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Abstract A graph G has a tank-ring factor F if F is a connected spanning subgraph
with all vertices of degree 2 or 4 that consists of one cycle C and disjoint triangles
attaching to exactly one vertex of C such that every component of G − C contains
exactly two vertices. In this paper, we show the following results. (1) Every supere-
ulerian claw-free graph G with 1-hourglass property contains a tank-ring factor. (2)
Every supereulerian claw-free graph with 2-hourglass property is Hamiltonian.

Keywords Connected even factor · Cycle · Claw-free graph · Tank-ring factor

1 Introduction

We will consider the class of undirected finite graphs without loops or multiple edges,
and use [1] for terminology and notation not defined here. Let G be a graph. We denote
by �(G) the maximum degree of G. For a vertex v of G, the neighborhood of v is the
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Fig. 1 Hourglass

Fig. 2 Tank-ring Factor

set of all vertices that are adjacent to v, and will be denoted by N (v). For a subgraph
H of a graph G and a subset S of V (G), we denote by G − H and G[S] the induced
subgraphs of G by V (G) − V (H) and S, respectively. We denote by NH (S) the set
of all vertices of H adjacent to some vertex of S, and let N (S) = ⋃

x∈S N (x) and
dH (S) = |NH (S)|. For a cycle C with a fixed orientation, and two vertices x and
y on C, we define the segment C(x, y) to be the set of vertices on C from x to y
(excluding x and y), and x+ and x− denote the successor and the predecessor of x
according to the orientation of C, respectively. A cycle of length k is called a k-cycle.
A Hamiltonian cycle in a graph is a cycle that passes through all vertices of the graph.
A graph is called claw-free if it does not contain a copy of K1,3 as an induced subgraph.
An hourglass is the unique graph with degree sequence 4,2,2,2,2 (i.e., two triangles
meeting in exactly one vertex) (see Fig. 1). The vertex of degree 4 in an hourglass is
called the center of the hourglass, and in labelling an induced hourglass we always
use its center as first vertex of an induced hourglass. A connected factor of a graph
is its connected spanning subgraph. A connected even [2,2s]-factor of a graph G is
a connected factor with all vertices of degree i(i = 2, 4, . . . , 2s), where s ≥ 1 is
an integer. In particular, a connected even factor with all vertices of degree 2 or 4 is
called a connected [2,4]-factor. A graph G has a tank-ring factor F if F is a connected
spanning subgraph with all vertices of degree 2 or 4 that consists of one cycle C and
disjoint triangles attaching to exactly one vertex of C such that every component of
G − C contains exactly two vertices (see Fig. 2). Thus a Hamiltonian cycle is a con-
nected even [2,2]-factor, and is a tank-ring factor without triangles. A connected even
factor F can be decomposed into edge disjoint cycles C1, C2, . . . , Ck, which are said
a cycle decomposition of F . A trail is a sequence u0e1u1e2 . . . er ur with alternative
vertices and edges and with no repeated edges and ei = ui−1ui (1 ≤ i ≤ r). A graph
G is supereulerian if G has a spanning closed trail (not necessary to contain every
edge). Matthews and Sumner [8] made the following conjecture.
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Conjecture 1 [8]. Every 4-connected claw-free graph is Hamiltonian.

Broersma et al. [2] proved the following results.

Theorem 2 [2] Every 4-connected claw-free graph has a connected [2,4]-factor.

Every 4-edge-connected graph is supereulerian [4] (also see [3]). Theorem 2 has
been generalized as follows in [6]

Theorem 3 [6]. Every supereulerian claw-free graph contains a connected even [2,4]-
factor.

A graph G is said to have 1-hourglass property (or hourglass property) if one pair
of nonadjacent vertices of every induced hourglass H in G has a common neighbor
outside H. A graph G is said to have 2-hourglass property if there are two pairs {v1, v3}
and {v2, v4} of nonadjacent vertices of every induced hourglass H in G such that each
pair has a common neighbor outside H and v1v2 and v3v4 are two disjoint edges in
H. Obviously, 2-hourglass property implies 1-hourglass property. Recently, Kaiser et
al. [5] showed the following result using hourglass property, which is a special case
of Conjecture 1.

