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Abstract

An edge-colored graph G is rainbow connected if any two vertices are connected

by a path whose edges have distinct colors. The rainbow connection number of

G, denoted rc(G), is the minimum number of colors that are used to make G

rainbow connected. In this paper we give a Nordhaus-Gaddum-type result for the

rainbow connection number. We prove that if G and G are both connected, then

4 ≤ rc(G) + rc(G) ≤ n + 2. Examples are given to show that the upper bound is

sharp for all n ≥ 4, and the lower bound is sharp for all n ≥ 8. For the rest small

n = 4, 5, 6, 7, we also give the sharp bounds.

Keywords: edge-colored graph, rainbow connection number, Nordhaus-Gaddum-

type.

AMS subject classification 2010: 05C15, 05C40.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. Undefined ter-

minology and notations can be found in [1]. Let G be a nontrivial connected graph with

an edge coloring c : E(G) → {1, 2, · · · , k}, k ∈ N, where adjacent edges may be colored

the same. A path P of G is a rainbow path if no two edges of P are colored the same.

The graph G is called rainbow-connected if for any two vertices u and v of G, there is a

rainbow u − v path. The minimum number of colors for which there is an edge coloring

of G such that G is rainbow connected is called the rainbow connection number, denoted

by rc(G). Clearly, if a graph is rainbow connected, then it is also connected. Conversely,
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any connected graph has a trivial edge coloring that makes it rainbow connected, just by

assigning each edge a distinct color. An easy observation is that if G has n vertices then

rc(G) ≤ n− 1, since one may color the edges of a spanning tree with distinct colors, and

color the remaining edges with one of the colors already used. It is easy to see that if

H is a connected spanning subgraph of G, then rc(G) ≤ rc(H). It is easy to see that

rc(G) = 1 if and only if G is a clique, and rc(G) = n− 1 if and only if G is a tree, as well

as that a cycle with k > 3 vertices has a rainbow connection number ⌈k/2⌉. Also notice

that rc(G) ≥ diam(G), where diam(G) denotes the diameter of G.

A Nordhaus–Gaddum-type result is a (tight) lower or upper bound on the sum or prod-

uct of the values of a parameter for a graph and its complement. The name “Nordhaus–

Gaddum-type” is so given because it is Nordhaus and Gaddum [3] who first established

the following type of inequalities for chromatic number of graphs in 1956. They proved

that if G and G are complementary graphs on n vertices whose chromatic numbers are

χ(G), χ(G), respectively, then

2
√
n ≤ χ(G) + χ(G) ≤ n + 1.

Since then, many analogous inequalities of other graph parameters are concerned, such

as diameter [4], domination number [5], Wiener index and some other chemical indices

[6], and so on. In this paper, we are concerned with analogous inequalities involving the

rainbow connection number of graphs, we prove that

4 ≤ rc(G) + rc(G) ≤ n + 2.

The rest of this paper is organized as follows. First, we give the upper bound, and

show that it is sharp for all n ≥ 4. Then we give the lower bound, and show that it is

also sharp for n ≥ 8. Finally, for the rest small n = 4, 5, 6, 7, we give the sharp bound,

respectively.

2 Upper bound on rc(G) + rc(G)

We know that if G is a connected graph with n vertices, then the number of the edges

in G must be at least n− 1. So if both G and G are connected then n is not less than 4,

since

2(n− 1) ≤ e(G) + e(G) = e(Kn) =
n(n− 1)

2
. (∗)

In the rest of the paper, we always assume that all graphs have at least 4 vertices, and

both G and G are connected.

Lemma 1 rc(G) + rc(G) ≤ n+ 2 for n = 4, 5, and the bound is sharp.
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Proof. Note that rc(G) ≤ n− 1, equality holds if and only if G is a tree. So

rc(G) + rc(G) ≤ 2(n− 1),

equality holds if and only if both G and G are trees. Then (∗) must holds with equality.

That is, n have to be 4, and

rc(G) + rc(G) = 2(n− 1) = 6 = 4 + 2.

Then

rc(G) + rc(G) ≤ 2n− 3

for n ≥ 5.

