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Abstract: A family F ⊆ 2[n] saturates the monotone decreasing property P if F
satisfies P and one cannot add any set to F such that property P is still satisfied by
the resulting family. We address the problem of finding the minimum size of a family
saturating the k-Sperner property and the minimum size of a family that saturates
the Sperner property and that consists only of l-sets and (l + 1)-sets.
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1 Introduction

One of the most basic and most studied problems of extremal combinatorics is that how many
edges a (hyper)graph can have if it possesses some prescribed property P. If this property P
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is monotone decreasing (i.e. if G possesses P, then F ⊆ G implies F possesses P), then there
exists a “dual” problem to the above one: we say that a (hyper)graph G saturates property
P if it possesses property P but adding any (hyper)edge E to G would result in a graph not
having property P. The problem is to determine the minimum size that such a saturating
(hyper)graph can have. Many researchers have dealt with this kind of problems both for graphs
[1, 2, 3, 4, 5, 6, 13, 14, 17, 21, 22, 28, 29, 30] and hypergraphs [12, 19, 20]. To our knowledge
all papers so far have considered Turán-type properties (with the exception of [9]): properties
defined through some forbidden (hyper)graphs.

In the present paper we investigate the saturation of Sperner-type properties. To introduce
our main definitions let k and n be positive integers and let F ⊆ 2[n] be a family of sets such
that,

1. there do not exist k + 1 distinct sets F1, ..., Fk+1 ∈ F that form a (k + 1)-chain, i.e.
F1 ⊂ F2 ⊂ ... ⊂ Fk+1 holds,

2. for every set S ∈ 2[n] \F there exist k distinct sets F1, ..., Fk ∈ F such that S and the Fi’s
form a (k + 1)-chain.

A family F is called k-Sperner if it satisfies Property 1, weakly saturating k-Sperner if it satisfies
2 and (strongly) saturating k-Sperner if it satisfies both. The maximum size of a k-Sperner family
F ⊂ 2[n] was determined by Sperner [26] in the special case k = 1 and by Erdős [10] for arbitrary
k.

In Section 2 we will derive bounds on sat(n, k) (wsat(n, k)) the minimum number of sets
that strongly saturating k-Sperner (weakly saturating k-Sperner) family F ⊂ 2[n] can contain.
By definition, we have wsat(n, k) ≤ sat(n, k). The following product construction shows that
there is an upper bound on both of these numbers that is independent of n, namely wsat(n, k) ≤
sat(n, k) ≤ 2k−1. Let F ⊂ 2[n] be defined by

F := 2[k−2] × {∅, [n] \ [k − 2]} = 2[k−2] ∪ {F ∈ 2[n] : [n] \ [k − 2] ⊆ F}.

It is easy to see that F is indeed strongly saturating k-Sperner. It is natural to formulate the
following conjecture.

Conjecture 1. For every positive integer k there exists an n0 = n0(k) such that for any n ≥ n0

we have sat(n, k) = 2k−1.

It is trivial to verify that n0(k) = k for k = 1, 2, 3. By giving constructions we will prove the
following two upper bounds.

Theorem 2. For integers 6 ≤ k ≤ n we have the following inequalities:
(i) sat(k, k) ≤ 15

162
k−1,

(ii) wsat(n, k) = O( log kk 2k).

We will also obtain lower bounds on the size of saturating k-Sperner families. All our lower
bounds will apply both for wsat(n, k) and sat(n, k).

Theorem 3. For integers k, c and n we have the following inequalities:
(i) 2k/2−1 ≤ wsat(n, k) ≤ sat(n, k) provided k ≤ n,

(ii) 2k+c

(k+c)c+1 ≤ wsat(k + c, k) ≤ sat(k + c, k) provided 2 ≤ k and 0 ≤ c.
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1-Sperner families are also called antichains. Saturating antichains with the simplest struc-
ture are the families consisting of all l-element subsets of the underlying set for any fixed l.
Next, one would consider antichains with two possible set sizes. If the set sizes are consecutive
integers, then these families are called flat antichains. Grütmüller, Hartmann, Kalinowski, Leck
and Roberts [16] proved the following theorem.