Theorem 4 [5]. Every 4-connected claw-free graph with 1-hourglass property is
Hamiltonian.

An example in [5] shows that the 4-connectivity condition in Theorem 6 is required.
Thus, a natural problem is that if the condition of 4-connectivity is reduced, then what
conclusions can we obtain? In this paper, we will explore the problem and obtain the
following results.

Theorem 5 Every supereulerian claw-free graph with 1-hourglass property contains
a tank-ring factor.

Corollary 6 Every 4-edge-connected claw-free graph with 1-hourglass property con-
tains a tank-ring factor.

Corollary is best possible in the sense that the edge-connectivity of a graph G cannot
be reduced to 3. To see this, we copy an example from [5]. Let k be a negative integer
and G(k) the graph obtained from the Petersen graph PT S10 by adding at least k
edges to every vertex and subdividing every original edge of PT S10. Then the line
graph L(G(k)) is 3-edge-connected claw-free graph and has no induced hourglass
(and hence has 1-hourglass property). But G(k) contain no tank-ring factors.

A graph G is said to have weak 2-hourglass property if there are two pairs of non-
adjacent vertices of every induced hourglass H in G such that each pair has a common
neighbor outside H. Obviously, 2-hourglass property implies weak 2-hourglass prop-
erty. The graph in Figure 3 is a supereulerian graph with weak 2-hourglass property
but not Hamiltonian, which shows that 2-hourglass property in Theorem 7 is required.
If we replace 1-hourglass property in Theorem 5 by 2-hourglass property, we obtain
the following result.

Theorem 7 Every supereulerian claw-free graph with 2-hourglass property is
Hamiltonian.
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Fig. 3 A non-hamiltonian
claw-free graph with weak
2-hourglass property.
{v1, v3}, {v1, v4}

Corollary 8 Every 4-edge-connected claw-free graph with 2-hourglass property is
hamiltonian.

To show the sharpness of Corollary 8, we copy an example from [5]. Let k be an nega-
tive integer and G(k) the graph obtained from the Petersen graph PT S10 by adding at
least k edges to every vertex and subdividing every original edge of PT S10. Then the
line graph L(G(k)) of G(k) is 3-edge-connected claw-free graph and has no induced
hourglass (and hence has 2-hourglass property). But L(G(k)) is not hamiltonian.

2 Proofs of Main Results

In this section, our aim is to prove our results. In order to prove our other theorems, we
first show the following lemmas. Recall that if a connected even factor F can be decom-
posed into edge disjoint cycles C1, C2, . . . , Ck, then we say that C1, C2, . . . , Ck is a
cycle decomposition of F. The proofs of Lemmas 2.1–2.2 were given in [7]. However,
the paper [7] was unpublished, so we provide these simple proofs for confirming the
correction here.

Lemma 2.1 Let F be a connected [2,4]-factor with minimal number of vertices of
degree 4 in a claw-free graph G. Then every vertex of degree 4 in F is the center of
an induced hourglass in G.