For n = 5, let G be a tree obtained from S4 by attaching a pendent edge to one of

the vertices of degree one. Then rc(G) = 4. We observe that diam(G) = 3 and it can be

colored by three colorings to make it rainbow connected. Thus rc(G) = 3. Therefore, we

have

rc(G) + rc(G) = 7 = 2n− 3 = 5 + 2.

Lemma 2 Let G be a nontrivial connected graph of order n, and rc(G) = k. Let c :

E(G) → {1, 2, · · · , k} be a rainbow k-coloring of G. Add a new vertex P to G, P is

adjacent to q vertices of G, the resulting graph is denoted by G′. Then if q ≥ n + 1 − k,

we have rc(G′) ≤ k.

Proof. Let X = {x1, x2, · · · , xq} be the vertices adjacent to P , V \X = {y1, y2, · · · , yn−q}.
If q ≥ n + 1− k, n− q ≤ k − 1.

Since G rainbow connected under the coloring c, for any yi, i ∈ {1, 2, · · · , n− q}, there
is a rainbow x1 − yi path, say Px1y1 , Px1y2, · · · , Px1yn−q

. For each Px1yi, we find out the

last vertex on the path that belongs to X , and the subpath between this vertex to yi of

Px1yi is denoted by Pi. Then Pi is a rainbow path whose vertices are in Y except the first

vertex.

Let Gxi
be the union of the paths in P1, P2, · · · , Pn−q whose origin vertex is xi, 1 ≤

i ≤ q. If there is no path with origin vertex xi, let Gxi
be a trivial graph with the vertex

xi. Then Gxi
is a subgraph of G, and v(Gxi

) ≤ n − q + 1 ≤ k. First, we consider the

subgraph Gx1
, and let V (Gx1

) = {x1, yi1, yi2, · · · , yil}.

Case 1: The number of colors appeared in Gx1
is k. Then e(Gx1

) ≥ k.

Subcase 1.1: e(Gx1
) = k ≥ v(Gx1

).

In this case, Gx1
contains a cycle, and no two edges of Gx1

are colored the same. Thus,

Gx1
is rainbow connected. Let e be an edge in the cycle. Then, by deleting e and coloring
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the edge Px1 with the color c(e), we have that, for any j ∈ {1, 2, · · · , l}, there is a rainbow
P − yij path.

Subcase 1.2 e(Gx1
) > k ≥ v(Gx1

).

In this case, Gx1
contains a cycle, and there are two edges e1, e2 with c(e1) = c(e2).

If one of the edges, say e1, is contained in a cycle of Gx1
. Then, by deleting it, we

obtain a spanning subgraph G′

x1
of Gx1

with the same number of colors appearing in it,

but e(G′

x1
) = e(Gx1

)− 1. If e(G′

x1
) = k, by a similar operation as in Subcase 1.1, we can

obtain a coloring of Px1 such that for any j ∈ {1, 2, · · · , l}, there is a rainbow P − yij
path. If e(G′

x1
) > k, we consider the graph G′

x1
other than Gx1

.

If both e1, e2 are not in a cycle, they must be cut edges of Gx1
. Then, contract one of

them, say e1, and denote the resultant graph by G′′

x1
. The number of colors appeared in

Gx1
is still k, and v(G′′

x1
) = v(Gx1

) − 1, e(G′′

x1
) = e(Gx1

) − 1. If e(G′′

x1
) = k, by a similar

operation as in Subcase 1.1, we can obtain a coloring of Px1 such that for any yk in G′′

x1
,

there is a rainbow P − yk path. It is easy to check that there still exists a rainbow P − yij
path in Gx1

for any j ∈ {1, 2, · · · , l}. If e(G′′

x1
) > k, we consider the graph G′′

x1
other than

Gx1
.

Case 2: The number of colors appeared in Gx1
is less than k. Then we color the edge

Px1 with a color not appeared in Gx1
.

No matter which cases happen, we can always color the edge Px1 with one of the

colors {1, 2, · · · , k}, such that for any j ∈ {1, 2, · · · , l}, there is a rainbow P − yij path.

For Gx2
, Gx3

, · · · , Gxq
, we use the same way to color the edges Px2, Px3, · · · , Pxq.

Then we get a k-coloring of G′. Since for each yi, there is an xj , such that yi ∈ Gxj
.

