On graphs having maximal independent sets of exactly t distinct cardinalities

${ }^{1}$ Bert L. Hartnell and ${ }^{2}$ Douglas F. Rall ${ }^{* \dagger}$
${ }^{1}$ Department of Mathematics
\& Computing Science
Saint Mary's University
Halifax, Nova Scotia, Canada
${ }^{2}$ Department of Mathematics
Furman University
Greenville, SC 29613 USA

Abstract

For a given positive integer t we consider graphs having maximal independent sets of precisely t distinct cardinalities and restrict our attention to those that have no vertices of degree one. In the situation when t is four or larger and the length of the shortest cycle is at least $6 t-6$, we completely characterize such graphs.

Keywords: maximal independent set, girth, cycle
AMS subject classification: 05C69, 05C38

1 Introduction

A well-covered graph (Plummer [6]) is one in which every maximal independent set of vertices is of one cardinality and is hence a maximum independent set. Finbow, Hartnell and Whitehead [5] defined the class \mathcal{M}_{t} to consist of those graphs which have exactly t different sizes of maximal independent sets. Finbow, Hartnell and Nowakowski [4] proved that the well-covered graphs (the \mathcal{M}_{1} collection) of girth (the length of a shortest cycle) 6 or more, with the exceptions of K_{1} and C_{7}, have the property that every vertex has degree one or has exactly one vertex of degree one in its neighborhood. Thus, C_{7} is the unique graph in \mathcal{M}_{1} with girth at least 6

[^0]that has minimum degree at least two. The graphs in \mathcal{M}_{2} of girth 8 or more have also been characterized (5). There are precisely five graphs in \mathcal{M}_{2} of girth at least 8 and minimum degree 2 or more, namely the cycles $C_{8}, C_{9}, C_{10}, C_{11}$ and C_{13}. This implies there are no \mathcal{M}_{1} graphs of girth at least 8 with minimum degree 2 or more and no \mathcal{M}_{2} graphs of girth 14 or more and having minimum degree at least 2. For related work on the class \mathcal{M}_{t} see [1] and [2].

In this paper we investigate the graphs in \mathcal{M}_{t} that have minimum degree at least 2 and higher girth and establish that the characterization of these in \mathcal{M}_{1} and \mathcal{M}_{2} is part of a general pattern. In particular, for $t \geq 3$ we show that among graphs with minimum degree at least $2, \mathcal{M}_{t}$ does not contain a graph of girth at least $6 t+2$ and that $C_{6 t-4}, C_{6 t-3}, C_{6 t-2}, C_{6 t-1}$ and $C_{6 t+1}$ are the only exceptions for girth at least $6 t-4$. Furthermore, if $t \geq 4$, then these cycles along with $C_{6 t-6}$ are the only graphs in \mathcal{M}_{t} that have minimum degree at least 2 and girth at least $6 t-6$.

Let G be a finite simple graph. A vertex of degree 1 is called a leaf and any vertex that is adjacent to a leaf is called a support vertex. If C is a cycle in a graph G and u and v belong to C, we let $u C v$ denote the shorter of the two u, v-paths that are part of C. For $A \subseteq V(G)$ and u a vertex in $G, d(u, A)$ will denote the length of a shortest path in G from u to a vertex of A. We will use $\mathcal{M}(G)$ to denote the collection of all maximal independent sets of G and we define the independence spectrum (spectrum for short) of G to be the set $\mathcal{S}(G)=\{|I|: I \in \mathcal{M}(G)\}$. The class \mathcal{M}_{t} consists of those graphs G for which $|\mathcal{S}(G)|=t$. The spectrum is not necessarily a set of consecutive positive integers (e.g., $\mathcal{S}\left(K_{2,4,5}\right)=\{2,4,5\}$), but for paths and cycles it is. We denote the set of positive integers between p and q inclusive by $[p, q]$. The following proposition is easy to establish.