Theorem 4 (Grütmüller, Hartmann, Kalinowski, Leck, Roberts [16]). If F ⊆
([n]
2

)

∪
([n]
3

)

is a
saturating antichain, then the following holds

|F| ≥

(

n

2

)

−

⌈

(n+ 1)2

8

⌉

.

The authors of [16] also determined all antichains for which equality holds. In Section 3 we
obtain the stability version of Theorem 4. Our proof is self-contained and is much shorter than
their proof of Theorem 4. Some of its parts generalize to saturating flat antichains with larger set
sizes. Unfortunately the lower bounds that we obtain depend on the Turán density of K l

l+1, the
complete l-graph on l+1 vertices. We will also generalize the construction of [16], but the lower
bounds and the size of the construction are quite far apart even if we assume that some famous
longstanding conjectures about the above-mentioned Turán densities are true. To state our
stability result for a family F ⊂

([n]
l

)

let us write ∆(F) = {G ∈
( [n]
l−1

)

: ∃F ∈ Fsuch that G ⊂ F}

and ∇(F) = {G ∈
( [n]
l+1

)

: ∃F ∈ F such that F ⊂ G}.

Theorem 5. Let F ⊆
(

[n]
2

)

∪
(

[n]
3

)

be a saturating antichain of minimum size. Then the following
holds:

|F| =

(

3

8
− o(1)

)

n2.

Moreover, if |F| = (38 +o(1))n2, then there is a partition [n] = A∪B∪C with |A| = |B| = ⌊n/4⌋

and a matching M between A and B such that if G = G2 ∪ G3 is defined by G3 = {G ∈
(

[n]
3

)

:

G ∩ C 6= ∅ and ∃m ∈ Mwith m ⊂ G} and G2 =
([n]
2

)

\∆(G3), then |G △ F| = o(n2) holds and
G is a saturating antichain.

2 Bounds on sat(n, k) and wsat(n, k)

In this section, we prove Theorem 2 and Theorem 3. We start our investigations with an easy
lemma stating that we can always assume the empty set and [n] belong to the family F .

Lemma 6. If 2 ≤ k ≤ n, then there exists a weakly (strongly) saturating k-Sperner family
F ⊆ 2[n] of minimum size such that ∅ and [n] belong to F .

Proof. Let F be of minimum size with ∅ /∈ F and let Fm denote the minimal sets in F . Then
F \Fm ∪{∅} is weakly (strongly) saturating k-Sperner and its size is at most the size of F . The
case of [n] is completely analogous.

Proof of Theorem 2. First we give a construction that shows that sat(6, 6) ≤ 30 = 15
162

6−1. We
enumerate the sets according to their size:

• ∅,
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• four singletons: {3}, {4}, {5}, {6},

• six pairs: {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {5, 6},

• eight triples: {1, 2, 5}, {1, 2, 6}, {3, 4, 5}, {3, 4, 6}, {1, 3, 5}, {1, 4, 5}, {2, 3, 6}, {2, 4, 6},

• six 4-tuples: {3, 4, 5, 6}, {2, 3, 4, 5}, {1, 3, 4, 6}, {1, 2, 3, 4}, {1, 2, 5, 6}, {1, 2, 3, 5},

• four 5-tuples: {1, 2, 3, 4, 6}, {1, 2, 4, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}

• and {1, 2, 3, 4, 5, 6}.

To see that these sets indeed form a strongly saturating 6-Sperner family, note that ∅, the
singletons and {1, 2} form a strongly saturating 2-Sperner family and so do {1, 2, 3, 4, 5, 6}, the
5-tuples and {3, 4, 5, 6}. The remaining pairs together with {1, 3, 5}, {1, 4, 5}, {2, 3, 6}, {2, 4, 6}
form a saturating antichain as described in Section 3. Now the remaining sets form a family
isomorphic to the complements of the members of the previous family and is therefore saturating
antichain. As these four families are disjoint and lie “one below the other”, their union is
saturating 6-Sperner.