Then the path PxjPi is a rainbow path connecting P and yi. Thus in this coloring, G′ is

rainbow connected. Therefore rc(G′) ≤ k.

Theorem 1 rc(G) + rc(G) ≤ n+ 2 for all n ≥ 4, and this bound is best possible.

Proof. We use induction on n. From Lemma 1, the result is true for n = 4, 5. We assume

that rc(G) + rc(G) ≤ n + 2 holds for complementary graphs on n vertices. To the union

of connected graphs G and G, a complete graph on the n vertices, we adjoin a new vertex

P . Let q be the number of vertices of G which are adjacent to P , then the number of

vertices of G which are adjacent to P is n− q. If G′ and G′ are the resultant graphs (each

of order n+ 1), then

rc(G′) ≤ rc(G) + 1, rc(G′) ≤ rc(G) + 1.

These inequalities are evident from the fact that if given a rainbow rc(G)-coloring (rc(G)-

coloring) of G (G), we assign a new color to the edges added from P to G (G), the resulting
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coloring makes G′ (G′) rainbow connected. Then rc(G′) + rc(G′) ≤ rc(G) + rc(G) + 2 ≤
n+ 4. And rc(G′) + rc(G′) ≤ n + 3 except possibly when

rc(G′) = rc(G) + 1, rc(G′) = rc(G) + 1.

In this case, by Lemma 2, q ≤ n − rc(G), n − q ≤ n − rc(G), thus rc(G) + rc(G) ≤ n,

from which rc(G′) + rc(G′) ≤ n+ 2. This completes the induction.

To see the bound can be attained, let G be a tree obtained by joining the centers

of two stars Sp and Sq by an edge uv, where u and v are the centers of Sp and Sq, and

p + q = n. Then rc(G) = n − 1. To compute the rainbow connection number of the

complement graph of G, we assume that X = V (Sp\u) ∪ {v}, Y = V (Sq\v) ∪ {u}. Then
G is a bipartite graph with bipartition (X, Y ). Thus G[X ], G[Y ] is complete. We assign

color 1 to G[X ], 2 to G[Y ] and 3 to the edges between X and Y . The resulting coloring

makes G rainbow connected, thus rc(G) ≤ 3. On the other hand diam(G) = d(u, v) = 3,

it follows that rc(G) = 3. Then we have rc(G′) + rc(G′) = n + 2.

3 Lower bound on rc(G) + rc(G)

As we have noted that rc(G) = 1 if and only if G is a complete graph. In this case, G

is not connected. Thus if both G and G are connected, rc(G) ≥ 2, rc(G) ≥ 2. That is,

rc(G) + rc(G) ≥ 4.

Proposition 1 Let G and G be complementary connected graphs with rc(G) = rc(G) = 2.

Then

(1) diam(G) = diam(G) = 2.

(2) 2 ≤ δ(G) ≤ ∆(G) ≤ n− 3, 2 ≤ δ(G) ≤ ∆(G) ≤ n− 3.

(3) A vertex u in N1(v) can not be adjacent to all vertices of N2(v), where N1(v), N2(v)

is the first and second neighborhood of a vertex v, respectively.

Proof. Since 2 ≤ diam(G) ≤ rc(G) = 2, (1) clearly holds.

For (2), first, ∆(G) 6= n− 1, otherwise G is disconnected.

Second, δ(G) 6= 1. Indeed, if δ(G) = 1, let v be a vertex of degree one, and u the vertex

adjacent to v. Since diam(G) = 2, u must be adjacent to all the other vertices, thus

d(u) = n − 1, a contradiction. Similarly, δ(G) 6= 1. That is, δ(G) ≥ 2. Therefore,

∆(G) ≤ n− 1− δ(G) ≤ n− 3, so does ∆(G).

For (3), if u is adjacent to all vertices of N2(v), u is not adjacent to them in G, then

the distance between u and N2(v) is at least 2 in G, and v is adjacent to all vertices of

N2(v), but not to the vertices in N1(v) of G. So dG(u, v) ≥ 3, which contradicts (1).

5



Theorem 2 For 4 ≤ n ≤ 7, there are no graphs G and G on n vertices, such that

rc(G) = rc(G) = 2.

Proof. We consider n = 4, 5, 6, 7, respectively.