Proposition 1 For each positive integer n at least 3,

$$
\mathcal{S}\left(C_{n}\right)=[\lceil n / 3\rceil,\lfloor n / 2\rfloor] \quad \text { and } \quad \mathcal{S}\left(P_{n}\right)=[\lceil n / 3\rceil,\lceil n / 2\rceil] .
$$

Hence, $C_{n} \in \mathcal{M}_{t}$ and $P_{n} \in \mathcal{M}_{s}$ where $t=\lfloor n / 2\rfloor-\lceil n / 3\rceil+1$ and $s=\lceil n / 2\rceil-\lceil n / 3\rceil+1$.
The following lemma from [5] will be used throughout-often without mention.
Lemma 2 [5 If the graph G belongs to \mathcal{M}_{t} and I is an independent set of G, then for every component C of $G-N[I]$ there exists $k \leq t$ such that $C \in \mathcal{M}_{k}$. In addition, $G-N[I] \in \mathcal{M}_{r}$ for some $r \leq t$.

Lemma 2 will most often be used in the following way. We will find an independent set I in a graph G and demonstrate that $G-N[I]$ has a component that is in the class \mathcal{M}_{s} for some $s>t$ and conclude that $G \notin \mathcal{M}_{t}$. The following lemma will be used in that context with Lemma 2 .

Lemma 3 If a cycle C is in \mathcal{M}_{t} and a new vertex is added as a leaf adjacent to a single vertex of C, then the resulting graph belongs to \mathcal{M}_{t+1}.

Proof. Assume $\mathcal{S}(C)=[k, k+t-1]$. Let H be the graph formed by adding a leaf x adjacent to y. Let u and v be the neighbors of y on C. Note that $\{I \in$ $\mathcal{M}(H): y \in I\}=\{J \in \mathcal{M}(C): y \in J\}$, and because of the symmetry of the cycle, $\mathcal{S}(C)=\{|J|: J \in \mathcal{M}(C), y \in J\}$. Also, $\{I \in \mathcal{M}(H): u \in I\}=\{J \cup\{x\}$: $J \in \mathcal{M}(C), u \in J\}$. This shows that $[k, k+t] \subseteq \mathcal{S}(H)$. If H has a maximal independent set A of size less than k, then $x \in A$ and neither u nor v is in A, for otherwise $A \cap C$ is a maximal independent set in C of cardinality less than k. But now $A^{\prime}=(A-\{x\}) \cup\{y\} \in \mathcal{M}(C)$ and $\left|A^{\prime}\right|<k$, a contradiction. Therefore, $\mathcal{S}(H)=[k, k+t]$. We conclude that $H \in \mathcal{M}_{t+1}$.

In the class of graphs with leaves there is no connection between girth and the size of the spectrum. This can be seen by the following general construction. Let $t \geq 2$ and $g \geq 3$ be integers. Let H be the graph formed by adding a single leaf adjacent to each vertex of a cycle of order g. For a single vertex x on the cycle attach a path $v_{1}, v_{2}, \ldots, v_{2 t-3}$ to H by making x and v_{1} adjacent. Then add two leaves adjacent to v_{i} if i is odd, and add one leaf adjacent to v_{j} if j is even. The resulting graph of order $2 g+5 t-7$ has girth g and belongs to the class \mathcal{M}_{t}. (The spectrum of this graph is $[g+2 t-3, g+3 t-4]$.) For this reason we will henceforth consider only graphs having minimum degree at least 2. For ease of reference we denote the class of graphs that are in \mathcal{M}_{t} and have no leaves (i.e., minimum degree at least 2) by \mathcal{M}_{t}^{2}. Note that $\mathcal{M}_{t}^{2} \subseteq \mathcal{M}_{t}$. In the course of several of our proofs we will show that some given graph is not in \mathcal{M}_{t}^{2} by demonstrating it does not belong to \mathcal{M}_{t}.

