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Abstract. We propose an expansion technique for weighted tree families, which unifies and
extends recent results on hook-length formulas of trees obtained by Han [10], Chen et al. [3],
and Yang [19]. Moreover, the approach presented is used to derive new hook-length formulas
for tree families, where several hook-functions in the corresponding expansion formulas occur
in a natural way. Furthermore we consider families of increasingly labelled trees and show
close relations between hook-length formulas for such tree families and corresponding ones
for weighted tree families.

1. Introduction

Starting with the following remarkable formula given by Postnikov [15]:

n!

2n

∑
T∈B(n)

∏
v∈T

(
1 +

1

hv

)
= (n+ 1)n−1, (1)

where B(n) denotes the family of binary trees of size n, i.e., with n vertices, and hv gives the
number of descendants of a node v in a binary tree T , various works in the combinatorial
literature are devoted to prove and establish such kind of so-called “hook-length formulas”.
In particular, recently Han [10] developed a very versatile expansion technique for deriving
hook-length formulas for partitions and trees and he used his expansion technique to obtain
several new formulas for binary trees [8, 9].

Han’s method was extended by Chen et al. [3] to derive hook-length formulas for other
important families of trees, namely k-ary trees, planted plane trees and labelled unordered
trees, and also for related families of forests. Furthermore, Yang [19] gave extensions of
Han’s results obtained for binary trees to tree families related to k-ary trees and planted
plane trees. Moreover, recently Sagan [17] has obtained probabilistic proofs for some of the
results of [3, 8, 9, 10, 19].

In this work we will extend Han’s expansion technique further to treat families of weighted
trees, where each node v in the tree gets a weight depending on the out-degree (i.e., the
number of children) of v. This approach has several favourable features. First it gives a
natural way of unifying results of Chen et al. [3], and Yang [19], since all the tree families
treated there (k-ary trees, planted plane trees, labelled unordered trees) can be considered
as special instances of weighted trees; thus hook-length formulas for these tree families are
covered directly by our main result. Second also other interesting tree families, as e.g.,
Motzkin-trees and labelled cyclic trees, are equivalent to particular weighted tree models and
our approach easily leads to hook-length formulas for them. Third the approach presented
is flexible enough to cover also situations, where several hook-functions in the corresponding
hook-length formulas occur. This naturally appears when considering tree families, where the
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weight of a node v also depends on the depth of v; note that the depth of a node v in a rooted
tree is given by the number of ancestors of v including the node itself, i.e., it measures of nodes
on the unique path from v to the root node. Another such situation occurs when considering
so-called monotonically labelled tree families. Moreover, we consider so-called increasingly
labelled tree families and show that each hook-length formula for a weighted tree family
naturally corresponds to a hook-length formula for an increasingly labelled weighted tree
family.

We start with a quick review of the terminology. For a rooted tree T the hook-length of a
vertex v ∈ T , devoted by hv := h(v), is the number of descendants of node v, where we use
the convention that each node v is always considered to be a descendant of itself. For a given
weight-function ρ: N+ → C we can associate to any given tree T of some rooted tree family,
e.g., T being a binary tree or a planted plane tree, a hook-weight

whook(T ) :=
∏
v∈T

ρ(hv). (2)

In this context the function ρ is called hook-function or hook-weight-function. Han [8] derived
the following result for the family of binary trees. Let F (z) be the generating function of the
total hook-weights of trees of size n, i.e.,

F (z) =
∑
n≥1

( ∑
T∈B(n)

whook(T )
)
zn, (3a)

then the hook-function ρ satisfies

ρ(n) =
[zn]F (z)

[zn−1](1 + F (z))2
. (3b)

Here [zn] denotes the coefficient extraction operator and thus [zn]F (z) gives the coefficient of
zn in the formal power series expansion of F (z). Han used the relation (2) to obtain several
hook-length formulas for binary trees, where he used suitable choices of the formal power
series F (z). E.g., F (z) = ez − 1 gives the formula

n!
∑

T∈B(n)

∏
v∈T

1

hv2hv−1
= 1. (4)

Choosing F (z) = W (2z)
2z −1, where W (z) :=

∑
n≥1

nn−1

n! z
n shall throughout this paper always

denote the so-called “tree function” satisfying the functional equation W (z) = zeW (z), proves
formula (1) obtained by Postnikov.

As mentioned before, by using Han’s method, the results (3) for binary trees were extended
by Chen et al. [3] and by Yang [19] to other tree families, including k-ary trees, labelled
unordered trees and planted plane trees. These extensions were used to derive new hook-
length formulas for the before mentioned tree families. Moreover, Chen et al. [3] derived
hook-length formulas for forests of trees by suitable extensions of (3). In the next section we
will consider families of weighted trees and derive a relation generalizing (3), which unifies the
formulas given in [3, 19] and allows to derive hook-length formulas for further tree families
as exemplified by results for Motzkin-trees and labelled cyclic trees. In Section 3 we show
extensions of the approach leading to hook-length formulas including several hook-functions.
In Section 4 we consider hook-length formulas for increasing tree families.