Case 1: n=4.

Then, there is only one pair of complementary connected graphs, each is isomorphic

to P4, and its rainbow connection number is 3.

Case 2: n=5.

If rc(G) = rc(G) = 2, by Proposition 1, 2 ≤ δ(G) ≤ ∆(G) ≤ n − 3 = 2. Then,

G ∼= C5, G ∼= C5. Since rc(C5) = 3, there are no graphs G and G on 5 vertices, such that

rc(G) = rc(G) = 2.

Case 3: n=6.

By Proposition 1, 2 ≤ δ(G) ≤ ∆(G) ≤ n− 3 = 3, the possible degree sequences are:

(a)

{

dG = (2, 2, 2, 2, 2, 2)

dG = (3, 3, 3, 3, 3, 3).

(b)

{

dG = (3, 3, 2, 2, 2, 2)

dG = (2, 2, 3, 3, 3, 3).

The graph G with the degree sequence in (a) is a cycle of length 6, whose rainbow

connection is 3. And the graph G with the degree sequence in (b) satisfying Proposition

1 has to be the graph shown in Figure 1:

v1

v2 v3 v4

v5 v6

G

Figure 1: Graphs with degree sequence (3,3,2,2,2,2) satisfying Proposition 1.

Consider the pair of vertices (v2, v4). The only 2-path is v2v1v4, thus c(v1v2) 6= c(v1v4).

Similarly, c(v1v3) 6= c(v1v4), then c(v1v2) = c(v1v3). If we consider the pairs of vertices

(v2, v6), (v3, v6), we have c(v2v5) = c(v3v5). But then there is no rainbow v2 − v3 path,

therefore rc(G) 6= 2.

Case 4: n=7.
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By Proposition 1, 2 ≤ δ(G) ≤ ∆(G) ≤ n − 3 = 4, the possible degree sequences are:

(in the following argument, we use two colors to color the edges of the graphs)

(1)

{

dG = (4, 4, 4, 4, 4, 4, 4)

dG = (2, 2, 2, 2, 2, 2, 2).

In this case, G is a cycle of length 7, rc(G) = 4.

(2)

{

dG = (4, 4, 4, 4, 4, 3, 3)

dG = (2, 2, 2, 2, 2, 3, 3).

The graphs with the degree sequence (4,4,4,4,4,3,3) satisfying Proposition 1 are G1, G2

shown in Figure 2. The distance between v2 and v5 in G1, G2 is larger than 2, thus

rc(G1) 6= 2, rc(G2) 6= 2.

v1

v2
v3 v4

v5

v6 v7

G1

v1

v2

v3v4

v5

v6 v7

G1

v1 v1

v2

v2

v3

v3

v4

v4

v5

v5v6

v6

v7

v7

G2
G2

Figure 2: Graphs with degree sequence (4,4,4,4,4,3,3) satisfying Proposition 1.

(3)

{

dG = (4, 4, 4, 3, 3, 3, 3)

dG = (2, 2, 2, 3, 3, 3, 3).

The graphs with degree sequence (4,4,4,3,3,3,3) satisfying Proposition 1 are subgraphs

G′

1, G
′

2 of G1, G2 shown in Figure 2 by deleting the edge v2v5. We observe that the distance

between v3 and v4 in G′

1, G
′

2 is larger than 2, thus rc(G′

1) 6= 2, rc(G′

2) 6= 2.

(4)

{

dG = (4, 3, 3, 3, 3, 3, 3)

dG = (2, 3, 3, 3, 3, 3, 3).

The graphs G with degree sequence (4,3,3,3,3,3,3) satisfying Proposition 1 are G1, G2

and G3 shown in Figure 3.
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v1

v2 v3 v4 v5 v5

v6 v6v7 v7

v1

v2
v3 v4

G1
G2

v1

v2
v3 v4

v5

v6 v7

G3

Figure 3: Graphs with degree sequence (4,3,3,3,3,3,3) satisfying Proposition 1.

Consider G1. Since the only 2-path between v3 and v4 is v3v1v4, c(v3v1) 6= c(v1v4).