Proof If F has no vertex of degree 4, then we are done. Let S be a set of vertices of
degree 4 in F. Let v be any vertex of degree 4 in F, and let NF (v) = {v1, v2, v3, v4}.
Without loss of generality, assume that v1, v, v2 and v3, v, v4 are contained in two
distinct cycles with a common vertex v, respectively, of a cycle decomposition of
F. If v1v3 ∈ E(G), then F − vv1 − vv3 + v1v3 is a connected [2,4]-factor with
fewer vertices of degree 4 than F, a contradiction. Hence v1v3 /∈ E(G). By sym-
metry, v1v4, v2v3, v2v4 are not edges of G. Since G is claw-free, this fact implies
that v1v2 and v3v4 are edges of G. Thus v is the center of the induced hourglass
G[v, v1, v2, v3, v4]. Thus Lemma 2.1 is true. ��
Lemma 2.2 [7] Let F be a connected [2,4]-factor with minimal number of vertices
of degree 4 in a claw-free graph G and C1, C2, . . . , C p be a cycle decomposition of
F. Then any pair of cycles Ci and C j in F meets at most one vertex.
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Proof Assume that P = {C1, C2, . . . , C p}. If |V (Ci ) ∩ V (C j )| ≥ 2(i �= j), then at
least one of {Ci , C j } has order at least 4 (say Ci ). Let u ∈ V (Ci ) ∩ V (C j ). Then u
is the center of the induced hourglass G[NF (u) ∪ {u}] by Lemma 2.2 Let NF (u) =
{u1, u2, u3, u4} and u1, u2 ∈ V (Ci ) and u3, u4 ∈ V (C j ), and let u1u2 ∈ E(G). If
u1u2 /∈ E(F), then F ′ = F − u1u − u2u + u1u2 is a [2,4]-factor with fewer vertices
of degree 4 than F. Since |V (Ci )∩ V (C j )| ≥ 2 and Ci contains at least 4 vertices, F ′
is connected. This contradiction shows u1u2 ∈ E(F). Thus uu1u2u is a triangle in F
and dF (u1) = dF (u2) = 4, and so Ci contains at least 4 vertices. Removing the edges
uu1, u1u2, u2u from F, we obtain a new [2, 4]-factor F ′′ containing fewer vertices
of degree 4 than F. Since |V (Ci ) ∩ V (C j )| ≥ 2, F ′′ is connected. This contradiction
shows |V (Ci ) ∩ V (C j )| ≤ 1. This completes the proof of Lemma 2.2. ��
A cycle C of a graph G is said to have 2-component property if every component of
G − C contains at most two vertices. In the following, we will prove a stronger result
than Theorem 5. That is,

Theorem 2.3 Let G be a connected claw-free graph with 1-hourglass property and
contain a connected [2,4]-factor. Then G contains a tank-ring factor.

Proof Let F be a connected [2, 4]-factor in a connected claw-free graph G. Fur-
thermore, assume that F contains least number of vertices of degree 4 in F among
connected [2, 4]-factors of G. Let S be the set of vertices of degree 4 in F and m = |S|.
If m = 0, then we are done. Thus m ≥ 1. By Lemma 2.1, every vertex of S is the
center of an induced hourglass of G. Let C1, C2, . . . , C p be a cycle decomposition
of F and let P = {C1, C2, . . . , C p}. Then, by Lemma 2.2, |V (Ci ) ∩ V (C j )| ≤ 1 for
i, j = 1, 2, . . . , p(i �= j). Obviously, if V (Ci )∩ V (C j ) �= ∅, then V (Ci )∩ V (C j ) ⊆
S.

Since m ≥ 1, p = |P| ≥ 2. Without loss of generality assume that C1 is a longest
cycle among {C1, C2, . . . , C p} and C1 contains as many vertices as possible. We say
that two distinct cycles Ci and C j are adjacent if V (Ci ) ∩ V (C j ) �= ∅. Let

A1 = {Ck ∈ P : Ck is adjacent to C1}.

Then we have the following fact.

Claim 1 Let F be a connected [2, 4]-factor with minimal value of |S|, and subject to
this, C1 a longest cycle. If Ci ∈ A1, then |V (Ci )| = 3.

Proof Otherwise, let v be a vertex such that v ∈ V (Ci ) and v ∈ V (C1). Then v ∈ S,

and then v is the center of the induced hourglass H := G[NF (v)∪{v}] by Lemma 2.1.
Let vi be the same as in Lemma 2.1 for i = 1, 2, 3, 4, and v1, v2 ∈ V (Ci ) and
v3, v4 ∈ V (C1). Assume i = 2 and C1 = (v3 . . . v4vv3) and C2 = (vv2 . . . v1v), then
v−

3 = v, v+
4 = v (on C1) and v−

2 = v, v+
1 = v (on C2). Since v is the center of the

hourglass H, there is one vertex w outside of H such that w is adjacent to v3 or v4
and v1 or v2. By symmetry, without loss of generality assume that wv2, wv4 ∈ E(G).

