ORIGINAL PAPER

Tank-Ring Factors in Supereulerian Claw-Free Graphs

MingChu Li · Lifeng Yuan · He Jiang · Bing Liu · H. J. Broersma

Received: 15 May 2007 / Revised: 17 January 2008 / Published online: 23 December 2011 © Springer 2011

Abstract A graph *G* has a tank-ring factor *F* if *F* is a connected spanning subgraph with all vertices of degree 2 or 4 that consists of one cycle *C* and disjoint triangles attaching to exactly one vertex of *C* such that every component of G - C contains exactly two vertices. In this paper, we show the following results. (1) Every supereulerian claw-free graph *G* with 1-hourglass property contains a tank-ring factor. (2) Every supereulerian claw-free graph with 2-hourglass property is Hamiltonian.

Keywords Connected even factor · Cycle · Claw-free graph · Tank-ring factor

1 Introduction

We will consider the class of undirected finite graphs without loops or multiple edges, and use [1] for terminology and notation not defined here. Let *G* be a graph. We denote by $\Delta(G)$ the maximum degree of *G*. For a vertex *v* of *G*, the neighborhood of *v* is the

Supported by Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) under grant No.: 200801410028 by Nature Science Foundation Project of Liaoning under Grant No.: 2201102038, and by Nature Science foundation of China (NSFC) under Grant No.: 61175062, 61100194.

M. Li · L. Yuan · H. Jiang (⊠) School of Software Technology, Dalian University of Technology, Dalian, Liaoning, 116620, People's Republic of China e-mail: jianghe@dlut.edu.cn

M. Li e-mail: li_mingchu@yahoo.com

B. Liu Department of Mathematics, Shenyang Polyechnic College, Shenyang 110045, People's Republic of China

H. J. Broersma Department of Computer Science, University of Durham, Durham DH1 3LE, UK

 v_3

 v_4

v

Fig. 1 Hourglass

Fig. 2 Tank-ring Factor

 v_1 v_2 set of all vertices that are adjacent to v, and will be denoted by N(v). For a subgraph H of a graph G and a subset S of V(G), we denote by G - H and G[S] the induced subgraphs of G by V(G) - V(H) and S, respectively. We denote by $N_H(S)$ the set of all vertices of H adjacent to some vertex of S, and let $N(S) = \bigcup_{x \in S} N(x)$ and $d_H(S) = |N_H(S)|$. For a cycle C with a fixed orientation, and two vertices x and y on C, we define the segment C(x, y) to be the set of vertices on C from x to y (excluding x and y), and x^+ and x^- denote the successor and the predecessor of x according to the orientation of C, respectively. A cycle of length k is called a k-cycle. A Hamiltonian cycle in a graph is a cycle that passes through all vertices of the graph. A graph is called *claw-free* if it does not contain a copy of $K_{1,3}$ as an induced subgraph. An *hourglass* is the unique graph with degree sequence 4,2,2,2,2 (i.e., two triangles meeting in exactly one vertex) (see Fig. 1). The vertex of degree 4 in an hourglass is called the center of the hourglass, and in labelling an induced hourglass we always use its center as first vertex of an induced hourglass. A connected factor of a graph is its connected spanning subgraph. A connected even [2,2s]-factor of a graph G is a connected factor with all vertices of degree i(i = 2, 4, ..., 2s), where s > 1 is an integer. In particular, a connected even factor with all vertices of degree 2 or 4 is called a *connected* [2,4]-*factor*. A graph G has a *tank-ring factor* F if F is a connected spanning subgraph with all vertices of degree 2 or 4 that consists of one cycle C and disjoint triangles attaching to exactly one vertex of C such that every component of G - C contains exactly two vertices (see Fig. 2). Thus a Hamiltonian cycle is a connected even [2,2]-factor, and is a tank-ring factor without triangles. A connected even factor F can be decomposed into edge disjoint cycles C_1, C_2, \ldots, C_k , which are said

a cycle decomposition of F. A trail is a sequence $u_0e_1u_1e_2\ldots e_ru_r$ with alternative vertices and edges and with no repeated edges and $e_i = u_{i-1}u_i(1 \le i \le r)$. A graph G is supereulerian if G has a spanning closed trail (not necessary to contain every edge). Matthews and Sumner [8] made the following conjecture.

Conjecture 1 [8]. Every 4-connected claw-free graph is Hamiltonian.

Broersma et al. [2] proved the following results.

Theorem 2 [2] Every 4-connected claw-free graph has a connected [2,4]-factor.

Every 4-edge-connected graph is supereulerian [4] (also see [3]). Theorem 2 has been generalized as follows in [6]

Theorem 3 [6]. Every supereulerian claw-free graph contains a connected even [2,4]-factor.