The following lemma finishes the proof of Theorem 2 (i).

Lemma 7. For any integers k, n such that 3 ≤ k ≤ n we have

sat(n, k) ≤ 2sat(n− 1, k − 1).

Proof. Let F ⊆ 2[n−1] be a strongly saturating (k − 1)-Sperner family of minimum size such
that (by Lemma 6) ∅, [n− 1] ∈ F . Then the family F ′ = F ×{∅, {n}} = F ∪{F ∪{n} : F ∈ F}
is a strongly saturating k-Sperner subfamily of 2[n]. Indeed, if there exists a (k + 1)-chain
F ′
1 ⊂ ... ⊂ F ′

k+1 in F ′, then at least k out of the sets F ′
i ∩ [n− 1] would be distinct and form a

k-chain in F . This contradiction shows that F ′ is k-Sperner. To prove the saturating property
of F ′ let us consider a set G ∈ 2[n] \ F ′. By definition, we know that G ∩ [n − 1] /∈ F holds
and thus by the saturating property of F there exists k − 1 sets F1, ..., Fk−1 in F together with
which G∩ [n− 1] forms a k-chain. If n /∈ G, then the Fi’s, G and [n] form a (k+1)-chain in F ′,
while if n ∈ G, then ∅, G and the {n} ∪ Fi’s form a (k + 1)-chain in F ′ (not necessarily in this
order).

To prove (ii) we first give a general construction. Let us write F0 = {∅} and Fk = {[k]}.

Furthermore, for any 1 ≤ l ≤ k − 1 let Fl ⊆
([k]

l

)

be a family satisfying ∇(Fl) =
( [k]
l+1

)

and

∆(Fl) =
( [k]
l−1

)

. Then define the family F ⊆ 2[n] as follows:

F =

k
⋃

l=0

Fl × {∅, [n] \ [k]} =

k
⋃

l=0

Fl ∪

{

F ∪ ([n] \ [k]) : F ∈
k
⋃

l=0

Fl

}

.

We claim that F is a weakly saturating k-Sperner family. Indeed, let us consider a set G ∈ 2[n]\F
and define i = |G∩ [k]|. Observe that, by the conditions on the Fl’s, there exist sets Fl ∈ Fl for
every 0 ≤ l ≤ k, l 6= i such that the Fl’s together with G ∩ [k] form a (k + 1)-chain. Then the
Fl’s for l < i, G and the sets Fl ∪ ([n] \ [k]) for l > i form a (k + 1)-chain.

It is well known [8] that if l = Θ(k), then there exists a family F ′
l ⊆

([k]
l

)

such that ∆(F ′
l ) =

( [k]
l−1

)

and |F ′
l | = Θ( log kk

(

k
l

)

) holds. Thus the size of the family Fl = F ′
l ∪ F ′

n−l is of the same
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order of magnitude and satisfies ∆(F ′
l ) =

( [k]
l−1

)

,∇(F ′
l ) =

( [k]
l+1

)

. Use the general construction

with Fl’s as above provided k/4 ≤ l ≤ 3k/4 and Fl =
([k]

l

)

otherwise to obtain the family F .

Then the size of F is 2
∑k

i=0 |Fi| = O( log kk 2k).

Proof of Theorem 3. Let F ⊆ 2[n] be a weakly saturating k-Sperner family and consider any set
G ∈ 2[n] \ F . By definition, there exist k distinct sets F1, ..., Fk ∈ F such that F1 ⊂ ... ⊂ Fi ⊂
S ⊂ Fi+1 ⊂ ... ⊂ Fk holds. Thus G is a set from the interval IFi,Fi+1

= {S : Fi ⊆ S ⊆ Fi+1

which has size at most 2n−k+2 as |Fi+1 \Fi| ≤ n− k+2 holds by the existence of the other Fj ’s.
We obtain that 2[n] can be covered by intervals of size at most 2n−k+2 and thus we have

|F|2

2
2n−k+2 ≥

(

|F|

2

)

2n−k+2 ≥ 2n.

