtain a new connected [2, 4]-
factor F’ which contains fewer vertices of degree 4 than F, a contradiction. Thus
Claim 1 is proved.

Claim2 A, = P — {C}).

Proof Assume thatthereisacycle C;in P—{C;}suchthatC; ¢ A;.Then we can find
two distinct cycles (say C2 and Cp) such that C, € Ay, C, ¢ Ayand C, N Cp, # 0.
Let V(Cp) ={u,v,z}andv € V(Cp)NV(Cy)andu € V(Cp)NV(C2). Thenu, v €
S. Let Nrp(u) = {ur,uz,v,z} and Np(v) = {v1, v2, u, z}. Then, by Lemma 2.1,
G[NF(u) U {u}] and G[NF(v) U {v}] are hourglasses and v,z ¢ N({u1,u>}) and
u,z ¢ N({vy, va}). From the assumption of Theorem 2.3, there is a vertex w outside
of G[NF(v)] such that w is adjacent to v| or vy and z or u since G[Nfg(v) U {v}] is
an hourglass. By symmetry, assume that v,w € E(G). Let C1 = (vvy...v2v) and
Cy = (uuy ...upu). Then v, = v and v; =v(onCy)and u; = v and u;r = v (on
C>). We further have the following fact.

Claim 2.1 Ifuw € E(G), then w ¢ V(Cy).
Proof Otherwise, we have w # v, since otherwise removing the edges viv, vow (on

C1), vu (on C)p) and adding the edges vivz, uw into F we obtain a new connected
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[2, 4]-factor F’ containing fewer vertices of degree 4 than F since dp/(v) = 2, a
contradiction. Similarly, w # vr.

Note that wTw™ ¢ E(G) since otherwise replacing the path w~ww™ by the edge
w~ w7 on Cy and removing vu (on Cp),vvz (on C1) and adding the edges vow and wu
into F, we obtain a connected [2, 4]-factor F’ containing fewer vertices of degree 4 than
F since dp/(v) = 2. Since Glw, w™, w", u] # K13, w™u € E(G) orwtu € E(G)
(say w™u € E(G)). Since Glu, z, u1, w] # Ky 3 and zu; ¢ E(G),ujw € E(G) or
zw € E(G).

If ujw € E(G), then removing the edges ww ™, viv, vvy (on C1) and uu; (on C3)
and adding the edges ujw, uw™, viv; into F, we obtain a new connected [2, 4]-factor
F’ containing fewer vertices of degree 4 than F since v is not vertex of degree 4 in F’.
Thus ujw ¢ E(G). It follows that zw € E(G). Removing the edges viv, vvy, ww™
(on C1), zu (on Cp) and adding the edges zw, uw™, vy vz into ' we obtain a new con-
nected [2, 4]-factor F’ containing fewer vertices of degree 4 than F since dgs(v) = 2.
This contradiction shows that Claim 2.1 is true. O

Claim 2.2 Ifuw € E(G), then w ¢ V(C»).

Proof Since we did not use the maximality of C; in the proof of Claim 2.1, by sym-
metry, Claim 2.2 is true.

Claim 2.3 uw ¢ E(G).

Proof Otherwise, by Claims 2.1 and 2.2, w ¢ V(C1UC>), and so there is a cycle (say
C3) such that w € V(C3). Since Gw, w™, vz, u] # K13 and uvy ¢ E(G), w vy €
E(G)orw™u € E(G). If w™vy € E(G), then removing the edges vvy (on Cy), vu
(on Cp), w™w on C3) and adding the edges w™u and wv,, we obtain a new connected
[2, 4]-factor F’ containing fewer vertices of degree 4 than F since dp/(v) = 2, a con-
tradiction. Thus w™u € E(G). Similarly, we can get a contradiction. Thus Claim 2.3
is true.

Now we complete the proof of Claim 2.

By Claim 2.3, we have zw € E(G). A similar argument to the proof of Claim 2.3
shows w € V(Cy) orw € V(Cy). If w € V(C3), then wt # u, since otherwise
removing uu; and zu and adding zuzr we obtain a new connected [2, 4]-factor F’
containing fewer vertices of degree 4 than F since dp (1) = 2. If zw™* € E(G), then
removing the edges ww™ (on C3), vvy (on Cy), vu, Zu (on C)p) and adding the edges
zw™ and vow, we obtain a new connected [2, 4]-factor F’ containing fewer vertices
of degree 4 than F since dp/(u) = dp/(v) = 2. Thus zw™ ¢ E(G). It follows that
vw' € E(G). Removing vv; (on Cy), vu, uz (on C,) and ww™ (on C3) and add-
ing the edges zw and w™ vy, we obtain a new connected [2, 4]-factor F’ containing
fewer vertices of degree 4 than F since dp/(u) = dp/(v) = 2. This contradiction
shows w ¢ V(C3). Thus w € V(C}). By a similar argument to Claim 1.1, we have
wtw™ ¢ E(G). Since Glw, wt, w™, z] # K13, wTz € E(G) orw™z € E(G) (say
wtz e E(G)).