The remainder of this paper is devoted to verifying the entries in the following table.

	girth									
	$6 t-6$	$6 t-5$	$6 t-4$	$6 t-3$	$6 t-2$	$6 t-1$	$6 t$	$6 t+1$	$\geq 6 t+2$	
$t=1$				Δ	Δ	Δ	\emptyset	C_{7}	\emptyset	
$t=2$	Δ	Δ	C_{8}	C_{9}	C_{10}	C_{11}	\emptyset	C_{13}	\emptyset	
$t=3$	C_{12}	Δ	C_{14}	C_{15}	C_{16}	C_{17}	\emptyset	C_{19}	\emptyset	
$t=4$	C_{18}	\emptyset	C_{20}	C_{21}	C_{22}	C_{23}	\emptyset	C_{25}	\emptyset	
$t \geq 5$	$C_{6 t-6}$	\emptyset	$C_{6 t-4}$	$C_{6 t-3}$	$C_{6 t-2}$	$C_{6 t-1}$	\emptyset	$C_{6 t+1}$	\emptyset	

Table 1: Graphs of given girth in \mathcal{M}_{t}^{2}

The entry for a given girth (written as a function of t) and a given value of t should be interpreted as follows. If a specific graph is given, then this is the unique graph of that girth that belongs to \mathcal{M}_{t}^{2}. For example, C_{15} is the only graph of girth 15 in \mathcal{M}_{3}^{2}. If \emptyset appears, then there are no graphs of that girth in \mathcal{M}_{t}^{2}. When the
entry is Δ, then it is known that \mathcal{M}_{t}^{2} contains at least one graph of that girth (and it is not just a cycle). Some of these type of entries have been verified in previous papers. For example, see [4] and [5] for \mathcal{M}_{1}^{2} and \mathcal{M}_{2}^{2}, respectively.

2 Establishing Table Entries

We begin by showing that for a given positive integer t the only graphs in \mathcal{M}_{t} with large enough girth must have leaves. The next result was proved for well-covered graphs $(t=1)$ in [3]. Proposition 1 shows it is sharp in terms of girth.

Theorem 4 Let t be a positive integer. If $g(G) \geq 6 t+2$ and $\delta(G) \geq 2$, then $G \in \mathcal{M}_{r}(G)$ for some $r>t$.

Proof. Assume $t \geq 2$. Let G have girth at least $6 t+2$ and minimum degree at least two. We will show that G has maximal independent sets of at least $t+1$ different sizes. Choose a cycle $C=v_{1}, v_{2}, \ldots, v_{s}$ of minimum length in G.

Assume first that $s \geq 6 t+4$ and let P denote the path $v_{3}, v_{4}, \ldots, v_{6 t+1}$. Since $\delta(G) \geq 2$ and $g(G)=s$, each vertex $u \notin C$ that is adjacent to a vertex of P has another neighbor u^{\prime} that does not belong to P and is not adjacent to any vertex of P. Choose one such neighbor u^{\prime} for each u and let J denote the set of these neighbors. By the girth restriction it follows that the set $I=J \cup\left\{v_{1}, v_{6 t+3}\right\}$ is independent. (If $s=6 t+2$, then proceed as above except let $I=J \cup\left\{v_{1}\right\}$.) However, P is a component of $G-N[I]$ and by Proposition 11, $P \in \mathcal{M}_{t+1}$. Similar to the proof of Lemma 2 this implies that G has maximal independent sets of at least $t+1$ different sizes.

If $s=6 t+3$, let P be the path $v_{3}, v_{4}, \ldots, v_{6 t+2}$. The set J is chosen as before, and now $G-N\left[J \cup\left\{v_{1}\right\}\right]$ has the path P of order $6 t$ as a component. By Proposition $\mathbb{\square}$ it once again follows that G has at least $t+1$ distinct sizes of maximal independent sets.