Besides the notation introduced at other places, we denote, for a rooted tree T , by r := r(T )
the root-node of T and by |T | the size of T , i.e., the number vertices of T , whereas, for
any node v ∈ T , the out-degree (i.e., the number of children) of v is denoted by deg(v).
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Furthermore, EN(T ) denotes the set of end-nodes (= leaves) of a rooted tree T , i.e., all
vertices v satisfying deg(v) = 0 or equivalently hv = 1; analogous for the set of end-nodes
EN(F ) of a forest F . Moreover, for any given tree family S, we use S(n) to denote the tree
family containing all trees of S that have size n.

2. Weighted tree families and hook-length formulas

2.1. An expansion formula for weighted tree families. One of our main motivations
to consider weighted tree families is to obtain hook-length formulas for important and well-
studied combinatorial objects called simply generated tree families [13], sometimes also de-
noted as simple varieties of trees [4]. The basic objects considered in this context are ordered
trees, also called planted plane trees, i.e., rooted trees, where to each node v there is attached
a (possibly empty) sequence of child-nodes (thus the left-to-right order of the children is
important). Throughout this paper we denote by O the family of ordered trees. Different
simply generated tree models are then obtained by considering weighted ordered trees, where
each node v in an ordered tree T ∈ O gets a certain “degree-weight factor” depending on
the out-degree of v, i.e., the number of children of v, and the degree-weight of the tree T is
defined as the product of the degree-weight factors of all of its nodes. It is well-known that
many important (unweighted) combinatorial tree families are equivalent to such weighted tree
models, where the degree-weights are chosen in a specific way; see [4] and examples below.
We want to add that in a probabilistic context it is very natural to consider weighted trees
and, in particular, that in probability theory the combinatorial models of simply generated
trees are known as Galton-Watson-trees arising from certain branching processes, see, e.g.,
[1]. In this context the meaning of the degree-weight of a node is closely related to the prob-
ability that, during the branching process, a specific node gets a certain amount of children.
We note that for simply generated trees one always assumes that the degree-weight of a node
is a non-negative real number. However, for our purpose we can omit this restriction and
we will even allow that the degree-weights of the nodes are arbitrary complex numbers; the
obtained hook-length formulas for weighted trees still hold.

Formally, a family T of weighted ordered trees can be defined as follows. A sequence of
complex numbers (ϕj)j≥0 is used to define the multiplicative degree-weight ϕj of a node
with out-degree j. The degree-weight wdeg(T ) of any ordered tree T ∈ O is defined by
wdeg(T ) :=

∏
v∈T ϕdeg(v), i.e., as the product of all degree-weight factors of the vertices v of

T ; recall that deg(v) denotes the out-degree of a node v. In order to avoid degenerate cases we
always assume that ϕ0 6= 0. The family T consists then of all ordered trees T (or equivalently
of all ordered trees T with wdeg(T ) 6= 0) together with their degree-weights wdeg(T ), i.e., one
might think of pairs (T,wdeg(T )). According to a previous definition T (n) denotes the family
of weighted ordered trees of size n, i.e., all pairs (T,wdeg(T )), with |T | = n.

It follows from the definition that, for a given degree-weight sequence (ϕj)j≥0, the formal
power series T (z) :=

∑
n≥1 Tnz

n, where the quantity Tn :=
∑

T∈O(n)wdeg(T ) measures the

total degree-weights of ordered trees of size n, satisfies the functional equation

T (z) = zϕ
(
T (z)

)
;

the degree-weight generating function ϕ(t) is there given by ϕ(t) :=
∑

j≥0 ϕjt
j .

Next we describe the expansion technique for weighted ordered tree families to obtain hook-
length formulas for such tree models. Given a hook-weight function (or hook-function, for
short) ρ: N+ → C and a degree-weight sequence (ϕj)j≥0 (or alternatively its degree-weight
generating function ϕ(t) =

∑
j≥0 ϕjt

j) we can associate to any ordered tree T ∈ O a weight
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w(T ) := wdeg(T ) · whook(T ), which is defined as the product of the hook-weight whook(T ) :=∏
v∈T ρ(hv) and the degree-weight wdeg(T ) :=

∏
v∈T ϕdeg(v). Note that this definition of the

weight w(T ) of a tree T generalizes the weights associated to families of simply generated
trees, which, of course, can be recovered by using the constant hook-function ρ(n) = 1, for all
n ∈ N. The name expansion technique or expansion formula for the following theorem reflects
the fact that we start with an expansion of the power series (i.e., the generating function)
associated to the sum of the weights of all trees of a given size, which we use to derive the
hook-weight function involved.