Now (i) follows by rearranging.
To prove (ii) let us partition the intervals IFi,Fi+1

in the proof of (i) according to the Fi’s.
The intervals belonging to the same Fi may cover at most the sets {S ⊇ Fi : |S \ Fi| ≤ c+ 1}.
As the number of these sets is at most

∑c+1
i=0

(k+c
i

)

≤ (k + c)c+1, we obtain the inequality
|F|(k + c)c+1 ≥ 2k+c and we are done by rearranging.

Theorem 3 (ii) with c = 0 shows wsat(k, k) = Ω(2k/k). It is one of the most important

questions of the theory of covering codes whether there exist families Fl ⊆
([n]

l

)

as in the general
construction with size O(

(n
l

)

/k). If the answer is positive, then one would obtain a weakly
saturating k-Sperner family with size O(2k/k) via the general construction thus wsat(k, k) =
Θ(2k/k) would follow.

Let us finish this section with some remarks on strongly saturating k-Sperner families in the
case when n is large compared to k. A family F ⊆ 2[n] is called non-separating if there exist
x, y ∈ [n] such that for all F ∈ F we have x ∈ F ⇔ y ∈ F . The family F is separating if it is not
non-separating. Let us call a strongly saturating k-Sperner family F ⊆ 2[n] duplicable if there
exists x ∈ [n] such that the family F ′ ⊆ 2[n+1] defined as F ′ := {F ∈ F : x /∈ F}∪{F ∪{n+1} :
x ∈ F} is strongly saturating k-Sperner. Finally, a family F is primitive strongly saturating
k-Sperner if it is separating and duplicable.

Clearly, if 2|F| < n, then F is non-separating. As, by the product construction defined in the
Introduction, we know that sat(n, k) ≤ 2k−1, we obtain that any strongly saturating k-Sperner

family of minimum size is non-separating provided 22
k−1

< n. Let F ⊆ 2[n] be such a family and
x, y ∈ [n] be the elements showing the non-separating property of F . Then it is easy to verify
that the family F∗ ⊆ 2[n]\{y} defined as F∗ = {F ∩ ([n] \ {y}) : F ∈ F} is strongly saturating
k-Sperner and we have |F| = |F∗|.

Let F ⊆ 2[n] be a non-separating strongly saturating k-Sperner family. We would like to
prove that there is only one way to duplicate such a family. Formally, we claim that there do
not exist x, y, u, v ∈ [n] and F ′ ∈ F such that x ∈ F ⇔ y ∈ F and u ∈ F ⇔ v ∈ F holds for
all F ∈ F but exactly one of x and u is contained in F ′. Indeed, if that is not the case, then
there would exist a set S ⊆ [n] \ {x, y, u, v} such that S1 = S ∪ {x, u} /∈ F but at least one of
S ∪ {x, y} and S ∪ {u, v} belongs to F which we denote by S2. Therefore there would exist sets
F1, ..., Fk ∈ F that together with S1 form a (k + 1)-chain. As the family F does not separate x
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and y nor u and v, all the Fi’s contain either all four of x, y, u, v or none of them. But then the
Fi’s and S2 form a (k + 1)-chain as well which contradicts the k-Sperner property of F .

The above two statements yield the following lemma.

Lemma 8. Let n and k be positive integers such that 22
k−1

< n holds. Then we have

sat(n, k) = min
n′≤22k−1

{

|F ′| : F ′ ⊆ 2[n
′]is primitive strongly saturating k-Sperner

}

.

Moreover, for any extremal family F ⊆ 2[n], there exist integers x ≤ n′ ≤ 22
k−1

and a primitive
family F ′ ⊆ 2[n

′] such that F = {F ′ ∈ F ′ : x /∈ F ′} ∪ {F ′ ∪ ([n] \ [n′]) : x ∈ F ′ ∈ F ′}.