For any positive integer t it follows from Proposition 1] that $C_{6 t+1} \in \mathcal{M}_{t}$. In [4] it was shown that C_{7} is the only well-covered graph of girth 7 and minimum degree 2 or more. The following theorem shows the similar result is true for larger values of t.

Theorem 5 Let $t \geq 2$ be an integer. The cycle $C_{6 t+1}$ is the only graph of girth $6 t+1$ in \mathcal{M}_{t}^{2}, and \mathcal{M}_{t}^{2} contains no graphs of girth $6 t$.

Proof. By Proposition 1 the cycle of order $6 t+1$ belongs to \mathcal{M}_{t}^{2}. Suppose G is a graph not isomorphic to $C_{6 t+1}$ such that $g(G)=6 t+1$ and $\delta(G) \geq 2$. Then G
has an induced cycle C of order $6 t+1$, and C has a vertex w of degree at least 3 . Since $g(G)=6 t+1$ and $\delta(G) \geq 2$ we can find an induced path w, a, b, c, such that none of a, b or c belongs to C. Let $X=\{u \in V(G): d(u, C)=2\}-N(a)$ and let $Y=\{u \in V(G): d(u, a)=2, d(u, w)=3\}$. For any two vertices on C there is a path using part of C of length at most $3 t$ joining them. Since $g(G) \geq 13$ it follows that Y is independent. Suppose two vertices $x_{1}, x_{2} \in X$ are adjacent. Let x_{1}, v_{1}, w_{1} and x_{2}, v_{2}, w_{2} be paths in G with w_{1} and w_{2} on the cycle C. Then the cycle $x_{1}, v_{1}, w_{1} C w_{2}, v_{2}, x_{2}, x_{1}$ has length at most $3 t+5$. But then $3 t+5 \geq 6 t+1$, which implies that $t=1$, a contradiction. Finally, if a vertex in X is adjacent to a vertex in Y, then a similar argument shows that G has a cycle of length at most $3 t+6$ which also leads to a contradiction.

Therefore, $X \cup Y$ is an independent set. One of the components of the graph $G-N[X \cup Y]$ is the cycle C with a single leaf a attached at the support vertex w. By Lemma 3 this component is in \mathcal{M}_{t+1}. An application of Lemma 2 then shows that $G \notin \mathcal{M}_{t}^{2}$.

Now let G be a graph of girth $6 t$, and as above find an induced cycle C of length $6 t$. This time let $X=\{u \in V(G): d(u, C)=2\}$. This set is independent unless there is a cycle of the form $x_{1}, v_{1}, w_{1} C w_{2}, v_{2}, x_{2}, x_{1}$ that has length at most $3 t+5$. But this means $3 t+5 \geq 6 t$ contradicting our assumption that $t \geq 2$. Hence X is independent. The cycle C is one of the components of $G-N[X]$. Since $C_{6 t} \in \mathcal{M}_{t+1}$, Lemma 2 implies that $G \notin \mathcal{M}_{t}^{2}$.

By following a line of reasoning similar to the first part of the proof of Theorem 5 one can prove the following result. The proof is omitted. As noted earlier, Theorem6 also holds for $t=2$. See [5].

Theorem 6 Let $t \geq 3$ be a positive integer. For each integer n such that $6 t-4 \leq$ $n \leq 6 t-1$, the cycle C_{n} is the unique graph of girth n that belongs to \mathcal{M}_{t}^{2}.

We now establish the uniqueness (for $t \geq 3$) of the table entry corresponding to those graphs with no leaves whose shortest cycle has length $6 t-6$ and which have maximal independent sets of exactly t distinct cardinalities.

Theorem 7 For each integer $t \geq 3$, the cycle $C_{6 t-6}$ is the only graph of girth $6 t-6$ that belongs to \mathcal{M}_{t}^{2}.