Theorem 1. Given a family T of weighted ordered trees associated to a degree-weight gen-
erating function ϕ(t), let F (z) be the generating function of the total weights of trees of size
n, i.e.,

F (z) =
∑
n≥1

( ∑
T∈O(n)

w(T )
)
zn =

∑
n≥1

( ∑
T∈O(n)

wdeg(T ) ·
∏
v∈T

ρ(hv)
)
zn. (5a)

Then the hook-function ρ satisfies

ρ(n) =
[zn]F (z)

[zn−1]ϕ(F (z))
, n ≥ 1. (5b)

Proof. Let Fn = [zn]F (z). By definition we have

Fn =
∑

T∈O(n)

w(T ) =
∑

T∈O(n)

wdeg(T ) · whook(T ).

Following Han [8], see also Chen et al. [3] and Yang [19], we use the so-called top-bottom
decomposition of a tree, i.e., the decomposition of a rooted tree into the root-node r and the
subtrees attached to the root. We consider a tree T of size n ≥ 2 and assume that the root
r of T has out-degree j ≥ 1. Then the root-node gives a degree-weight factor ϕdeg(r) = ϕj
and a hook-weight factor ρ(hr) = ρ(n), whereas the subtrees T1, . . . , Tj dangling from the
root have certain degree-weights wdeg(T`) and hook-weights whook(T`), for 1 ≤ ` ≤ j. Due to
the multiplicative definition of the weight w(T ) of the tree T , we obtain thus the following
factorization:

w(T ) = wdeg(T ) · whook(T ) = ϕj · ρ(n)

j∏
`=1

(
wdeg(T`) · whook(T`)

)
= ϕj · ρ(n)

j∏
`=1

w(T`).

By considering all possible ways of building a tree of size n ≥ 2 we get

Fn =
∑

T∈O(n)

wdeg(T ) · whook(T ) = ρ(n)
∑
j≥1

ϕj
∑

n1+···+nj=n−1,
n1,...,nj≥1

∑
T1∈O(n1),...,Tj∈O(nj)

j∏
`=1

w(T`)

= ρ(n)
∑
j≥1

ϕj
∑

n1+···+nj=n−1,
n1,...,nj≥1

( ∑
T1∈O(n1)

w(T1)
)
·
( ∑
T2∈O(n2)

w(T2)
)
· · ·
( ∑
Tj∈O(nj)

w(Tj)
)

= ρ(n)
∑
j≥1

ϕj
∑

n1+···+nj=n−1,
n1,...,nj≥1

j∏
`=1

Fn` = ρ(n)[zn−1]ϕ
(
F (z)

)
.

It only remains to check the initial case n = 1. In accordance to the definition F1 = ϕ0 · ρ(1),

we get for n = 1 the equation ρ(1) = [z1]F (z)
[z0]ϕ(F (z))

= F1
ϕ0

, which shows that the theorem holds

for all n ≥ 1. �
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2.2. Applications to important tree models.

2.2.1. Unlabelled tree families. As already mentioned previously, various important combina-
torial tree families are equivalent to families of weighted ordered trees with specific degree-
weights. In particular this situation occurs if, for a rooted tree family S, there exists a
weighted ordered tree family T associated to a degree-weight generating function ϕ(t), such
that for each ordered tree T ∈ O the following relation holds:

wdeg(T ) =
∑
T ′∈S:

shape(T ′)=T

1,

where shape(T ′) = T , if there exists an isomorphism from the rooted tree T ′ to the ordered
tree T that also preserves the linear order of the children of the nodes. Let us now consider
an arbitrary hook-function ρ. Since the hook-weight is the same for all isomorphic trees, one
further gets, for each T ∈ O, the relation:

w(T ) = whook(T ) · wdeg(T ) =
∑

T ′∈S: shape(T ′)=T

whook(T ) =
∑

T ′∈S: shape(T ′)=T

whook(T ′),

which implies∑
T∈O(n)

w(T ) =
∑

T∈O(n)

∑
T ′∈S(n): shape(T ′)=T

whook(T ′) =
∑

T ′∈S(n)

whook(T ′). (6)

Thus, since F (z) =
∑

n≥1
∑

T∈O(n)w(T )zn =
∑

n≥1
∑

T ′∈S(n)whook(T ′)zn, relation (6) sim-

ply says that the hook-expansion formula (5) in Theorem 1 for the weighted tree family
T associated to the degree-weight generating function ϕ(t) exactly corresponds to a hook-
expansion formula for the family S.

Example 1. Of course, the family O of ordered trees (= planted plane trees) is contained in
our weighted ordered tree model by using the degree-weights ϕj = 1, for j ≥ 0, i.e., by using
the degree-weight generating function ϕ(t) = 1

1−t . The family B of binary trees, i.e., trees

where each node is either a leaf or it might have a left and/or a right child, is equivalent to
the weighted ordered tree model by choosing ϕ0 = 1, ϕ1 = 2, ϕ2 = 1, and ϕj = 0, for j ≥ 3,
i.e., ϕ(t) = (1 + t)2. More generally, the family Bk of k-ary trees, i.e., trees where each node
has exactly k positions, where a child might be attached or not, is equivalent to the family
of weighted ordered trees associated to ϕj =

(
k
j

)
, for j ≥ 0, and thus ϕ(t) = (1 + t)k. A

generalization of the before-mentioned tree models are so-called binomial families of trees,
which again can be modelled by weighted ordered trees, now associated to degree-weight
generating functions ϕ(t) = (1+st)α, with certain real parameters s and α. Thus Theorem 1
for weighted ordered trees covers the expansion techniques for the above tree families and
therefore unifies the corresponding results stated in [3, 10, 19].