A graph *G* is said to have 1-hourglass property (or hourglass property) if one pair of nonadjacent vertices of every induced hourglass *H* in *G* has a common neighbor outside *H*. A graph *G* is said to have 2-hourglass property if there are two pairs $\{v_1, v_3\}$ and $\{v_2, v_4\}$ of nonadjacent vertices of every induced hourglass *H* in *G* such that each pair has a common neighbor outside *H* and v_1v_2 and v_3v_4 are two disjoint edges in *H*. Obviously, 2-hourglass property implies 1-hourglass property. Recently, Kaiser et al. [5] showed the following result using hourglass property, which is a special case of Conjecture 1.

Theorem 4 [5]. Every 4-connected claw-free graph with 1-hourglass property is Hamiltonian.

An example in [5] shows that the 4-connectivity condition in Theorem 6 is required. Thus, a natural problem is that if the condition of 4-connectivity is reduced, then what conclusions can we obtain? In this paper, we will explore the problem and obtain the following results.

Theorem 5 Every supereulerian claw-free graph with 1-hourglass property contains a tank-ring factor.

Corollary 6 Every 4-edge-connected claw-free graph with 1-hourglass property contains a tank-ring factor.

Corollary is best possible in the sense that the edge-connectivity of a graph *G* cannot be reduced to 3. To see this, we copy an example from [5]. Let *k* be a negative integer and *G*(*k*) the graph obtained from the Petersen graph PTS_{10} by adding at least *k* edges to every vertex and subdividing every original edge of PTS_{10} . Then the line graph L(G(k)) is 3-edge-connected claw-free graph and has no induced hourglass (and hence has 1-hourglass property). But *G*(*k*) contain no tank-ring factors.

A graph G is said to have *weak* 2-*hourglass property* if there are two pairs of nonadjacent vertices of every induced hourglass H in G such that each pair has a common neighbor outside H. Obviously, 2-hourglass property implies weak 2-hourglass property. The graph in Figure 3 is a supereulerian graph with weak 2-hourglass property but not Hamiltonian, which shows that 2-hourglass property in Theorem 7 is required. If we replace 1-hourglass property in Theorem 5 by 2-hourglass property, we obtain the following result.

Theorem 7 Every supereulerian claw-free graph with 2-hourglass property is Hamiltonian.

Fig. 3 A non-hamiltonian claw-free graph with weak 2-hourglass property. $\{v_1, v_3\}, \{v_1, v_4\}$

Corollary 8 *Every* 4-*edge-connected claw-free graph with* 2-*hourglass property is hamiltonian.*

To show the sharpness of Corollary 8, we copy an example from [5]. Let k be an negative integer and G(k) the graph obtained from the Petersen graph PTS_{10} by adding at least k edges to every vertex and subdividing every original edge of PTS_{10} . Then the line graph L(G(k)) of G(k) is 3-edge-connected claw-free graph and has no induced hourglass (and hence has 2-hourglass property). But L(G(k)) is not hamiltonian.

2 Proofs of Main Results

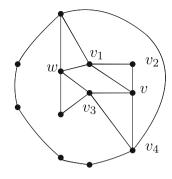
In this section, our aim is to prove our results. In order to prove our other theorems, we first show the following lemmas. Recall that if a connected even factor F can be decomposed into edge disjoint cycles C_1, C_2, \ldots, C_k , then we say that C_1, C_2, \ldots, C_k is a cycle decomposition of F. The proofs of Lemmas 2.1–2.2 were given in [7]. However, the paper [7] was unpublished, so we provide these simple proofs for confirming the correction here.

Lemma 2.1 Let F be a connected [2,4]-factor with minimal number of vertices of degree 4 in a claw-free graph G. Then every vertex of degree 4 in F is the center of an induced hourglass in G.

Proof If F has no vertex of degree 4, then we are done. Let S be a set of vertices of degree 4 in F. Let v be any vertex of degree 4 in F, and let $N_F(v) = \{v_1, v_2, v_3, v_4\}$. Without loss of generality, assume that v_1, v, v_2 and v_3, v, v_4 are contained in two distinct cycles with a common vertex v, respectively, of a cycle decomposition of F. If $v_1v_3 \in E(G)$, then $F - vv_1 - vv_3 + v_1v_3$ is a connected [2,4]-factor with fewer vertices of degree 4 than F, a contradiction. Hence $v_1v_3 \notin E(G)$. By symmetry, v_1v_4, v_2v_3, v_2v_4 are not edges of G. Since G is claw-free, this fact implies that v_1v_2 and v_3v_4 are edges of G. Thus v is the center of the induced hourglass $G[v, v_1, v_2, v_3, v_4]$. Thus Lemma 2.1 is true.