Proof. The cycle of order $6 t-6$ is in \mathcal{M}_{t}^{2} by Proposition (1) Suppose that G is a graph of girth $6 t-6$ with no leaves. If G is not $C_{6 t-6}$, then we can find an induced cycle C of length $6 t-6$ in G with w, a, b, c, X and Y defined as in the proof of Theorem [5. The set Y is independent because $g(G) \geq 12$, and X is independent since $t \geq 3$. If some vertex of X is adjacent to a vertex of Y, then G contains a cycle
of length at most $3 t-3+6$. It follows that $3 t+3 \geq g(G)=6 t-6$, or equivalently $t \leq 3$.

If the set $X \cup Y$ is independent, then $G-N[X \cup Y]$ has a component isomorphic to a cycle of length $6 t-6$ with a single leaf attached at w. By Lemma 3 this component is in \mathcal{M}_{t+1} and so it follows from Lemma 2 that $G \notin \mathcal{M}_{t}$.

Figure 1: Part of G
Thus we may assume that $t=3$ and that $X \cup Y$ is not independent. Without loss of generality we may assume that c from Y is adjacent to x_{1} such that $x_{1} \in X$ and x_{1}, v_{1}, w_{1} is a path where w_{1} is on the cycle C. See Figure By using the fact that C has length 12 and $g(G)=12$ we infer that the length of $w C w_{1}$ is 6 . Let $X^{\prime}=X-N\left(v_{1}\right)$ and let $Z=\left\{u: d\left(u, v_{1}\right)=2, d\left(u, w_{1}\right)=3, u x_{1} \notin E(G)\right\}$. It is clear that Z is independent.

As above, if a vertex of Z is adjacent to a vertex h of X^{\prime}, then if $d(h, w)>2$ a cycle of length at most 11 is present and if $d(h, w)=2$ then G contains a cycle of length 10 , contradicting $g(G)=12$. Suppose $z_{1} \in Y \cap Z$, say $z_{1}=y$ as in Figure 1. Then $z_{1} \neq c$, and $a, b, c, x_{1}, v_{1}, x_{2}, z_{1}, u, a$ is a cycle, contradicting the girth assumption. Similarly, since G has no cycles of length 9 , it follows that $Z \cup Y$ is independent.

The set $X^{\prime} \cup Y \cup Z$ is independent, and one of the components of the graph $G-N\left[X^{\prime} \cup Y \cup Z\right]$ is the cycle C with a single leaf attached at vertices w and w_{1}. But this component has spectrum $\{4,5,6,7,8\}$ from which it follows that $G \notin \mathcal{M}_{3}$.

We now show that when $t \geq 4$ there is a "gap" at girth $6 t-5$ among the leafless graphs. That is, if G has minimum degree at least 2 and the shortest cycle of G has order $6 t-5$, then G does not belong to \mathcal{M}_{t}.

Theorem 8 For each integer t at least 4, the class \mathcal{M}_{t}^{2} contains no graphs of girth $6 t-5$.

Proof. First observe that $C_{6 t-5} \in \mathcal{M}_{t-1}$. Our approach will be similar as that pursued in earlier proofs, except that we will be attempting to isolate a cycle of length $6 t-5$ with a path of order 5 attached as in Figure 2. It is easy to check, using either $\{a, c, e\}$ or $\{a, d\}$ together with all possible maximal independent sets of a path of order $6 t-6$, that this component has spectrum $[2 t, 3 t]$ and hence belongs to \mathcal{M}_{t+1}. This in turn implies via Lemma 2 that $G \notin \mathcal{M}_{t}^{2}$.

Figure 2: The cycle C with attachments
Suppose that G has girth $6 t-5$ and has minimum degree at least 2 . Let C be an induced cycle of length $6 t-5$ in G. There must exist a vertex w on C having degree at least 3 . For any two vertices on C there is a path on C joining them whose length is at most $3 t-3$. Because of the girth and minimum degree assumptions on G we can find a path w, a, b, c, d, e as in Figure 2, Let $A=\{a, b, c, d, e\}$. Let $X=\{u: d(u, C)=2\}-N(a)$ and let $Y=\{u: u \notin C, d(u, A)=2, d(u, w) \geq 2\}$.