3 Saturating flat antichains

In this section we consider saturating flat antichains. Let us start with an easy lemma that gives
a necessary and sufficient condition for a family F to be a saturating flat antichain.

Lemma 9. A family F = Fl ∪ Fl+1 with Fl ⊂
([n]

l

)

,Fl+1 ⊂
( [n]
l+1

)

is a saturating antichain if

and only if we have ∆(Fl+1) =
([n]

l

)

\ Fl and ∇(
([n]

l

)

\ Fl) = Fl+1.

Proof. Assume first that F is a saturating antichain. The inclusions ∆(Fl+1) ⊆
([n]

l

)

\ Fl and

∇(
([n]

l

)

\Fl) ⊇ Fl+1 follow trivially from F being an antichain. The other inclusions follow from

the saturating property of F . Indeed, if a G ∈
([n]

l

)

is not in F , then the only reason for this is
that there should be an F ∈ Fl+1 containing G, similarly if no l-subsets of a (l+1)-set G belong
to Fl, then G can be added to Fl+1.

Now let us assume that ∆(Fl+1) =
([n]

l

)

\Fl and ∇(
([n]

l

)

\ Fl) = Fl+1 hold. These equations
clearly imply that F is an antichain. Also, F is saturating as any l-set is either in F or is
contained in a set in Fl+1 and any (l + 1)-set is either in F or it is not in ∇(

([n]
l

)

\ Fl) and
therefore contains an l-set from F .

Before we start to prove Theorem 5 we need to introduce our two main tools.

Theorem 10 (Ruzsa-Szemerédi, [24]). Let Gn be a graph on n vertices such that the number
of triangles in Gn is o(n3). Then there exists a subset E of E(Gn) of size o(n2) such that if we
remove all the edges in E from Gn, then the resulting graph is triangle free.

Theorem 11 (Erdős-Simonovits, [11, 25]). Let Gn be a triangle free graph on n vertices with
|E(Gn)| = (14 − o(1))n2. Then there exists a bipartition V (Gn) = X ∪ Y with ||X| − |Y || ≤ 1
such that |E(Gn) △ E(KX,Y )| = o(n2) holds, where KX,Y is the complete bipartite graph with
parts X and Y .

Proof of Theorem 5. Lemma 9 shows that the construction of the theorem is indeed a saturating
antichain hence the upper bound of the theorem.

To prove the lower bound of the theorem let F = F2 ∪ F3 with F2 ⊂
([n]
2

)

,F3 ⊂
([n]
3

)

be
a saturating antichain. Sets in F2 and F3 will be called F-edges and F-triples, while sets in
([n]
2

)

\ F2 and
([n]
3

)

\ F3 will be called F-non-edges and F-non-triples. Consider the graph H

of F-non-edges, i.e. V (H) = [n] and E(H) =
([n]
2

)

\ F2. By Lemma 9, we know that the
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triangles in H are the F-triples. As the number of F-triples is O(n2) = o(n3) it follows by
Theorem 10 that H can be made triangle free removing a set E′ of edges (i.e. F-non-edges
of F) with size o(n2). By Turán’s theorem [27] we have that |E(H)| ≤ (14 + o(1))n2 and thus
|F2| =

(n
2

)

− |E(H)| ≥
(n
2

)

− (14 + o(1))n2 = (14 − o(1))n2.
Let F ′

3 ⊂ F3 a maximal subfamily of the F-triples such that for any F1, F2 ∈ F ′
3 we have

|F1 ∩ F2| ≤ 1. As every F-non-edge in E′ is contained in at most one F-triple in F ′
3, we obtain

|F ′
3| = o(n2). By Lemma 9 we know that every F-non-edge is contained in at least one F-triple.