Example 2. We further illustrate Theorem 1 by deriving hook-length formulas for another
important tree family, namely the familyM of Motzkin-trees, which, in this context, has not
been considered so far. Motzkin-trees, also called unary-binary trees, are rooted trees, where
each node has 0, 1, or 2 children. They are enumerated by the Motzkin-numbers and there
are close relations to Motzkin-paths (see, e.g., [4]). It is immediate from the definition that
M is equivalent to the family of weighted ordered trees associated to ϕj = 1, for 0 ≤ j ≤ 2,
and ϕj = 0, for j ≥ 3, and thus ϕ(t) = 1 + t + t2. Next we want to apply Theorem 1 with
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ϕ(t) = 1+t+t2 to the function F (z) = 1
2

(W (2z)
2z −1

)
. Using the Lagrange-Bürmann inversion

formula, see, e.g., [4], one easily obtains

[zn]F (z) = [zn]
1

2

(W (2z)

2z
− 1
)

=
2n(n+ 1)n

2(n+ 1)!
,

[zn−1]ϕ
(
F (z)

)
= [zn−1]

3

4
+

1

4

W (2z)2

(2z)2
=

{
2n(n+1)n−1

4(n+1)(n−1)! , for n ≥ 2,

1, for n = 1.

Formula (5) leads thus to the hook-function

ρ(n) =

{
2
(
1 + 1

n

)
, for n ≥ 2,

1, for n = 1.

This leads to the following hook-length formula for Motzkin-trees, which can be considered
as an analogon to formula (1) obtained by Postnikov for binary trees:

n!
∑

T∈M(n)

1

2|EN(T )|−1

∏
v∈T\EN(T )

(
1 +

1

hv

)
= (n+ 1)n−1. (7)

Moreover, with ϕ(t) = 1 + t+ t2 and by using the function F (z) = 1
2

(
ez − 1

)
, an application

of (5) immediately leads to the hook-function

ρ(n) =

{
1

n2n−2 , for n ≥ 2,
1
2 , for n = 1,

which shows the following analogue for Motzkin-trees of Han’s binary tree-formula (4):

n!
∑

T∈M(n)

1

2|EN(T )|−1

∏
v∈T\EN(T )

1

hv2hv−2
= 1. (8)

2.2.2. Labelled tree families. The model of weighted ordered trees is flexible enough to de-
scribe also various important labelled tree models, where we suppose that trees of size n are
labelled with distinct integers of the set {1, 2, . . . , n}. We consider now the following situa-
tion. We assume that, for a labelled rooted tree family S, there exists a weighted (unlabelled)
ordered tree family T associated to a degree-weight generating function ϕ(t), such that, for
each ordered tree T ∈ O, the following relation holds:

n! · wdeg(T ) =
∑
T ′∈S:

shape(T ′)=T

1.

Let us now consider an arbitrary hook-function ρ. Then one further obtains, for each T ∈ O,
the relation:

n! · w(T ) =
∑

T ′∈S: shape(T ′)=T

whook(T ′),

which implies∑
T∈O(n)

w(T ) =
∑

T∈O(n)

∑
T ′∈S(n): shape(T ′)=T

whook(T ′)

n!
=

∑
T ′∈S(n)

whook(T ′)

n!
. (9)

Thus, since F (z) =
∑

n≥1
∑

T∈O(n)w(T )zn =
∑

n≥1
∑

T ′∈S(n)whook(T ′) z
n

n! , the hook-expansion

formula (5) in Theorem 1 for the weighted tree family T associated to the degree-weight gen-
erating function ϕ(t) exactly corresponds to a hook-expansion formula for the labelled tree
family S.
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Example 3. The family U of labelled unordered trees, i.e., labelled rooted trees, where to
each node v in a tree there is attached a set of children (i.e., the left-to-right order of the
children is not taken into account), can be modelled by the weighted ordered tree family
T with degree-weights ϕj = 1/j!, for j ≥ 0, i.e., ϕ(t) = et. Thus Theorem 1 covers the
expansion technique for the family of labelled unordered trees, which appears in [3].

Example 4. As another example we consider the family C of so-called labelled cyclic trees
(also called labelled mobile trees) considered in [2, 4, 5]. Each node v in such a labelled tree
is either an end-node or there is attached a cycle of children, i.e., one might assume that the
children of each node are arranged via circular shifts such that the child with smallest label
is always the leftmost child. This family can be modelled by the weighted ordered tree family
T with degree-weights ϕ0 = 1 and ϕj = 1/j, for j ≥ 1, i.e., ϕ(t) = 1 + log

(
1

1−t
)
.