Lemma 2.2 [7] Let F be a connected [2,4]-factor with minimal number of vertices of degree 4 in a claw-free graph G and C_1, C_2, \ldots, C_p be a cycle decomposition of F. Then any pair of cycles C_i and C_j in F meets at most one vertex.

602



Proof Assume that $P = \{C_1, C_2, ..., C_p\}$. If $|V(C_i) \cap V(C_j)| \ge 2(i \ne j)$, then at least one of $\{C_i, C_j\}$ has order at least 4 (say C_i). Let $u \in V(C_i) \cap V(C_j)$. Then u is the center of the induced hourglass $G[N_F(u) \cup \{u\}]$ by Lemma 2.2 Let $N_F(u) = \{u_1, u_2, u_3, u_4\}$ and $u_1, u_2 \in V(C_i)$ and $u_3, u_4 \in V(C_j)$, and let $u_1u_2 \in E(G)$. If $u_1u_2 \notin E(F)$, then $F' = F - u_1u - u_2u + u_1u_2$ is a [2,4]-factor with fewer vertices of degree 4 than F. Since $|V(C_i) \cap V(C_j)| \ge 2$ and C_i contains at least 4 vertices, F' is connected. This contradiction shows $u_1u_2 \in E(F)$. Thus uu_1u_2u is a triangle in F and $d_F(u_1) = d_F(u_2) = 4$, and so C_i contains at least 4 vertices. Removing the edges uu_1, u_1u_2, u_2u from F, we obtain a new [2, 4]-factor F'' containing fewer vertices of degree 4 than F. Since $|V(C_i) \cap V(C_j)| \ge 2$, F'' is connected. This contradiction shows $u_1u_2 \in E(F)$. Thus uu_1u_2u is a triangle in F and $d_F(u_1) = d_F(u_2) = 4$, and so C_i contains at least 4 vertices. Removing the edges uu_1, u_1u_2, u_2u from F, we obtain a new [2, 4]-factor F'' containing fewer vertices of degree 4 than F. Since $|V(C_i) \cap V(C_j)| \ge 2$, F'' is connected. This contradiction shows $|V(C_i) \cap V(C_j)| \le 1$. This completes the proof of Lemma 2.2.

A cycle C of a graph G is said to have 2-component property if every component of G - C contains at most two vertices. In the following, we will prove a stronger result than Theorem 5. That is,

Theorem 2.3 *Let G be a connected claw-free graph with* 1*-hourglass property and contain a connected* [2,4]*-factor. Then G contains a tank-ring factor.*

Proof Let *F* be a connected [2, 4]-factor in a connected claw-free graph *G*. Furthermore, assume that *F* contains least number of vertices of degree 4 in *F* among connected [2, 4]-factors of *G*. Let *S* be the set of vertices of degree 4 in *F* and m = |S|. If m = 0, then we are done. Thus $m \ge 1$. By Lemma 2.1, every vertex of *S* is the center of an induced hourglass of *G*. Let C_1, C_2, \ldots, C_p be a cycle decomposition of *F* and let $P = \{C_1, C_2, \ldots, C_p\}$. Then, by Lemma 2.2, $|V(C_i) \cap V(C_j)| \le 1$ for $i, j = 1, 2, \ldots, p(i \ne j)$. Obviously, if $V(C_i) \cap V(C_j) \ne \emptyset$, then $V(C_i) \cap V(C_j) \subseteq S$.

Since $m \ge 1$, $p = |P| \ge 2$. Without loss of generality assume that C_1 is a longest cycle among $\{C_1, C_2, \ldots, C_p\}$ and C_1 contains as many vertices as possible. We say that two distinct cycles C_i and C_j are adjacent if $V(C_i) \cap V(C_j) \ne \emptyset$. Let

 $A_1 = \{C_k \in P : C_k \text{ is adjacent to } C_1\}.$

Then we have the following fact.

Claim 1 Let *F* be a connected [2, 4]-factor with minimal value of |S|, and subject to this, C_1 a longest cycle. If $C_i \in A_1$, then $|V(C_i)| = 3$.

Proof Otherwise, let v be a vertex such that $v \in V(C_i)$ and $v \in V(C_1)$. Then $v \in S$, and then v is the center of the induced hourglass $H := G[N_F(v) \cup \{v\}]$ by Lemma 2.1. Let v_i be the same as in Lemma 2.1 for i = 1, 2, 3, 4, and $v_1, v_2 \in V(C_i)$ and $v_3, v_4 \in V(C_1)$. Assume i = 2 and $C_1 = (v_3 \dots v_4 v v_3)$ and $C_2 = (vv_2 \dots v_1 v)$, then $v_3^- = v, v_4^+ = v$ (on C_1) and $v_2^- = v, v_1^+ = v$ (on C_2). Since v is the center of the hourglass H, there is one vertex w outside of H such that w is adjacent to v_3 or v_4 and v_1 or v_2 . By symmetry, without loss of generality assume that $wv_2, wv_4 \in E(G)$.