But an F-triple covers three F-non-edges, moreover, any F-triple in F3 \ F ′
3 covers at most

two F-non-edges that are not covered by any F-triple in F ′
3. Thus we obtain the inequality

(n
2

)

− |F2| ≤ 3|F ′
3|+ 2|F3 \ F

′
3| ≤ 2|F3|+ o(n2).

Let us define α = α(n) by writing |F2| = (14 + α)n2. By what we have so far, we know that
lim inf α ≥ 0. Using the inequality above we obtain

|F| = |F2|+ |F3| ≥

(

1

4
+ α

)

n2 +

(

1
4 − α

)

2
n2 − o(n2) =

(

3

8
+

α

2
− o(1)

)

n2.

As lim inf α ≥ 0, this completes the proof of the lower bound. Moreover, we obtain that if
F ⊂

([n]
2

)

∪
([n]
3

)

is a saturating antichain with |F| = (38+o(1))n2, then we have |F2| = (14−o(1))n2

and |F3| = (18 − o(1))n2.
All what remains is to prove the stability of the extremal family. Note that a saturating

antichain F is clearly determined by F-non-edges. In the case of the conjectured extremal
family these are the edges of KA∪B,C and the matching M . Let F be a saturating antichain
of size (38 − o(1))n2. Then by what we have proved so far, we know that the graph H of the
F-non-edges is of size (14 − o(1))n2 and is triangle free after removing o(n2) edges. Thus, by
Theorem 11, after changing at most o(n2) edges in H we obtain the bipartite Turán graph KX,Y

with ||X|−|Y || ≤ 1. Let us put a maximal matching M into any of the two classes, say to X, and
define the tripartition of [n] as C to be the vertices not incident to M and A and B to contain
different vertices from all edges of M and G to be the extremal family built on this tripartition.
No matter how we chose M , the G2 part of the resulting family G will satisfy |G2 △ F2| = o(n2).
Note that, as X ⊆ C or Y ⊆ C, the bipartition A ∪ B,C is already known up to one vertex
possibly moving from one part to the other and thus the graph KA∪B,C is known up to a change
of at most n− 1 edges.

Let H ′ be the graph with V (H ′) = [n] and E(H ′) = E(KX,Y ) ∩ (
([n]
2

)

\ F2). By the above
we know that |E(H ′)| = (14 − o(1))n2 and thus with an exception of o(n) vertices every vertex
has degree (12 − o(1))n.

Claim 12. Either X or Y contains a matching M that consists of (14 − o(1))n F-non-edges.

Proof. We only consider vertices with degree (12 − o(1))n in H ′. Note that any F-non-edge
between two such vertices in the same vertex class defines (12 + o(1))n triangles in H and thus,
by Lemma 9, that many F-triples. Also, these F-triples are distinct, therefore there can be at
most (14 +o(1))n such F-non-edges as we have already proved that |F3| = (18 +o(1))n2. Observe
that all but o(n) vertices in either X or Y are contained in at least one F-non-edge with the
other vertex in the same vertex class of H ′. Indeed, otherwise there would be an edge in H ′

between such an x ∈ X and such a y ∈ Y (if not, then Ω(n2) edges would be missing from H ′).
And since any edge of H ′ is an F-non-edge, by Lemma 9, it has to be contained in an F-triple
all three 2-subsets of which are F-non-edges.
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Now the claim follows as (14 − o(1))n edges can cover at least one vertex class with the
exception of o(n) vertices if and only if those edges with o(n) exceptions form a matching in one
of the classes.

We extend the matching M given by Claim 12 to a maximal matching in X and define
the partition A, B, C accordingly. By the reasoning of Claim 12 there are (18 − o(1))n2 F-
triples containing some F-non-edge from M and all these F-triples belong to G, too. As both
|F3| = (18 − o(1))n2 and G3 = (18 − o(1))n2 hold, we obtain |F3 △ G3| = o(n2).

In the remainder of the section we show how to generalize Theorem 5 to flat antichains with
set sizes l and l + 1. Let us start by defining the generalization of the construction of [16].