We apply now Theorem 1 with ϕ(t) = 1+log
(

1
1−t
)

to the function F (z) = 1−e−W (z). Using
the Lagrange-Bürmann inversion formula one easily obtains, for n ≥ 1:

[zn]F (z) =
(n− 1)n−1

n!
, [zn−1]ϕ

(
F (z)

)
=

{
(n−1)n−2

(n−1)! , for n ≥ 2,

1, for n = 1.

Formula (5) leads thus to the hook-function

ρ(n) =

{
1− 1

n , for n ≥ 2,

1, for n = 1.

This gives the following hook-length formula for labelled mobile trees, which also can be
considered as an analogue to formula (1):∑

T∈C(n)

∏
v∈T\EN(T )

(
1− 1

hv

)
= (n− 1)n−1. (10)

2.3. Formulas for forests of weighted trees. In [3] hook-length formulas for so-called
plane forests, i.e., sequences of ordered trees, and forests of labelled trees, i.e., sets of labelled
unordered trees, have been derived. In the following we consider certain forests of weighted
ordered trees, for which we will extend the expansion technique. By doing this one regains
the known expansion formulas for plane forests and forests of labelled trees, since they appear
as particular instances.

We assume that, for a family T of weighted ordered trees associated to a degree-weight
sequence (ϕj)j≥0, a hook-weight function ρ+: N→ C is given. Thus, as described in Subsec-
tion 2.1, we can define the weight w(T ) of an ordered tree T ∈ O as w(T ) = wdeg(T )·whook(T ),
with wdeg(T ) =

∏
v∈T ϕdeg(v) and whook(T ) =

∏
v∈T ρ(hv). Next we define weighted ordered

forests. Our basic objects are finite sequences F = (T1, . . . , Tk) of ordered trees T` ∈ O,
1 ≤ ` ≤ k, where we allow the empty sequence F = ε; we call such an object an ordered
forest. The family of ordered forests (also called plane forests) will be denoted by OF . The
size |F | of a forest F = (T1, . . . , Tk) is defined via |F | := |T1|+ · · ·+ |Tk|; additionally we set
|ε| = 0. To each ordered forest F ∈ OF we define a weight w(F ) as follows:

w(F ) := ϕk

k∏
`=1

w(T`), if F = (T1, . . . , Tk), and w(ε) = ϕ0.

The family F of weighted ordered forests consists then of all ordered forests F together with
the weights w(F ). If we consider the generating function F (z) :=

∑
n≥1

∑
T∈O(n)w(T )zn of

the total weights of trees of size n, and the generating functionG(z) :=
∑

n≥0
∑

F∈OF (n)w(F )zn
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of the total weights of forests of size n, then from the above definition of the weights the fol-
lowing relation between these generating functions easily follows:

G(z) = ϕ
(
F (z)

)
. (11)

In the following theorem we describe the expansion formula for weighted ordered forests.

Theorem 2. Given a family F of weighted ordered forests associated to a degree-weight
generating function ϕ(t) =

∑
j≥0 ϕjt

j, with ϕ0 6= 0 and ϕ1 6= 0, let G(z) be the generating
function of the total weights of forests of size n, i.e.,

G(z) =
∑
n≥0

∑
F∈OF (n)

w(F )zn. (12a)

Then the hook-weight function ρ satisfies

ρ(n) =
[zn]ϕ̃[−1](G(z)− ϕ0

)
[zn−1]G(z)

, n ≥ 1, (12b)

where ϕ̃(t) := ϕ(t)−ϕ0, and ϕ̃[−1](t) denotes the inverse function of ϕ̃(t), i.e., ϕ̃(ϕ̃[−1](t)) =

ϕ̃(ϕ̃[−1](t)) = t.

Proof. Due to ϕ1 6= 0 there exist numbers ψj , j ≥ 1, such that ϕ̃[−1](t) =
∑

j≥1 ψjt
j , i.e.,

there exists a formal power series representing the inverse function. From (11) one gets the
relation G(z) = ϕ0 + ϕ̃

(
F (z)

)
between the generating functions of weighted trees and forests,

which implies

F (z) =
∑
n≥1

∑
T∈O(n)

w(T )zn = ϕ̃[−1](G(z)− ϕ0

)
. (13)

Hence, when applying Theorem 1 to F (z) and using relation (13), we obtain

ρ(n) =
[zn]ϕ̃[−1]

(
G(z)− ϕ0

)
[zn−1]ϕ

(
ϕ̃[−1]

(
G(z)− ϕ0

)) =
[zn]ϕ̃[−1]

(
G(z)− ϕ0

)
[zn−1]

(
ϕ0 + ϕ̃

(
ϕ̃[−1](G(z)− ϕ0)

))
=

[zn]ϕ̃[−1]
(
G(z)− ϕ0

)
[zn−1]G(z)

, n ≥ 1.