Suppose that $w \in V(C_j)$ for $j \ge 3$. If $w^+v_4 \in E(G)$, then $F - ww^+ - vv_4 - vv_2 + v_2w + v_4w^+$ is a connected [2, 4]-factor with fewer vertices of degree 4 than F, a contradiction. Thus $w^+v_2 \in E(G)$. Removing the edges ww^+ (on C_3), vv_4 (on C_1),

 vv_2 (on C_2) and adding the edges v_2w^+ , v_4w into F, we obtain a new connected [2, 4]-factor containing fewer vertices of degree 4 than F, a contradiction. Thus $w \notin V(C_j)$ for $j \ge 3$. We further have the following fact.

Claim 1.1 $w \notin V(C_2)$, that is, $w \in V(C_1)$.

Proof Assume that $w \in V(C_2)$. If $|V(C_2(v_2, w))| \ge 1$, then removing v_2v , vv_4 from F and adding wv_2 , wv_4 into F we obtain two new cycles C'_1 and C'_2 and C'_1 contains more vertices than C_1 , a contradiction. Note that $V(C'_1) \cap V(C'_2) = \{w\}$. Thus $V(C_2(v_2, w)) = \emptyset$. That is, $w = v_2^+$. Removing vv_1 , vv_4 , $v_2^+v_2$ from F and adding v_1v_2 , $v_2^+v_4$ into F we obtain a new connected [2, 4]-factor which contains fewer vertices of degree 4 than F, a contradiction. Thus Claim 1.1 is true.

Now we complete the proof of Claim 1.

By Claim 1.1, $w \in V(C_1)$. If $w^+w^- \in E(G)$, then replacing w^+ww^- by $w^+w^$ and removing the edges vv_2 from C_2 and vv_4 from C_1 and adding the path v_2wv_4 , we obtain a new cycle C' and a new connected [2, 4]-factor $F' = C' \cup_{j=3}^{j=p} C_j$ containing fewer vertices of degree 4 than F, a contradiction. Thus $w^+w^- \notin E(G)$. Since $G[w, w^+, w^-, v_2] \neq K_{1,3}, w^+v_2 \in E(G)$ or $w^-v_2 \in E(G)$ (say $w^+v_2 \in E(G)$). If $vv_2^+ \in E(G)$, then replacing $vv_2v_2^+$ by vv_2^+ on C_2 we obtain a cycle C'_2 , and replacing ww^+ by wv_2w^+ on C_1 we obtain a cycle C'_1 . Note that $C'_1 \cup C'_2 \cup_{j=3}^{j=p} C_j$ is a connected [2, 4]-factor with the same number of vertices of degree 4 as F and C'_1 contains more vertices than C_1 , a contradiction. Thus $vv_2^+ \notin E(G)$.

We have $vw \notin E(G)$ since otherwise, removing the edges v_2v , vv_4 , vv_3 from Fand adding v_2w^+ , vw, v_4v_3 into F, we obtain a new connected [2, 4]-factor F' which contains fewer vertices of degree 4 than F, a contradiction. Thus $vw \notin E(G)$. Since $G[v_2, v_2^+, v, w] \neq K_{1,3}, v_2^+w \in E(G)$. Removing edges $v_2v_2^+, ww^+, v_2v, vv_1$ from F and adding the edges v_2^+w, v_2w^+, v_2v_1 into F, we obtain a new connected [2, 4]factor F' which contains fewer vertices of degree 4 than F, a contradiction. Thus Claim 1 is proved.

Claim 2 $A_1 = P - \{C_1\}.$

Proof Assume that there is a cycle C_j in $P - \{C_1\}$ such that $C_j \notin A_1$. Then we can find two distinct cycles (say C_2 and C_p) such that $C_p \in A_1$, $C_2 \notin A_1$ and $C_2 \cap C_p \neq \emptyset$. Let $V(C_p) = \{u, v, z\}$ and $v \in V(C_p) \cap V(C_1)$ and $u \in V(C_p) \cap V(C_2)$. Then $u, v \in$ S. Let $N_F(u) = \{u_1, u_2, v, z\}$ and $N_F(v) = \{v_1, v_2, u, z\}$. Then, by Lemma 2.1, $G[N_F(u) \cup \{u\}]$ and $G[N_F(v) \cup \{v\}]$ are hourglasses and $v, z \notin N(\{u_1, u_2\})$ and $u, z \notin N(\{v_1, v_2\})$. From the assumption of Theorem 2.3, there is a vertex w outside of $G[N_F(v)]$ such that w is adjacent to v_1 or v_2 and z or u since $G[N_F(v) \cup \{v\}]$ is an hourglass. By symmetry, assume that $v_2w \in E(G)$. Let $C_1 = (vv_1 \dots v_2v)$ and $C_2 = (uu_1 \dots u_2u)$. Then $v_1^- = v$ and $v_2^+ = v$ (on C_1) and $u_1^- = v$ and $u_2^+ = v$ (on C_2). We further have the following fact.