Construction 13. Let us consider the partition [n] = A ∪ B ∪ C with |A| = |B| and let M

be a complete matching between A and B. Let Gl+1 = {G ∈
( [n]
l+1

)

: ∃M ∈ M with M ⊂

G and G \ M ⊂ C} and Gl =
([n]

l

)

\∆(Gl). It is easy to see that the conditions of Lemma 9
hold and thus G = Gl ∪ Gl+1 is a saturating antichain.

The number of (l + 1)-tuples in Gl+1 is |A|
(n−2|A|

l−1

)

and the number of l-tuples not in Gl is

|A|
(n−2|A|

l−2

)

+ 2|A|
(n−2|A|

l−1

)

thus we have G = |A|
(n−2|A|

l−1

)

+
(

n
l

)

− (|A|
(n−2|A|

l−2

)

+ 2|A|
(n−2|A|

l−1

)

) =
(n
l

)

− |A|
(n−2|A|+1

l−1

)

.

Observe that by replacing Theorem 10 with the hypergraph removal lemma [15, 18, 23], we
can use the argument of Theorem 5 to get lower bounds for the size of a saturating flat antichain
consisting only of l and (l+1)-sets. Also, Construction 13 gives an upper bound on the minimum
size that such a family can have. In order to be able to state the theorem we define tl to be the
Turán-density of K l

l+1 the complete l-uniform hypergraph on l + 1 vertices, i.e. if ex(n,K l
l+1)

denotes the most number of edges that an l-uniform hypergraph on n vertices can have without
containing a copy of K l

l+1, then tl = lim ex(n,K l
l+1)/

(n
l

)

. Determining tl is one of the most
important open problems of extremal combinatorics and even the value of t3 is unknown. It is

conjectured to be 5/9 and the current best upper bound is 3+
√
17

12 [7].

Theorem 14.

(

1−
l − 1

l
tl − o(1)

)(

n

l

)

≤ sat(n, l, l + 1) ≤

(

1−
1

2

(

1−
1

l

)l−1

+ o(1)

)

(

n

l

)

.

Proof. The upper bound follows from Construction 13 by setting |A| = |B| = 1
2ln and |C| =

l−1
l n.

Note that Theorem 14 would not give the correct asymptotics even in the case l = 3 and
with the assumption that Turán’s conjecture true.

4 Final remarks and open problems

In this section we enumerate the open problems in this topic that we find the most important
and interesting.

• What is the correct order of magnitude of wsat(k, k) and sat(k, k)? Do they coincide?
Can one find a sequence of families showing sat(k, k) = o(2k)?

8



• We feel that there do not exist too many primitive strongly saturating k-Sperner families.
A better understanding of these families could help in proving Conjecture 1 via Lemma 8.

• Try to close the gap between the lower and upper bounds on the minimum size of a
saturating flat antichain for l ≥ 3. Give any general lower bound which does not use the
Turán density of hypergraphs.
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[3] B. Bollobás, On a conjecture of Erdős, Hajnal and Moon, Amer. Math. monthly, 74
(1967), 178–179.

[4] Y-C. Chen, Minimum C5-Saturated Graphs, J. Graph Theory 61 (2009), 111–126.

[5] Y-C. Chen, All Minimum C5-Saturated Graphs, to appear in J. Graph Theory

[6] Y-C. Chen, Minimum K2,3-saturated Graphs, arXiv:1012.4152, 2010

[7] F. Chung, L. Lu, An upper bound for the Turán number t3(n, 4), J. of Combin. Theory
Ser. A, 87 (1999), 381–389.

[8] G. Cohen, I. Honkala, S. Litsyn, A. Lobstein, Covering Codes, North-Holland Math-
ematical Library, 54. North-Holland Publishing Co., Amsterdam, 1997. xxii+542 pp.

[9] A. Dudek, O. Pikhurko, A. Thomason, On Minimum Saturated Matrices, submitted
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Hajnal and Moon. Wiss. Z. Hochsch. Ilmenau, 12 (1966), 253–256.
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