�

Example 5. The theorems in [3] concerning expansion formulas for plane forests OF and
forests of labelled trees UF can be obtained from Theorem 2 by considering the degree-weight
generating functions ϕ(t) = 1/(1− t) (for plane forests), such that

ϕ̃[−1](t) = 1− 1

1 + t
, ρ(n) =

[zn]ϕ̃[−1](G(z)− 1
)

[zn−1]G(z)
=
−[zn]

(
G(z)

)−1
[zn−1]G(z)

, (14)

and ϕ(t) = et (for forests of labelled trees), such that

ϕ̃[−1](t) = log(1 + t), ρ(n) =
[zn]ϕ̃[−1](G(z)− 1

)
[zn−1]G(z)

=
[zn] logG(z)

[zn−1]G(z)
. (15)

Example 6. We consider the family of labelled cyclic forests CF , i.e., forests which consist
of sequences of labelled cyclic trees, where cyclic rearrangements of a particular sequence
of trees are considered to be equivalent; one might also say that the family CF consists of
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cycles of labelled cyclic trees. Thus they can be described by weighted ordered forests with
a degree-weight generating function ϕ(t) = 1 + log

(
1

1−t
)

= 1 +
∑

j≥1
1
j t
j and one gets:

ϕ̃[−1](t) = 1− e−t, ρ(n) =
[zn]ϕ̃[−1](G(z)− 1

)
[zn−1]G(z)

= − [zn]e−G(z)+1

[zn−1]G(z)
, n ≥ 1.

When considering the function G(z) = W (z) + 1, then one obtains, after applying the
Lagrange-Bürmann inversion formula, the following hook-length formula for the family CF of
labelled cyclic forests: ∑

F∈CF (n)

∏
v∈F\EN(F )

(
1− 1

hv

)
= nn−1. (16)

2.4. Combining hook-length formulas for partitions and trees. Theorem 1 can be
used in conjunction with existing hook-length formulas for integer partitions (see, e.g., [10]),
to derive new hook-length formulas, which might be more involved. We recall some basic
notation; for general definitions concerning the class P of integer partitions we refer to [18]
and for definitions in the context of hook-length formulas to [10]. A partition λ of an integer
n is a sequence of positive integers λ = (λ1, λ2, . . . , λ`) such that λ1 ≥ λ2 ≥ · · · ≥ λ` > 0 and
|λ| := λ1 + · · ·+ λ` = n; the family of partitions of n is denoted by P(n). For each box v in
the Ferrers diagram of a partition λ one defines the hook-length hv = h(v) of v as the number
of boxes u, such that either u = v, or u lies in the same column as v and above v, or u lies
in the same row as v and to the right of v. The hook-length multiset of λ, denoted by H(λ),
is the multiset of all hook-lengths of λ. In the following we give one particular example.

Example 7. We consider a family T of weighted ordered trees associated to a degree-weight
sequence (ϕj)j≥0. Let f(z) be the Nekrasov-Okounkov hook-length function for partitions
(see, e.g., [10]):

f(z) =
∑
λ∈P

z|λ|
∏

h∈H(λ)

(
1− x

h2

)
=
∏
k≥1

(1− zk)x−1, x ∈ C.

Note that extracting coefficients of f j(z) can be done easily by substituting x by jx− (j− 1)
in the previous formula, which gives

[zn]f j(z) = [zn]
∏
k≥1

(1− zk)jx−(j−1)−1 =
∑

λ∈P(n)

∏
h∈H(λ)

(
1− jx− (j − 1)

h2

)
, j ∈ N.

We define now F (z) := f(z)− 1 and apply Theorem 1 to this function. This yields

ρ(n) =
[zn]F (z)

[zn−1]ϕ(F (z))
=

[zn]f(z)

[zn−1]
∑n−1

`=0 ϕ` · (f(z)− 1)`
=

[zn]f(z)

[zn−1]
∑n−1

j=0 f
j(z)

∑n−1
`=j

(
`
j

)
(−1)`−jϕ`

.

Thus, we obtain the following formula combining hook-length formulas for the family T of
weighted ordered trees and the family P of integer partitions:

∑
T∈O(n)

∏
v∈T

( ϕdeg(v) ·
∑

λ∈P(hv)

∏
h∈H(λ)

(
1− x

h2

)
hv−1∑
j=0

hv−1∑
`=j

(
`

j

)
(−1)`−jϕ` ·

∑
λ∈P(hv−1)

∏
h∈H(λ)

(
1− jx− (j − 1)

h2

)
)

=
∑

λ∈P(n)

∏
h∈H(λ)

(
1− x

h2

)
, (17)
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where the denominator in the product on the left-hand side has to be interpreted as ϕ0

whenever hv = 1.

3. Generalizations to several hook-functions

Han’s expansion technique can also be applied to various other tree families, which are not
covered directly by the concept of weighted ordered trees as introduced in Section 2. In
the following we highlight the versatility of this method by studying several extensions of
Theorem 1, which contain more than one hook-weight-function.