Similarly, c(v3v1) 6= c(v1v5). Then c(v1v4) = c(v1v5), say color 2. By the same way,

c(v3v1) = c(v1v2) = 1. Consider the pairs of vertices (v2, v7), (v3, v7), (v4, v6), (v5, v6), we

have c(v2v6) = c(v3v6) = c(v4v7) = c(v5v7). If c(v2v6) = 1, there is no rainbow v1 − v6

path, and if c(v2v6) = 2, there is no rainbow v1 − v7 path. Therefore rc(G1) 6= 2.

Consider G2, whose rainbow connection number is 2, where the heavy lines is colored

by color 2, the others are colored by color 1. So we consider its complement graph, the only

2-path between v6 and v7 is v6v1v7, then c(v6v1) 6= c(v1v7). Let c(v6v1) = 1, c(v1v7) = 2,

thus c(v3v7) = c(v2v7) = 1, c(v4v6) = c(v5v6) = 2. If c(v2v4) = 2, there is no rainbow

v2 − v6 path, and if c(v2v4) = 1, there is no rainbow v4 − v7 path. Therefore, we cannot

use two colors to make G2 rainbow connected, that is rc(G2) 6= 2.

For G3, whose rainbow connection number is also 2, by coloring the heavy lines with

color 2, and the others with color 1. We consider its complement graph. By the same

reason as above for G2, let c(v6v1) = 1, c(v1v7) = 2, c(v3v7) = c(v2v7) = 1, c(v4v6) =

c(v5v6) = 2. Then, if c(v2v5) = 2, there is no rainbow v2 − v6 path, and if c(v2v5) = 1,

there is no rainbow v5−v7 path. Therefore, we cannot use two colors to make G2 rainbow

connected, that is rc(G2) 6= 2.

(5)

{

dG = (4, 4, 4, 4, 3, 3, 2)

dG = (2, 2, 2, 2, 3, 3, 4).

The graphsG with degree sequence (4,4,4,4,3,3,2) satisfying Proposition 1 areG1, G2, G3, G4

shown in Figure 4.
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v1 v1
v1 v1

v2
v2 v2 v2

v3 v3 v3 v3

v4
v4

v4 v4

v5

v5 v5 v5

v6 v6
v6 v6v7

v7 v7 v7

G1 G2
G3

G4

v1

v2

v3

v4

v5

v6v7

v1

v2

v3
v4

v5

v6v7

v1 v1

v2

v3

v4

v5

v6
v7

v2

v3
v4

v5

v6v7

G1
G2

G3
G4

Figure 4: Graphs with degree sequence (4,4,4,4,3,3,2) satisfying Proposition 1.

Since dG1
(v4, v7) = 3, dG2

(v2, v5) = 3, dG4
(v2, v6) = 3, rc(G1) ≥ 3, rc(G2) ≥ 3,

rc(G4) ≥ 3.

For G3, consider the pair of vertices (v4, v5). the only 2-path is v4v6v5, so c(v4v6) 6=
c(v5v6), and let c(v5v6) = 2. Similarly, c(v3v5) = c(v2v5) = 1, c(v7v2) = c(v7v3) = 2,

c(v7v1) = c(v7v4) = 1,. If c(v1v6) = 2, there is no rainbow v1−v5 path, and if c(v1v6) = 1,

there is no rainbow v1 − v4 path. Thus, rc(G3) 6= 2.

(6)

{

dG = (4, 4, 3, 3, 3, 3, 2)

dG = (2, 2, 3, 3, 3, 3, 4).

The graphs G with degree sequence (2,2,3,3,3,3,4) satisfying Proposition 1 have to be

the following three graphs.

For G1, consider the pair of vertices (v2, v7). There is only one 2-path v2v6v7 between

them, then let c(v2v6) = 1, c(v6v7) = 2. Similarly, consider the pair of vertices (v3, v7),

we have c(v3v6) = 1. Consider the pairs of vertices (v5, v6), (v4, v7), (v4, v6), we get

c(v5v7) = 1, c(v4v5) = 2, c(v3v4) = 2. Consider the pairs of vertices (v2, v5), (v3, v5), then

c(v2v1) = c(v3v1), thus there is no rainbow v2 − v3 path.

For G2, consider the pairs of vertices (v4, v6), (v5, v6), we have c(v4v7) = c(v5v7), con-

sider the pairs of vertices (v3, v4), (v3, v5), we get c(v1v4) = c(v1v5), thus there is no

rainbow v4 − v5 path.