Claim 2.1 If $uw \in E(G)$, then $w \notin V(C_1)$.

Proof Otherwise, we have $w \neq v_2^-$ since otherwise removing the edges v_1v , v_2w (on C_1), vu (on C_p) and adding the edges v_1v_2 , uw into F we obtain a new connected

[2, 4]-factor F' containing fewer vertices of degree 4 than F since $d_{F'}(v) = 2$, a contradiction. Similarly, $w \neq v_1^+$.

Note that $w^+w^- \notin E(G)$ since otherwise replacing the path w^-ww^+ by the edge w^-w^+ on C_1 and removing vu (on C_p), vv_2 (on C_1) and adding the edges v_2w and wu into F, we obtain a connected [2, 4]-factor F' containing fewer vertices of degree 4 than F since $d_{F'}(v) = 2$. Since $G[w, w^-, w^+, u] \neq K_{1,3}, w^-u \in E(G)$ or $w^+u \in E(G)$ (say $w^-u \in E(G)$). Since $G[u, z, u_1, w] \neq K_{1,3}$ and $zu_1 \notin E(G), u_1w \in E(G)$ or $zw \in E(G)$.

If $u_1w \in E(G)$, then removing the edges ww^- , v_1v , vv_2 (on C_1) and uu_1 (on C_2) and adding the edges u_1w , uw^- , v_1v_2 into F, we obtain a new connected [2, 4]-factor F' containing fewer vertices of degree 4 than F since v is not vertex of degree 4 in F'. Thus $u_1w \notin E(G)$. It follows that $zw \in E(G)$. Removing the edges v_1v , vv_2 , ww^- (on C_1), zu (on C_p) and adding the edges zw, uw^- , v_1v_2 into F we obtain a new connected [2, 4]-factor F' containing fewer vertices of degree 4 than F since $d_{F'}(v) = 2$. This contradiction shows that Claim 2.1 is true.

Claim 2.2 If $uw \in E(G)$, then $w \notin V(C_2)$.

Proof Since we did not use the maximality of C_1 in the proof of Claim 2.1, by symmetry, Claim 2.2 is true.

Claim 2.3 $uw \notin E(G)$.

Proof Otherwise, by Claims 2.1 and 2.2, $w \notin V(C_1 \cup C_2)$, and so there is a cycle (say C_3) such that $w \in V(C_3)$. Since $G[w, w^-, v_2, u] \neq K_{1,3}$ and $uv_2 \notin E(G), w^-v_2 \in E(G)$ or $w^-u \in E(G)$. If $w^-v_2 \in E(G)$, then removing the edges vv_2 (on C_1), vu (on C_p), w^-w on C_3) and adding the edges w^-u and wv_2 , we obtain a new connected [2, 4]-factor F' containing fewer vertices of degree 4 than F since $d_{F'}(v) = 2$, a contradiction. Thus $w^-u \in E(G)$. Similarly, we can get a contradiction. Thus Claim 2.3 is true.

Now we complete the proof of Claim 2.

By Claim 2.3, we have $zw \in E(G)$. A similar argument to the proof of Claim 2.3 shows $w \in V(C_1)$ or $w \in V(C_2)$. If $w \in V(C_2)$, then $w^+ \neq u_2$ since otherwise removing uu_1 and zu and adding zu_2^+ we obtain a new connected [2, 4]-factor F'containing fewer vertices of degree 4 than F since $d_{F'}(u) = 2$. If $zw^+ \in E(G)$, then removing the edges ww^+ (on C_2), vv_2 (on C_1), vu, zu (on C_p) and adding the edges zw^+ and v_2w , we obtain a new connected [2, 4]-factor F' containing fewer vertices of degree 4 than F since $d_{F'}(u) = d_{F'}(v) = 2$. Thus $zw^+ \notin E(G)$. It follows that $v_2w^+ \in E(G)$. Removing vv_2 (on C_1), vu, uz (on C_p) and ww^+ (on C_2) and adding the edges zw and w^+v_2 , we obtain a new connected [2, 4]-factor F' containing fewer vertices of degree 4 than F since $d_{F'}(u) = d_{F'}(v) = 2$. This contradiction shows $w \notin V(C_2)$. Thus $w \in V(C_1)$. By a similar argument to Claim 1.1, we have $w^+w^- \notin E(G)$. Since $G[w, w^+, w^-, z] \neq K_{1,3}, w^+z \in E(G)$ or $w^-z \in E(G)$ (say $w^+z \in E(G)$).