Suppose that w ∈ V (C j ) for j ≥ 3. If w+v4 ∈ E(G), then F − ww+ − vv4 −
vv2 +v2w+v4w

+ is a connected [2, 4]-factor with fewer vertices of degree 4 than F,

a contradiction. Thus w+v2 ∈ E(G). Removing the edges ww+ (on C3), vv4 (on C1),
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vv2 (on C2) and adding the edges v2w
+, v4w into F, we obtain a new connected [2, 4]-

factor containing fewer vertices of degree 4 than F, a contradiction. Thus w /∈ V (C j )

for j ≥ 3. We further have the following fact.

Claim 1.1 w /∈ V (C2), that is, w ∈ V (C1).

Proof Assume that w ∈ V (C2). If |V (C2(v2, w))| ≥ 1, then removing v2v, vv4 from
F and adding wv2, wv4 into F we obtain two new cycles C ′

1 and C ′
2 and C ′

1 con-
tains more vertices than C1, a contradiction. Note that V (C ′

1) ∩ V (C ′
2) = {w}. Thus

V (C2(v2, w)) = ∅. That is, w = v+
2 . Removing vv1, vv4, v

+
2 v2 from F and add-

ing v1v2, v
+
2 v4 into F we obtain a new connected [2, 4]-factor which contains fewer

vertices of degree 4 than F, a contradiction. Thus Claim 1.1 is true.

Now we complete the proof of Claim 1.
By Claim 1.1, w ∈ V (C1). If w+w− ∈ E(G), then replacing w+ww− by w+w−

and removing the edges vv2 from C2 and vv4 from C1 and adding the path v2wv4, we
obtain a new cycle C ′ and a new connected [2, 4]-factor F ′ = C ′ ∪ j=p

j=3 C j contain-
ing fewer vertices of degree 4 than F, a contradiction. Thus w+w− /∈ E(G). Since
G[w,w+, w−, v2] �= K1,3, w

+v2 ∈ E(G) or w−v2 ∈ E(G) (say w+v2 ∈ E(G)). If
vv+

2 ∈ E(G), then replacing vv2v
+
2 by vv+

2 on C2 we obtain a cycle C ′
2, and replacing

ww+ by wv2w
+ on C1 we obtain a cycle C ′

1. Note that C ′
1∪C ′

2 ∪ j=p
j=3 C j is a connected

[2, 4]-factor with the same number of vertices of degree 4 as F and C ′
1 contains more

vertices than C1, a contradiction. Thus vv+
2 /∈ E(G).

We have vw /∈ E(G) since otherwise, removing the edges v2v, vv4, vv3 from F
and adding v2w

+, vw, v4v3 into F, we obtain a new connected [2, 4]-factor F ′ which
contains fewer vertices of degree 4 than F, a contradiction. Thus vw /∈ E(G). Since
G[v2, v

+
2 , v, w] �= K1,3, v

+
2 w ∈ E(G). Removing edges v2v

+
2 , ww+, v2v, vv1 from

F and adding the edges v+
2 w, v2w

+, v2v1 into F, we obtain a new connected [2, 4]-
factor F ′ which contains fewer vertices of degree 4 than F, a contradiction. Thus
Claim 1 is proved.

Claim 2 A1 = P − {C1}.
Proof Assume that there is a cycle C j in P−{C1} such that C j /∈ A1. Then we can find
two distinct cycles (say C2 and C p) such that C p ∈ A1, C2 /∈ A1 and C2 ∩ C p �= ∅.