For G3, its rainbow connection number is 2 by coloring the heavy lines with color 2,

and assign color 1 to the other edges. So we consider its complement graph shown in the

figure too. Since the only 2-path between v6 and v7 is v6v1v7, let c(v1v7) = 1, c(v1v6) = 2.

Thus c(v7v2) = c(v7v3) = 2, c(v6v4) = c(v6v5) = 1, c(v3v5) = 2, c(v2v4) = 1. If c(v2v5) = 1,

there is no rainbow v2 − v6 path. If c(v2v5) = 2, there is no rainbow v5 − v7 path.
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v1 v1

v1 v1

v2 v2

v2

v2

v3 v3

v3
v3

v4

v4

v4 v4v5 v5

v5

v5v6

v6
v6

v6

v7
v7

v7

v7

G1
G2

G3 G3

Figure 5: Graphs with degree sequence (2,2,3,3,3,3,4) satisfying Proposition 1.

(7)

{

dG = (4, 4, 4, 3, 3, 2, 2)

dG = (2, 2, 2, 3, 3, 4, 4).

The graphs G with degree sequence (2,2,2,3,3,4,4) satisfying Proposition 1 have to be

the following two graphs.

For G1, consider the pair of vertices (v1, v7), the only 2-path between them is v1v5v7,

thus let c(v1v5) = 1, c(v5v7) = 2,. Similarly, c(v6v7) = 1, c(v2v6) = c(v3v6) = c(v4v6) = 2,

c(v2v1) = c(v3v1) = c(v4v1) = 2. Therefore, there is no rainbow v2 − v3 path.

For G2, consider the pairs of vertices (v2, v7), (v3, v7), we have c(v2v6) = c(v3v6), con-

sider the pairs of vertices (v2, v5), (v3, v5), then c(v2v1) = c(v3v1), so there is no rainbow

v2 − v3 path.

G1
G2

v1 v1

v2 v2v3 v3v4 v4v5 v5

v6 v6v7 v7

Figure 6: Graphs with degree sequence (2,2,2,3,3,4,4) satisfying Proposition 1.

(8)

{

dG = (4, 2, 2, 2, 2, 2, 2)

dG = (2, 4, 4, 4, 4, 4, 4).

There is no graph with degree sequence (4,2,2,2,2,2,2) satisfying Proposition 1.

(9)

{

dG = (4, 4, 2, 2, 2, 2, 2)

dG = (2, 2, 4, 4, 4, 4, 4).
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The graph G with degree sequence (4,4,2,2,2,2,2) satisfying Proposition 1 is the sub-

graphG′ ofG1 depicted in Figure 6 by deleting the edge v3v4. Consider the pairs of vertices

(v2, v7), (v3, v7), we have c(v2v6) = c(v3v6), consider the pairs of vertices (v2, v5), (v3, v5),

we get c(v2v1) = c(v3v1). Then there is no rainbow v2 − v3 path. Therefore rc(G′) 6= 2.

(10)

{

dG = (4, 4, 4, 2, 2, 2, 2)

dG = (2, 2, 2, 4, 4, 4, 4).

There is no graph with degree sequence (4,4,4,2,2,2,2) satisfying Proposition 1.

Theorem 3 For n ≥ 8, the lower bound rc(G) + rc(G) ≥ 4 is best possible, that is, there

are connected graphs G and G on n vertices, such that rc(G) = rc(G) = 2.

Proof. For n = 8, see figure G8, colored with two colors, the heavy line with color 2, the

others with color 1. It is easy to check that they are rainbow connected.

v v

x1

x1

x2

x2

x3

x3

x4

x4y1

y1

y2

y2

y3

y3

G8 G8

Figure 7: rc(G) = rc(G) = 2 for n = 8.

If n = 4k, letG be the graph with vertex setX∪Y ∪{v}, whereX = (x1, x2, · · · , x2k−1),

Y = {y1, y2, · · · , y2k}, such that N(v) = X , X is an independent set, G[Y ] is a clique,

and for each xi, xi is adjacent to yi, yi+1, · · · , yi+k, where the sum is taken modulo 2k.