Since $G[N_F(u) \cup \{u\}]$ is an hourglass, there is a common neighbor w' outside of $G[N_F(u) \cup \{u\}]$ such that w' is adjacent to u_1 or u_2 and z or v. A similar argument to Claim 2.3 shows that $w'v \notin E(G)$. Thus $w'z \in E(G)$. By symmetry, assume that

 $u_1w' \in E(G)$. By a similar argument to the above, we have that $w' \in V(C_2)$ and $zw'^+ \in E(G)$ or $w'^- z \in E(G)$ (say $w'^+ z \in E(G)$).

If $ww' \in E(G)$, then removing the edges ww^+ (on C_1), $w'w'^+$ (on C_2), zu, zv, vu(on C_p) and adding the edges zw^+ , ww' and w'^+z , we obtain a new connected [2, 4]factor F' containing fewer vertices of degree 4 than F since $d_{F'}(u) = d_{F'}(v) = 2$. Thus $ww' \notin E(G)$. Since $G[z, w, w', v] \neq K_{1,3}$, $vw \in E(G)$. Removing the edges ww^+ , v_2v , vv_1 (on C_1), zv (on C_p) and adding the edges zw^+ , wv and v_1v_2 into F, we obtain a new connected [2, 4]-factor F' containing fewer vertices of degree 4 than F since $d_{F'}(v) = 2$. Thus Claim 2 is true.

Let

$$S_1 = V(G) - V(C_1).$$

Then we have the following Claim.

Claim 3 For any vertex v in S, $G[\{v\} \cup N_F(v)]$ has no common neighbor w in $S_1 - N_F(v)$.

Proof Otherwise, let $N_F(v) = \{v_1, v_2, v_3, v_4\}$ and $v_1, v_2 \in S_1$ and $v_3, v_4 \in V(C_1)$. Then $v_1v_2 \in E(G)$ and $v_3v_4 \in E(G)$. By symmetry, assume that $v_1w, v_3w \in E(G)$. Let $G[\{u\} \cup N_F(u)]$ be another hourglass and $N_F(u) = \{u_1, u_2, u_3, u_4\}$ (where $u_1, u_2 \in S_1$ and $u_3, u_4 \in V(C_1)$). Then $u_1u_2, u_3u_4 \in E(G)$. Without loss of generality assume that $w = u_1$ and $C_1 = (v_3 \dots u_3uu_4 \dots v_4vv_3)$. Then $uv_3 \notin E(G)$ since otherwise removing the edges u_3u, uu_4, v_3v (on C_1), v_1v, u_1u and adding v_3u, u_3u_4, v_1u_1 , we obtain a new connected [2, 4]-factor F' containing fewer vertices of degree 4 than F since $d_{F'}(u) = d_{F'}(v) = 2$. Thus $uv_3 \notin E(G)$. Since $G[u_1, v_1, v_3, u] \neq K_{1,3}, uv_1 \in E(G)$. Similarly, we can obtain a contradiction. Thus Claim 3 is true.

Two vertices x and y are *consecutive* on the cycle C_1 if xy is the edge on C_1 (i.e., $x^+ = y$ or $x^- = y$). We have the following fact.

Claim 4 For any vertex v in S, either v_1 or v_2 has two consecutive neighbors on C_1 , where $v_1, v_2 \in N_F(v) \cap S_1$ and $v_1v_2 \in E(G)$. If v_2 has no two consecutive neighbors on C_1 but has neighbor w_1 on C_1 , then $w_1^-w_1^+ \in E(G)$.

Proof Let $N_F(v) = \{v_1, v_2, v_3, v_4\}$. Then $v_3, v_4 \in V(C_1)$ and $v_3v_4 \in E(G)$. By 1-hourglass property, there is a vertex w outside $G[N_F(v) \cup \{v\}]$ such that w is adjacent to v_1 or v_2 and v_3 or v_4 . By symmetry, assume that $v_1w, v_3w \in E(G)$. By Claim 3, $w \in V(C_1)$. Let $C_1 = (v_3 \dots w \dots v_4 v v_3)$. Then $v_3^- = v$. By a similar argument to Claim 1.1, we have $w^+w^- \notin E(G)$. Since $G[w, w^+, w^-, v_1] \neq K_{1,3}, w^+v_1 \in E(G)$ or $w^-v_1 \in E(G)$ (say $w^+v_1 \in E(G)$). Thus v_1 has two consecutive neighbors on C_1 . If v_2 also has two consecutive neighbors x and y on C_1 , then replacing the edge ww^+ by the path wv_1w^+ and the edge xy by the path xv_2y and removing the edges v_1v, v_2v, v_1v_2 from F, we obtain a new connected [2, 4]-factor F' containing fewer vertices of degree 4 than F since $d_{F'}(v) = 2$. This contradiction shows that v_2 has no two consecutive neighbors on C_1 . If v_2 has a neighbor x on C_1 , then $x^+x^- \in E(G)$ since $x^+v_2, x^+ - v_2 \notin E(G)$ and $G[x, x^+, x^-, v_2] \neq K_{1,3}$. Thus we have proved Claim 4.