Let V (C p) = {u, v, z} and v ∈ V (C p)∩V (C1) and u ∈ V (C p)∩V (C2). Then u, v ∈
S. Let NF (u) = {u1, u2, v, z} and NF (v) = {v1, v2, u, z}. Then, by Lemma 2.1,
G[NF (u) ∪ {u}] and G[NF (v) ∪ {v}] are hourglasses and v, z /∈ N ({u1, u2}) and
u, z /∈ N ({v1, v2}). From the assumption of Theorem 2.3, there is a vertex w outside
of G[NF (v)] such that w is adjacent to v1 or v2 and z or u since G[NF (v) ∪ {v}] is
an hourglass. By symmetry, assume that v2w ∈ E(G). Let C1 = (vv1 . . . v2v) and
C2 = (uu1 . . . u2u). Then v−

1 = v and v+
2 = v (on C1) and u−

1 = v and u+
2 = v (on

C2). We further have the following fact.

Claim 2.1 If uw ∈ E(G), then w /∈ V (C1).

Proof Otherwise, we have w �= v−
2 since otherwise removing the edges v1v, v2w (on

C1), vu (on C p) and adding the edges v1v2, uw into F we obtain a new connected
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[2, 4]-factor F ′ containing fewer vertices of degree 4 than F since dF ′(v) = 2, a
contradiction. Similarly, w �= v+

1 .

Note that w+w− /∈ E(G) since otherwise replacing the path w−ww+ by the edge
w−w+ on C1 and removing vu (on C p), vv2 (on C1) and adding the edges v2w and wu
into F,we obtain a connected [2, 4]-factor F ′ containing fewer vertices of degree 4 than
F since dF ′(v) = 2. Since G[w,w−, w+, u] �= K1,3, w

−u ∈ E(G) or w+u ∈ E(G)

(say w−u ∈ E(G)). Since G[u, z, u1, w] �= K1,3 and zu1 /∈ E(G), u1w ∈ E(G) or
zw ∈ E(G).

If u1w ∈ E(G), then removing the edges ww−, v1v, vv2 (on C1) and uu1 (on C2)
and adding the edges u1w, uw−, v1v2 into F, we obtain a new connected [2, 4]-factor
F ′ containing fewer vertices of degree 4 than F since v is not vertex of degree 4 in F ′.
Thus u1w /∈ E(G). It follows that zw ∈ E(G). Removing the edges v1v, vv2, ww−
(on C1), zu (on C p) and adding the edges zw, uw−, v1v2 into F we obtain a new con-
nected [2, 4]-factor F ′ containing fewer vertices of degree 4 than F since dF ′(v) = 2.

This contradiction shows that Claim 2.1 is true. ��
Claim 2.2 If uw ∈ E(G), then w /∈ V (C2).

Proof Since we did not use the maximality of C1 in the proof of Claim 2.1, by sym-
metry, Claim 2.2 is true.

Claim 2.3 uw /∈ E(G).

Proof Otherwise, by Claims 2.1 and 2.2, w /∈ V (C1 ∪C2), and so there is a cycle (say
C3) such that w ∈ V (C3). Since G[w,w−, v2, u] �= K1,3 and uv2 /∈ E(G), w−v2 ∈
E(G) or w−u ∈ E(G). If w−v2 ∈ E(G), then removing the edges vv2 (on C1), vu
(on C p), w−w on C3) and adding the edges w−u and wv2, we obtain a new connected
[2, 4]-factor F ′ containing fewer vertices of degree 4 than F since dF ′(v) = 2, a con-
tradiction. Thus w−u ∈ E(G). Similarly, we can get a contradiction. Thus Claim 2.3
is true.