We define a coloring c for the graph G by the following rules:

c(e) =











2 if e = vxi for k + 1 ≤ i ≤ 2k − 1,

2 if e = xiyi for 1 ≤ i ≤ 2k − 1, and e = xkyk+1,

1 otherwise.

Then c is a rainbow 2-coloring. And it is easy to check that G can also be colored by

two colors and make it rainbow connected.

If n = 4k + 1, G can be obtained by adding a vertex x2k to the vertex set X in the

case n = 4k, and joined x2k to v, y2k, y1, · · · , yk−1. With the coloring c defined above, in

addition with c(vx2k) = c(x2ky2k) = 2, G is rainbow connected.

If n = 4k + 2, G can be obtained by adding two vertices x2k, y2k+1 to the vertex set

X and Y , respectively, in the case n = 4k, and joined x2k to v, y2k+1 to each vertex in
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Y . And for each xi, xi is adjacent to yi, yi+1, · · · , yi+k, where the sum is taken modulo

2k + 1. With the coloring c defined above, in addition with c(vx2k) = c(x2ky2k) = 2, G is

rainbow connected.

If n = 4k + 3, G can be obtained by adding two vertices x2k+1, y2k+1 to the vertex set

X and Y , respectively, in the case n = 4k+1, and joined x2k+1 to v, y2k+1 to each vertex

in Y . And for each xi, xi is adjacent to yi, yi+1, · · · , yi+k, where the sum is taken modulo

2k + 1, we also join xk+1 to y2k+1. With the coloring c defined above, in addition with

c(vx2k+1) = c(x2k+1y2k+1) = 2, G is rainbow connected.

Theorem 4 For n = 4, 5, rc(G) + rc(G) ≥ 6, and rc(G) + rc(G) ≥ 5 for n = 6, 7. All

these bounds are best possible.

Proof. From Theorem 2, we have rc(G) + rc(G) ≥ 5 for n = 4, 5, 6, 7.

For n = 4, as we have shown, rc(G)+rc(G) = 6. If n = 5, the possible complementary

connected graphs are:

1 2 3 4
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1
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1

1
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3

3
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1

2

1

2

3
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2 1
2 2

2

3 1
2 2
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1 2
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2 3

23
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v1
v1

v1
v1
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v1 v1

v1
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v2
v2

v2

v2

v2 v2
v2 v2

v2

v2

v1

v3

v3
v3

v3

v3 v3

v3 v3

v3 v3
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v4

v4 v4

v4 v4

v4 v4

v4
v4

v5

v5 v5 v5

v5 v5 v5 v5

v5 v5

G1 G2

G3

G4

G5

G1 G2

G3

G4

G5

Figure 8: Complementary connected graphs for n = 5.

For all these cases, rc(G) + rc(G) ≥ 6.

For n = 6, let G be the cycle C6, whose vertices are {v1, v2, · · · , v6}. Then rc(G) = 3.

We color the edges v1v3, v2v4, v3v5 in G by 2, and the other edges by 1. This coloring

makes G rainbow connected. Therefore, rc(G) + rc(G) = 5.

For n = 7, the graph G2 in Figure 3 has rainbow connection number 2. We have

shown that rc(G2) 6= 2, but we can use three colors to make it rainbow connected, just

by assigning the edges v2v4 and v3v5 with color 3, the others the same as before. So,

rc(G2) = 3. Thus, rc(G) + rc(G) = 5.
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4 Concluding remark

Given a graph G, a set D ⊆ V (G) is called a domination set of G, if every vertex in

G is at a distance at most 1 from D. Further, if D induces a connected subgraph of G,

it is called a connected dominating set of G. The cardinality of a minimum connected

dominating set in G is called its connected dominating number, denoted by γc(G). In [7],

the authors proved that for every connected graph G with minimum degree δ(G) ≥ 2,

rc(G) ≤ γc(G) + 2. In [5], the authors introduced a result of Nordhaus-Gaddum type

result for the connected dominating number. They showed that if G and G are both

connected, then γc(G) + γc(G) ≤ n + 1. If one uses their results, one can only get that

rc(G) + rc(G) ≤ γc(G) + γc(G) + 4 ≤ n+ 5, which is weaker than our result.
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