606

Let

$$T = \{x \in S_1 : x \text{ has no consecutive neighbors on } C_1\}$$

Then $|T| \ge 1$ since otherwise the tank-ring factor is hamiltonian and so $S_1 = \emptyset$ and we are done. We further have the following fact.

Claim 5 For any vertex z in T, z has at most one neighbor in T.

Proof Suppose that *G*[*N_F*(*v*) ∪ {*v*}] is an hourglass and and *N_F*(*v*) = {*z*, *z*₁, *v*₁, *v*₂}, where *v*, *v*₁, *v*₂ ∈ *V*(*C*₁), *z*, *z*₁ ∉ *V*(*C*₁) and *v*₁*v*₂ ∈ *E*(*G*). If *d_T*(*z*) ≥ 2, assume *zx*, *zy* ∈ *E*(*G*) and *x*, *y* ∈ *T*. Obviously, *yz*₁, *z*₁*x* ∉ *E*(*G*) since otherwise, e.g., *xz*₁ ∈ *E*(*G*), using the new cycle *vzxz*₁*v* and Claim 4, *G* has a new connected [2, 4]-factor containing fewer vertices of degree 4, a contradiction. Similarly, *yv*, *xv* ∉ *E*(*G*). Since *G*[*z*, *z*₁, *x*, *y*] ≠ *K*_{1,3}, *xy* ∈ *E*(*G*) and then *G*[*z*, *Z*₁, *v*, *x*, *y*] induces an hourglass. It follows that there is a vertex *w* such that *w* is adjacent to *x* or *y* and *v* or *z*₁. Assume that *xw*, *vw* ∈ *E*(*G*) (the proofs of other cases are similar). Then we have $w \in V(C_1)$ since otherwise assume *N_F*(*u*) ∪ {*u*} = {*w*, *w*₁, *u*₁, *u*₂} ∪ {*u*} induces an hourglass, where *ww*₁, *u*₁*u*₂ ∈ *E*(*G*) and *u*₁, *u*₂ ∈ *V*(*C*₁) and *w*₁, *w* ∉ *V*(*C*₁). Then *w*₁*x*, *w*₁*v* ∉ *E*(*G*) since otherwise, e.g., *w*₁*x* ∈ *E*(*G*), using the cycle *w*₁*xz*₁*vww*₁, we get a new connected [2, 4]-factor *F'* containing fewer vertices of degree 4 than *F* since *d_{F'}*(*u*) = 2, a contradiction. Thus *w* ∈ *V*(*C*₁). By Claim 4, *w*⁺*w*⁻ ∈ *E*(*G*). Using the cycle *vz*₁*zxwv* and the edge *w*⁺*w*⁻ and Claim 4, we can get a contradiction. Thus Claim 5 is true.

Claim 6 For any vertex z in T, z has only one neighbor in $S_1 - T$.

Proof Obviously, *z* has at least one neighbor in $S_1 - T$. If *z* has two neighbors z_1 , *y* in $S_1 - T$, then $y \notin T$ and *y* has two neighbors w, w^+ on C_1 by Claim 4. Assume $N_F(y') = \{y, y_1, y'_1, y'_2\}$, where $y, y_1 \notin V(C_1)$ and $y', y'_1, y'_2 \in V(C_1)$ and $yy_1, y'_1y'_2 \in E(G)$. The $G[y', y, y_1, y'_1, y'_2]$ induces an hourglass. Let $V(C_1) = (y'_1y'y'_2 \dots ww^+ \dots v_1vv_2 \dots y'_1)$. Then we have from the proof of Claim 4 that $wy'_2 \in E(G)$. We have $zy' \notin E(G)$ since otherwise we use the cycle $y'y_1yzy'$ and Claim 4 to get a connected [2, 4]-factor containing fewer vertices of degree 4 than *F*. Obviously, $wy' \notin E(G)$. Since $G[y, w, y', z] \neq K_{1,3}, wz \in E(G)$. By Claim 4, $w^+w^- \in E(G)$ since $z \in T$. Removing the edges $y'y'_2, w^-w, ww^+$ (on C_1) and yy' and adding the edges y'_2w, wy, w^-w^+ into *F* we get a connected [2, 4]-factor *F'* containing fewer vertices of degree 4 than *F* since $d_{F'}(y') = 2$. Thus Claim 6 is true.