Since G[Np (1) U {u}] is an hourglass, there is a common neighbor w’ outside of
G[Np(u) U {u}] such that w’ is adjacent to u; or up and z or v. A similar argument
to Claim 2.3 shows that w'v ¢ E(G). Thus w'z € E(G). By symmetry, assume that
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ujw’ € E(G). By a similar argument to the above, we have that w’ € V(C,) and
w't e E(G)orw' ™z € E(G) (say w 'z € E(G)).

If ww’ € E(G), then removing the edges ww™ (on Cy), w'w'" (on Cy), zu, zv, vu
(on C)) and adding the edges zwT, ww’ and w’ +z, we obtain a new connected [2, 4]-
factor F’ containing fewer vertices of degree 4 than F since dp/(u) = dp/(v) = 2.
Thus ww’ ¢ E(G). Since G[z, w, w’, v] # K3, vw € E(G). Removing the edges
ww™, vav, vy (on Cy), zv (on Cp,) and adding the edges zw™, wv and vyv; into F,
we obtain a new connected [2, 4]-factor F’ containing fewer vertices of degree 4 than
F since dp/(v) = 2. Thus Claim 2 is true.

Let

S =V(G) = V(Cy).

Then we have the following Claim.

Claim 3 For any vertex v in S, G[{v} U Nr(v)] has no common neighbor w in
S1 — Nr(v).

Proof Otherwise, let Np(v) = {vy, vz, v3, v4} and vy, v € S; and v3, vq4 € V(Cy).
Then vivy € E(G) and v3vg € E(G). By symmetry, assume that viw, vaw € E(G).
Let G[{u} U Np(u)] be another hourglass and Nr(u) = {uy, uz, usz, us} (where
uy,ur € St and uz, ug € V(Cy)). Then ujuz, usus € E(G). Without loss of gener-
ality assume that w = u; and C; = (v3...u3uuq...v4vv3). Then uvy ¢ E(G)
since otherwise removing the edges u3u, uug, v3v (on Cp), viv, uju and adding
v3l, u3ug, viug, we obtain a new connected [2, 4]-factor F’ containing fewer ver-
tices of degree 4 than F since dp/(u) = dp/(v) = 2. Thus uvs ¢ E(G). Since
Gluy, v1, v3, u] # K1 3, uvy € E(G). Similarly, we can obtain a contradiction. Thus
Claim 3 is true.

Two vertices x and y are consecutive on the cycle Cy if xy is the edge on C; (i.e.,
xT = yorx~ =y). We have the following fact.

Claim 4 For any vertex v in S, either v or vy has two consecutive neighbors on C1,
where v, v2 € Nrp(v) NSy and vivy € E(G). If vy has no two consecutive neighbors
on C1 but has neighbor wi on C1, then wl_u)i|r € E(G).

Proof Let Nr(v) = {v1, v2, v3, va}. Then v3, v4 € V(C1) and v3vs € E(G). By 1-
hourglass property, there is a vertex w outside G[ N (v) U {v}] such that w is adjacent
to vy or vy and v3 or v4. By symmetry, assume that viw, vaw € E(G). By Claim 3,
w € V(Cy). Let C; = (v3...w...v4vv3). Then v; = v. By a similar argument to
Claim 1.1, we have wtw™ ¢ E(G). Since G[w, wt, w™, vi] # K13, whv; € E(G)
or w™ v, € E(G) (say wTv; € E(G)). Thus vy has two consecutive neighbors on
C1. If vy also has two consecutive neighbors x and y on Cj, then replacing the edge
ww™ by the path wv;w™ and the edge xy by the path xv,y and removing the edges
v1v, V2v, V1V from F, we obtain a new connected [2, 4]-factor F’ containing fewer
vertices of degree 4 than F since dp/(v) = 2. This contradiction shows that v, has no
two consecutive neighbors on Cj. If v, has a neighbor x on Cy, then xTx~ € E(G)
since xTvy, xT — vy ¢ E(G) and G[x,x", x~, v2] # K1.3. Thus we have proved
Claim 4.
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Let
T = {x € S} : x has no consecutive neighbors on C}

Then |T'| > 1 since otherwise the tank-ring factor is hamiltonian and so S| =
and we are done. We further have the following fact.

Claim § For any vertex z in T, z has at most one neighbor in T.