3.1. Hook-length formulas with hook-functions depending on the depth of nodes.
We consider now weighted ordered trees, where the degree-weights of the nodes are depend-
ing also on the depth of the nodes. In particular we assume that there are two different

degree-weight sequences
(
ϕ
[1]
j

)
j≥0 and

(
ϕ
[2]
j

)
j≥0 (or, equivalently, two different degree-weight

generating functions ϕ[1](t) =
∑

j≥0 ϕ
[1]
j t

j and ϕ[2](t) =
∑

j≥0 ϕ
[2]
j t

j) and each node v of
out-degree j in an ordered tree gets, depending whether the depth of v is an odd or an

even number, the degree-weight factor ϕ
[1]
j or ϕ

[2]
j , respectively. We note that such kind of

weighted ordered trees arise naturally in various contexts (see, e.g., [12] for an example in
connection with bipartite planar maps) and they are known in the probabilistic literature as
certain two-type Galton-Watson trees, where nodes of type A only bear children of type B
and vice versa. For such tree families T we consider two different hook-weight-functions ρ[1]:
N+ → C and ρ[2]: N+ → C and each node v in the tree will get, depending on the parity of
the depth of v, a hook-weight factor ρ[1](hv) or ρ[2](hv), respectively. Moreover, for a given

ordered tree T ∈ O we define two different weights w[1](T ) and w[2](T ) as follows:

w[1](T ) := w
[1]
hook(T ) · w[1]

deg(T ) =
∏
v∈T :

depth(v)≡1 mod 2

(
ϕ
[1]
deg(v)ρ

[1](hv)
)
·

∏
v∈T :

depth(v)≡0 mod 2

(
ϕ
[2]
deg(v)ρ

[2](hv)
)
,

w[2](T ) := w
[2]
hook(T ) · w[2]

deg(T ) =
∏
v∈T :

depth(v)≡1 mod 2

(
ϕ
[2]
deg(v)ρ

[2](hv)
)
·

∏
v∈T :

depth(v)≡0 mod 2

(
ϕ
[1]
deg(v)ρ

[1](hv)
)
.

The following theorem describes the expansion technique for such kind of tree families.

Theorem 3. Given a weighted tree family T associated to degree-weight generating functions
ϕ[1](t) and ϕ[2](t), let F [1](z) and F [2](z) be the corresponding generating functions of the total
weights of trees of size n, i.e.,

F [1](z) =
∑
n≥1

( ∑
T∈O(n)

w[1](T )
)
zn, F [2](z) =

∑
n≥1

( ∑
T∈O(n)

w[2](T )
)
zn. (18a)

Then the hook-weight functions ρ[1] and ρ[2] satisfy, for n ≥ 1, the relations

ρ[1](n) =
[zn]F [1](z)

[zn−1]ϕ[1](F [2](z))
, ρ[2](n) =

[zn]F [2](z)

[zn−1]ϕ[2](F [1](z))
. (18b)

Proof. We only outline the main steps of the proof, since it is similar to the proof of Theo-

rem 1. Let F
[1]
n = [zn]F [1](z). By definition we have

F [1]
n =

∑
T∈O(n)

w[1](T ) =
∑

T∈O(n)

w
[1]
deg(T )w

[1]
hook(T ).
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Let us assume that the root r of a given size-n tree T has out-degree j ≥ 1. Then the weight

w[1](T ) factorizes into a degree-weight factor ϕ
[1]
d(r) = ϕ

[1]
j , a hook-weight factor ρ[1](hr) =

ρ[1](n), and factors corresponding to the j non-empty subtrees T`, 1 ≤ ` ≤ j, dangling from
the root. Note that, since the depths of all nodes contained in the j non-empty subtrees T`,
1 ≤ ` ≤ j, are in T increased by one, this leads, according to the definition of w[1](T ) and

w[2](T ), to a change of the corresponding weight-functions for the j subtrees and we obtain:

w[1](T ) = w
[1]
deg(T )w

[1]
hook(T ) = ϕ

[1]
j · ρ

[1](n) ·
j∏
`=1

(
w

[2]
deg(T`)w

[2]
hook(T`)

)
.

By considering all possible ways to build a tree of size n we get

F [1]
n =

∑
T∈O(n)

w
[1]
deg(T )w

[1]
hook(T ) = ρ[1](n)

∑
j≥1

ϕ
[1]
j

∑
n1+···+nj=n−1,

n1,...,nj≥1

∑
T1∈O(n1),...,Tj∈O(nj)

j∏
`=1

w[2](T`)

= ρ[1](n)
∑
j≥1

ϕ
[1]
j

∑
n1+···+nj=n−1,

n1,...,nj≥1

j∏
`=1

F [2]
n`

= ρ[1](n)[zn−1]ϕ[1]
(
F [2](z)

)
.

One easily checks that the formula is also valid for the initial case n = 1. The opposite case
concerning F [2](z) is proven similarly. �

We remark that for constant hook-weight functions ρ[1] = ρ[2] = 1 we obtain the simple
relations

F [1](z) = zϕ[1](F [2](z)), F [2](z) = zϕ[2](F [1](z)).