Now we complete the proof of Claim 2.
By Claim 2.3, we have zw ∈ E(G). A similar argument to the proof of Claim 2.3

shows w ∈ V (C1) or w ∈ V (C2). If w ∈ V (C2), then w+ �= u2 since otherwise
removing uu1 and zu and adding zu+

2 we obtain a new connected [2, 4]-factor F ′
containing fewer vertices of degree 4 than F since dF ′(u) = 2. If zw+ ∈ E(G), then
removing the edges ww+ (on C2), vv2 (on C1), vu, zu (on C p) and adding the edges
zw+ and v2w, we obtain a new connected [2, 4]-factor F ′ containing fewer vertices
of degree 4 than F since dF ′(u) = dF ′(v) = 2. Thus zw+ /∈ E(G). It follows that
v2w

+ ∈ E(G). Removing vv2 (on C1), vu, uz (on C p) and ww+ (on C2) and add-
ing the edges zw and w+v2, we obtain a new connected [2, 4]-factor F ′ containing
fewer vertices of degree 4 than F since dF ′(u) = dF ′(v) = 2. This contradiction
shows w /∈ V (C2). Thus w ∈ V (C1). By a similar argument to Claim 1.1, we have
w+w− /∈ E(G). Since G[w,w+, w−, z] �= K1,3, w

+z ∈ E(G) or w−z ∈ E(G) (say
w+z ∈ E(G)).

Since G[NF (u) ∪ {u}] is an hourglass, there is a common neighbor w′ outside of
G[NF (u) ∪ {u}] such that w′ is adjacent to u1 or u2 and z or v. A similar argument
to Claim 2.3 shows that w′v /∈ E(G). Thus w′z ∈ E(G). By symmetry, assume that

123



606 Graphs and Combinatorics (2013) 29:599–608

u1w
′ ∈ E(G). By a similar argument to the above, we have that w′ ∈ V (C2) and

zw′+ ∈ E(G) or w′−z ∈ E(G) (say w′+z ∈ E(G)).
If ww′ ∈ E(G), then removing the edges ww+ (on C1), w′w′+ (on C2), zu, zv, vu

(on C p) and adding the edges zw+, ww′ and w′+z, we obtain a new connected [2, 4]-
factor F ′ containing fewer vertices of degree 4 than F since dF ′(u) = dF ′(v) = 2.

Thus ww′ /∈ E(G). Since G[z, w,w′, v] �= K1,3, vw ∈ E(G). Removing the edges
ww+, v2v, vv1 (on C1), zv (on C p) and adding the edges zw+, wv and v1v2 into F,

we obtain a new connected [2, 4]-factor F ′ containing fewer vertices of degree 4 than
F since dF ′(v) = 2. Thus Claim 2 is true.

Let

S1 = V (G) − V (C1).

Then we have the following Claim.

Claim 3 For any vertex v in S, G[{v} ∪ NF (v)] has no common neighbor w in
S1 − NF (v).

Proof Otherwise, let NF (v) = {v1, v2, v3, v4} and v1, v2 ∈ S1 and v3, v4 ∈ V (C1).

Then v1v2 ∈ E(G) and v3v4 ∈ E(G). By symmetry, assume that v1w, v3w ∈ E(G).

Let G[{u} ∪ NF (u)] be another hourglass and NF (u) = {u1, u2, u3, u4} (where
u1, u2 ∈ S1 and u3, u4 ∈ V (C1)). Then u1u2, u3u4 ∈ E(G). Without loss of gener-
ality assume that w = u1 and C1 = (v3 . . . u3uu4 . . . v4vv3). Then uv3 /∈ E(G)

since otherwise removing the edges u3u, uu4, v3v (on C1), v1v, u1u and adding
v3u, u3u4, v1u1, we obtain a new connected [2, 4]-factor F ′ containing fewer ver-
tices of degree 4 than F since dF ′(u) = dF ′(v) = 2. Thus uv3 /∈ E(G). Since
G[u1, v1, v3, u] �= K1,3, uv1 ∈ E(G). Similarly, we can obtain a contradiction. Thus
Claim 3 is true.

Two vertices x and y are consecutive on the cycle C1 if xy is the edge on C1 (i.e.,
x+ = y or x− = y). We have the following fact.

Claim 4 For any vertex v in S, either v1 or v2 has two consecutive neighbors on C1,

where v1, v2 ∈ NF (v)∩ S1 and v1v2 ∈ E(G). If v2 has no two consecutive neighbors
on C1 but has neighbor w1 on C1, then w−

1 w+
1 ∈ E(G).