As in previous proofs it is straightforward to show that X is independent. Since $g(G)=6 t-5 \geq 19$ no pair of vertices in Y can be adjacent. Suppose first that $X \cup Y$ is independent. The graph in Figure 2 is a component of $G-N[X \cup Y]$. As remarked at the outset, this shows that $G \notin \mathcal{M}_{t}^{2}$. We note that for $t \geq 5$, the girth restriction ensures that $X \cup Y$ is independent.

Now consider $t=4$. Thus C is of length 19. Let s_{1} and s_{2} be the adjacent vertices on C that are at distance 9 from w. If both s_{1} and s_{2} are of degree two, then $X \cup Y$ is independent or else a cycle of length 18 would exist in G. Assume then without loss of generality that s_{1} has a neighbor r that is not on C. Let $U=N(r)-\left\{s_{1}\right\}$. For each $u_{i} \in U$ choose a vertex $v_{i} \in N\left(u_{i}\right)-\{r\}$, and set $V=\left\{v_{i}: u_{i} \in U\right\}$. Similarly, let $B=N(a)-\{w\}$. For each $b_{i} \in B$ choose a vertex $c_{i} \in N\left(b_{i}\right)-\{a\}$, and set $D=\left\{c_{i}: b_{i} \in B\right\}$. Since $g(G)=19$ the set $V \cup D \cup(X-U)$ is independent, and one of the components of $G-N[V \cup D \cup(X-U)]$ is a cycle of order 19 with a single leaf a adjacent to w and a single leaf r adjacent to s_{1}. This component
belongs to \mathcal{M}_{5} which proves that $G \notin \mathcal{M}_{4}^{2}$ and establishes the theorem.

3 Concluding Remarks

We have shown that for a positive integer $t \geq 4$ and for each possible value of girth at least $6 t-6$, the class \mathcal{M}_{t}^{2} either contains exactly one graph of that girth (the cycle) or contains no graphs of that girth. It is interesting to note that as t grows there is an ever increasing gap-in terms of girth-between the unique graph of girth $6 t-6$ in \mathcal{M}_{t}^{2} and ones of smaller girth. For instance, we can show that \mathcal{M}_{31}^{2} contains no graphs of girth r for $131 \leq r \leq 179$. Hence the cycles $C_{180}, C_{182}, C_{183}, C_{184}, C_{185}$ and C_{187} are the only leafless members of \mathcal{M}_{31} that have girth at least 131. Thus the six cycles are quite special in \mathcal{M}_{t}^{2}.

References

[1] R. Barbosa and B. L. Hartnell: Some problems based on the relative sizes of the maximal independent sets in a graph. Congr. Numer. 131, 115-121 (1998)
[2] R. Barbosa and B. L. Hartnell: The effect of vertex and edge deletion on the number of sizes of maximal independent sets. J. Combin. Math. Combin. Comput. 70, 111-116 (2009)
[3] A. S. Finbow and B.L. Hartnell: A game related to covering by stars. Ars Combin. 16, 189-198 (1983)
[4] A. Finbow, B. Hartnell and R. J. Nowakowski: A characterization of wellcovered graphs of girth 5 or greater. J. Combin. Theory Ser. B 57, 44-68 (1993)
[5] A. Finbow, B. Hartnell and C. Whitehead: A characterization of graphs of girth eight or more with exactly two sizes of maximal independent sets. Discrete Math. 125, 153-167 (1994)
[6] M.D. Plummer: Well-covered graphs. J. Combin. Theory 8, 91-98 (1970)

[^0]: *Corresponding author: e-mail: doug.rall@furman.edu
 ${ }^{\dagger}$ Research supported in part by the Wylie Enrichment Fund of Furman University.