Proof Suppose that G[Nr(v) U {v}] is an hourglass and and Nr (v) = {z, z1, v1, v2},
where v, vi, vy € V(Cy),z,721 ¢ V(Cy) and vivy € E(G). If d7(z) > 2, assume
zx,zy € E(G) and x,y € T. Obviously, yzy,z1x ¢ E(G) since otherwise, e.g.,
xz1 € E(G), using the new cycle vzxziv and Claim 4, G has a new connected [2, 4]-
factor containing fewer vertices of degree 4, a contradiction. Similarly, yv, xv ¢ E(G).
Since G|z, z1, x, y] # K13, xy € E(G) and then G[z, Z1, v, x, y] induces an hour-
glass. It follows that there is a vertex w such that w is adjacent to x or y and v or z;.
Assume that xw, vw € E(G) (the proofs of other cases are similar). Then we have
w € V(Cy) since otherwise assume Ng(u) U {u} = {w, wy, uy, ur} U {u} induces an
hourglass, where wwy, ujus € E(G) anduy, uy € V(Cy) and wy, w ¢ V(Cq). Then
wix, wiv ¢ E(G) since otherwise, e.g., wix € E(G), using the cycle wixzzjvwwy,
we get a new connected [2, 4]-factor F’ containing fewer vertices of degree 4 than F
since dr/ (1) = 2, a contradiction. Thus w € V(C;). By Claim 4, wtw™ € E(G).
Using the cycle vz; zxwv and the edge w w™ and Claim 4, we can get a contradiction.
Thus Claim 5 is true.

Claim 6 For any vertex z in T, z has only one neighbor in S1 — T.

Proof Obviously, z has at least one neighbor in S; — 7. If z has two neighbors
71,y in Sy — T, then y ¢ T and y has two neighbors w, w™ on C; by Claim 4.
Assume Nr(y') = {y, y1, ], 3}, where y,y1 ¢ V(C1) and y', y|, y; € V(Cy)
and yy1, y| 5, € E(G). The G[y’, y, y1, ¥, y5] induces an hourglass. Let V(C) =
(1Y'y5...ww™ .. vjvvy ... y}). Then we have from the proof of Claim 4 that wy} €
E(G). We have zy’ ¢ E(G) since otherwise we use the cycle y'y; yzy” and Claim 4 to
get a connected [2, 4]-factor containing fewer vertices of degree 4 than F. Obviously,
wy' ¢ E(G). Since Gy, w,y’, z] # K13, wz € E(G). By Claim4, wtw™ € E(G)
since z € T. Removing the edges y'y5, w™w, ww™ (on Cy) and yy" and adding the
edges y,w, wy, w”w™ into F we get a connected [2, 4]-factor F’ containing fewer
vertices of degree 4 than F since dg(y’) = 2. Thus Claim 6 is true.

By Claims 5 and 6, for any vertex z in 7, z has at most two neighbors in S;. By
Claim 4, we put all vertices of S| with consecutive neighbors in Cj into Cq, we get
a cycle C such that every component of G — C has at most two vertices by Claims 5
and 6. Thus we complete the proof of Theorem 2.3. O

By Theorem 2.3, we easily obtain that Theorem 5 is true.

The concept of the claw-free closure was defined in [9]. A graph G is called a
closed claw-free graph if for any vertex v of G, G[ N (v)] is either a clique or an union
of two cliques. We know from [9] that the closure c/(G) of a claw-free graph G is a
line graph of some triangle-free graph and a closed claw-free graph.
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Theorem 2.4 [9]. Let G be a claw-free graph. Then

(1) The closure cl(G) of G is the line graph of some triangle-free graph,

(2) G is Hamiltonian if and only if cl(G) is Hamiltonian.
Using a similar proof to that of Property 3 in [5], we get the following fact.

Lemma 2.5 Let G be a claw-free graph with 2-hourglass property. Then its closure
cl(G) has 2-hourglass property, too.

In the following, we will prove a stronger result than Theorem 7.

Theorem 2.6 Let G be a connected claw-free graph with 2-hourglass property and
a connected [2, 4]-factor F. Then G is Hamiltonian.

Proof From Theorem 2.4 and Lemma 2.5, we only consider the closure c¢/(G) of G.
Without loss of generality assume that c/(G) = G. Let F, P = {Cy, ..., Cp} and A4
be the same as in the proof of Theorem 2.3. Then A = P — {C}, and for any cycle
C; € A1, 1V(Cj)| = 3. Let S denote the set of vertices of degree 4 in F. If Ay = @ or
|S] = 0, then we are done. Thus |S| > 1 and |A| > 1. By Lemma 2.1, every vertex of
S is the center of some induced hourglass in G. Note that F' is a connected [2,4]-factor
of least number of vertices of degree 4 among all connected [2,4]-factors, and from the
proof of Theorem 2.3, F is a tank-ring factor in G (see Claims 1-6 in Theorem 2.3).
For avertex v € S, let vvjvov be a triangle and G[{v, v, v2, v3, v4}] = H an induced
hourglass in G, where v, v3,v4 € V(Cy) and vy, v2 ¢ V(Cy). Since G satisfies 2-
hourglass property, there are two pairs (such as {vy, v3} and {vz, v4}) of nonadjacent
vertices in H such that v, v3 have a common neighbor w; outside H and vy, v4 have
a common neighbors w; outside H. By Claims 3 and 4 of Theorem 2.3, these common
neighbors wi, wy are on C; and so vy, vy have consecutive neighbors on Cj. Inserting
vy, v into Cp, we get a connected [2,4]-factor of fewer vertices of degree 4 than F,
a contradiction. Thus we complete the proof of Theorem 2.6. O

From Theorem 3 and Theorem 2.6, we know that Theorem 7 is true.
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