Proof Let NF (v) = {v1, v2, v3, v4}. Then v3, v4 ∈ V (C1) and v3v4 ∈ E(G). By 1-
hourglass property, there is a vertex w outside G[NF (v)∪{v}] such that w is adjacent
to v1 or v2 and v3 or v4. By symmetry, assume that v1w, v3w ∈ E(G). By Claim 3,
w ∈ V (C1). Let C1 = (v3 . . . w . . . v4vv3). Then v−

3 = v. By a similar argument to
Claim 1.1, we have w+w− /∈ E(G). Since G[w,w+, w−, v1] �= K1,3, w

+v1 ∈ E(G)

or w−v1 ∈ E(G) (say w+v1 ∈ E(G)). Thus v1 has two consecutive neighbors on
C1. If v2 also has two consecutive neighbors x and y on C1, then replacing the edge
ww+ by the path wv1w

+ and the edge xy by the path xv2 y and removing the edges
v1v, v2v, v1v2 from F, we obtain a new connected [2, 4]-factor F ′ containing fewer
vertices of degree 4 than F since dF ′(v) = 2. This contradiction shows that v2 has no
two consecutive neighbors on C1. If v2 has a neighbor x on C1, then x+x− ∈ E(G)

since x+v2, x+ − v2 /∈ E(G) and G[x, x+, x−, v2] �= K1,3. Thus we have proved
Claim 4.
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Let

T = {x ∈ S1 : x has no consecutive neighbors on C1}

Then |T | ≥ 1 since otherwise the tank-ring factor is hamiltonian and so S1 = ∅
and we are done. We further have the following fact.

Claim 5 For any vertex z in T, z has at most one neighbor in T .

Proof Suppose that G[NF (v)∪ {v}] is an hourglass and and NF (v) = {z, z1, v1, v2},
where v, v1, v2 ∈ V (C1), z, z1 /∈ V (C1) and v1v2 ∈ E(G). If dT (z) ≥ 2, assume
zx, zy ∈ E(G) and x, y ∈ T . Obviously, yz1, z1x /∈ E(G) since otherwise, e.g.,
xz1 ∈ E(G), using the new cycle vzxz1v and Claim 4, G has a new connected [2, 4]-
factor containing fewer vertices of degree 4, a contradiction. Similarly, yv, xv /∈ E(G).

Since G[z, z1, x, y] �= K1,3, xy ∈ E(G) and then G[z, Z1, v, x, y] induces an hour-
glass. It follows that there is a vertex w such that w is adjacent to x or y and v or z1.

Assume that xw, vw ∈ E(G) (the proofs of other cases are similar). Then we have
w ∈ V (C1) since otherwise assume NF (u) ∪ {u} = {w,w1, u1, u2} ∪ {u} induces an
hourglass, where ww1, u1u2 ∈ E(G) and u1, u2 ∈ V (C1) and w1, w /∈ V (C1). Then
w1x, w1v /∈ E(G) since otherwise, e.g., w1x ∈ E(G), using the cycle w1xzz1vww1,

we get a new connected [2, 4]-factor F ′ containing fewer vertices of degree 4 than F
since dF ′(u) = 2, a contradiction. Thus w ∈ V (C1). By Claim 4, w+w− ∈ E(G).

Using the cycle vz1zxwv and the edge w+w− and Claim 4, we can get a contradiction.
Thus Claim 5 is true.

Claim 6 For any vertex z in T, z has only one neighbor in S1 − T .