By Claims 5 and 6, for any vertex z in T, z has at most two neighbors in S_1 . By Claim 4, we put all vertices of S_1 with consecutive neighbors in C_1 into C_1 , we get a cycle C such that every component of G - C has at most two vertices by Claims 5 and 6. Thus we complete the proof of Theorem 2.3.

By Theorem 2.3, we easily obtain that Theorem 5 is true.

The concept of the claw-free closure was defined in [9]. A graph G is called a *closed claw-free graph* if for any vertex v of G, G[N(v)] is either a clique or an union of two cliques. We know from [9] that the closure cl(G) of a claw-free graph G is a line graph of some triangle-free graph and a closed claw-free graph.

Theorem 2.4 [9]. Let G be a claw-free graph. Then

- (1) The closure cl(G) of G is the line graph of some triangle-free graph,
- (2) *G* is Hamiltonian if and only if cl(G) is Hamiltonian.

Using a similar proof to that of Property 3 in [5], we get the following fact.

Lemma 2.5 Let G be a claw-free graph with 2-hourglass property. Then its closure cl(G) has 2-hourglass property, too.

In the following, we will prove a stronger result than Theorem 7.

Theorem 2.6 Let G be a connected claw-free graph with 2-hourglass property and a connected [2, 4]-factor F. Then G is Hamiltonian.

Proof From Theorem 2.4 and Lemma 2.5, we only consider the closure cl(G) of G. Without loss of generality assume that cl(G) = G. Let $F, P = \{C_1, \ldots, C_p\}$ and A_1 be the same as in the proof of Theorem 2.3. Then $A_1 = P - \{C_1\}$, and for any cycle $C_i \in A_1, |V(C_i)| = 3$. Let S denote the set of vertices of degree 4 in F. If $A_1 = \emptyset$ or |S| = 0, then we are done. Thus $|S| \ge 1$ and $|A_1| \ge 1$. By Lemma 2.1, every vertex of S is the center of some induced hourglass in G. Note that F is a connected [2,4]-factor of least number of vertices of degree 4 among all connected [2,4]-factors, and from the proof of Theorem 2.3, F is a tank-ring factor in G (see Claims 1–6 in Theorem 2.3). For a vertex $v \in S$, let vv_1v_2v be a triangle and $G[\{v, v_1, v_2, v_3, v_4\}] = H$ an induced hourglass in G, where $v, v_3, v_4 \in V(C_1)$ and $v_1, v_2 \notin V(C_1)$. Since G satisfies 2hourglass property, there are two pairs (such as $\{v_1, v_3\}$ and $\{v_2, v_4\}$) of nonadjacent vertices in H such that v_1, v_3 have a common neighbor w_1 outside H and v_2, v_4 have a common neighbors w_2 outside H. By Claims 3 and 4 of Theorem 2.3, these common neighbors w_1 , w_2 are on C_1 and so v_1 , v_2 have consecutive neighbors on C_1 . Inserting v_1, v_2 into C_1 , we get a connected [2,4]-factor of fewer vertices of degree 4 than F, a contradiction. Thus we complete the proof of Theorem 2.6.

From Theorem 3 and Theorem 2.6, we know that Theorem 7 is true.

References

- 1. Bondy, J.A., Murty, U.S.R.: Graph Theory with its Applications. Macmillan, New York (1976)
- Broersma, H.J., Kriesell, M., Ryjacek, Z.: On factors of 4-connected claw-free graphs. J. Graph Theory 20, 459–465 (2001)
- Chen, Z.H., Lai, H.Y., Lai, H.J., Weng, C.: Jackson's conjecture on eulerian subgraphs. In: Proceedings of 3rd China-USA International conferences on Comboinatorics. Graph Theory, Algorithms and its Application, pp. 53–58. World Scientific Publishing, Singapore (1993)
- 4. Jaeger, F.: A note on subeulerian graphs. J. Graph Theory 3, 91–93 (1979)
- Kaiser, T., Li, M.C., Ryjacek, Z., Xiong, L.: Hourglasses and Hamiltonian cycles in 4-connected clawfree graphs. J. Graph Theory 48, 267–276 (2005)
- Li, M.C., Xiong, L., Broersma, H.J.: Connected even factors in claw-free graphs. Discret. Math. 308(11), 2282–2284 (2008)
- 7. Li, M.C.: Hamiltonian cycles and forbidden subgraphs in 4-connected graphs (2006)
- 8. Matthews, M., Sumner, D.: Hamiltonian results in K_{1,3}-free graphs. J. Graph Theory 8, 139–146 (1984)
- 9. Ryjacek, Z.: On a closure concept in claw-free graphs. J. Combin. Theory (B) 70, 217–224 (1997)