Proof Obviously, z has at least one neighbor in S1 − T . If z has two neighbors
z1, y in S1 − T, then y /∈ T and y has two neighbors w,w+ on C1 by Claim 4.
Assume NF (y′) = {y, y1, y′

1, y′
2}, where y, y1 /∈ V (C1) and y′, y′

1, y′
2 ∈ V (C1)

and yy1, y′
1 y′

2 ∈ E(G). The G[y′, y, y1, y′
1, y′

2] induces an hourglass. Let V (C1) =
(y′

1 y′y′
2 . . . ww+ . . . v1vv2 . . . y′

1). Then we have from the proof of Claim 4 that wy′
2 ∈

E(G). We have zy′ /∈ E(G) since otherwise we use the cycle y′y1 yzy′ and Claim 4 to
get a connected [2, 4]-factor containing fewer vertices of degree 4 than F. Obviously,
wy′ /∈ E(G). Since G[y, w, y′, z] �= K1,3, wz ∈ E(G). By Claim 4, w+w− ∈ E(G)

since z ∈ T . Removing the edges y′y′
2, w

−w,ww+ (on C1) and yy′ and adding the
edges y′

2w,wy, w−w+ into F we get a connected [2, 4]-factor F ′ containing fewer
vertices of degree 4 than F since dF ′(y′) = 2. Thus Claim 6 is true.

By Claims 5 and 6, for any vertex z in T, z has at most two neighbors in S1. By
Claim 4, we put all vertices of S1 with consecutive neighbors in C1 into C1, we get
a cycle C such that every component of G − C has at most two vertices by Claims 5
and 6. Thus we complete the proof of Theorem 2.3. ��

By Theorem 2.3, we easily obtain that Theorem 5 is true.
The concept of the claw-free closure was defined in [9]. A graph G is called a

closed claw-free graph if for any vertex v of G, G[N (v)] is either a clique or an union
of two cliques. We know from [9] that the closure cl(G) of a claw-free graph G is a
line graph of some triangle-free graph and a closed claw-free graph.
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Theorem 2.4 [9]. Let G be a claw-free graph. Then

(1) The closure cl(G) of G is the line graph of some triangle-free graph,

(2) G is Hamiltonian if and only if cl(G) is Hamiltonian.

Using a similar proof to that of Property 3 in [5], we get the following fact.

Lemma 2.5 Let G be a claw-free graph with 2-hourglass property. Then its closure
cl(G) has 2-hourglass property, too.

In the following, we will prove a stronger result than Theorem 7.

Theorem 2.6 Let G be a connected claw-free graph with 2-hourglass property and
a connected [2, 4]-factor F. Then G is Hamiltonian.

Proof From Theorem 2.4 and Lemma 2.5, we only consider the closure cl(G) of G.

Without loss of generality assume that cl(G) = G. Let F, P = {C1, . . . , C p} and A1
be the same as in the proof of Theorem 2.3. Then A1 = P − {C1}, and for any cycle
C j ∈ A1, |V (C j )| = 3. Let S denote the set of vertices of degree 4 in F. If A1 = ∅ or
|S| = 0, then we are done. Thus |S| ≥ 1 and |A1| ≥ 1. By Lemma 2.1, every vertex of
S is the center of some induced hourglass in G. Note that F is a connected [2,4]-factor
of least number of vertices of degree 4 among all connected [2,4]-factors, and from the
proof of Theorem 2.3, F is a tank-ring factor in G (see Claims 1–6 in Theorem 2.3).
For a vertex v ∈ S, let vv1v2v be a triangle and G[{v, v1, v2, v3, v4}] = H an induced
hourglass in G, where v, v3, v4 ∈ V (C1) and v1, v2 /∈ V (C1). Since G satisfies 2-
hourglass property, there are two pairs (such as {v1, v3} and {v2, v4}) of nonadjacent
vertices in H such that v1, v3 have a common neighbor w1 outside H and v2, v4 have
a common neighbors w2 outside H. By Claims 3 and 4 of Theorem 2.3, these common
neighbors w1, w2 are on C1 and so v1, v2 have consecutive neighbors on C1. Inserting
v1, v2 into C1, we get a connected [2,4]-factor of fewer vertices of degree 4 than F,

a contradiction. Thus we complete the proof of Theorem 2.6. ��
From Theorem 3 and Theorem 2.6, we know that Theorem 7 is true.
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