We illustrate Theorem 3 by the following example, which generalizes Theorem 2.4 of Chen
et al. [3]; it appears as the special instance k = `, a = b and u = w in the example below.

Example 8. We consider the degree-weight generating functions ϕ[1](t) = (1 + t)` and

ϕ[2](t) = (1 + t)k, with `, k ∈ N. Let g1(z) and g2(z) be implicitly defined by the functional
equations

g1(z) = (a− k)z
(
1 + g1(z)

) k(a−1)
a−k , g2(z) = (b− `)z

(
1 + g2(z)

) `(b−1)
b−` ,

and let

F [1](z) := (1 + g1(z))
ua
a−k − 1, F [2](z) := (1 + g2(z))

wb
b−` − 1.

Applying the Lagrange-Bürmann inversion formula yields:

[zn]F [1](z) =
ua

n!

n−1∏
i=1

(
ua+k(a−1)n−i(a−k)

)
, [zn]F [2](z) =

wb

n!

n−1∏
i=1

(
wb+`(b−1)n−i(b−`)

)
.

(19)

Furthermore, it holds [zn−1]ϕ[1](F [2](z)) = [zn−1](1 + g2(z))
wb`
b−` , and [zn−1]ϕ[2](F [1](z)) =

[zn−1](1+g1(z))
uak
a−k ; thus extracting coefficients can be done easily by using the relations (19)

and substituting w by w` and u by uk, respectively. An application of Theorem 3 shows then
the following hook-length formula for this family T of weighted ordered trees:∑

T∈O(n)

[ ∏
v∈T :

depth(v)≡1(2)

(
`

deg(v)

)
ua

wb`hv

∏hv−1
i=1

(
ua+ k(a− 1)hv − i(a− k)

)∏hv−2
i=1

(
wb`+ `(b− 1)(hv − 1)− i(b− `)

)
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×
∏
v∈T :

depth(v)≡0(2)

(
k

deg(v)

)
wb

uakhv

∏hv−1
i=1

(
wb+ `(b− 1)hv − i(b− `)

)∏hv−2
i=1

(
uak + k(a− 1)(hv − 1)− i(a− k)

)]

=
ua

n!

n−1∏
i=1

(
ua+ k(a− 1)n− i(a− k)

)
. (20)

Note that, for k = `, a = b and u = w, this weighted ordered trees have an interpretation as
k-ary trees, which exactly leads to the corresponding result stated in [3].

We remark that Theorem 3 can be generalized further in various ways. For example, one
may consider k ≥ 1 different degree-weight generating functions ϕ[`](t), 1 ≤ ` ≤ k, and also

k different hook-weight functions ρ[`]: N+ → C, 1 ≤ ` ≤ k, leading to k different weight
functions w[`](T ):

w[`](T ) := w
[`]
hook(T ) · w[`]

deg(T ) =
k∏
i=1

( ∏
v∈T :

depth(v)≡i−1+` mod k

ϕ
[i]
deg(v)ρ

[i](hv)

)
, 1 ≤ ` ≤ k.

We remark that such weighted ordered tree models are related to certain multitype Galton-
Watson trees. Similar to the proof of Theorem 3 one can show the following theorem (whose
proof is thus omitted) describing the expansion technique for such weighted ordered trees.

Theorem 4. Let the functions F [`](z), 1 ≤ ` ≤ k, defined as follows:

F [`](z) =
∑
n≥1

( ∑
T∈O(n)

w[`](T )
)
zn, (21a)

and additionally set F [k+1](z) := F [1](z). Then it holds

ρ[`](n) =
[zn]F [`](z)

[zn−1]ϕ[`](F [`+1](z))
, 1 ≤ ` ≤ k. (21b)

Note that Theorems 1, 3 correspond to the cases k = 1, 2 in Theorem 4, respectively.

3.2. Generalized monotonically labelled trees. We consider now families of weighted
ordered trees, where the nodes are labelled monotonically decreasing by elements of the set
{1, . . . , s}, i.e., the sequence of labels lying on any path from the root to an arbitrary node
in the tree is weakly monotone decreasing. Such tree structures generalize the notion of
simply generated trees, see Section 2, and were introduced1 by Prodinger and Urbanek [16],

and studied further in [7, 11]. For a given ordered tree T ∈ O let L[s](T ) denote the set
of monotone decreasing labellings of the nodes of T with elements of the set {1, 2, . . . , s};
each labelling L ∈ L[s](T ) maps the vertices v ∈ T to the integers {1, 2, . . . , s} in a suitable
way. We introduce now an extension of the model of weighted ordered trees, where the
degree-weight factor of a node v also depends on the label of v, i.e., if node v of out-degree

j is labelled by `, L(v) = `, then the degree-weight factor of v shall be given by ϕ
[`]
j . Thus,

1Originally such tree families were introduced by assuming that the nodes along any path starting at the
root of a tree are forming a weakly monotone increasing sequence; however, in the present context it is more
convenient to consider decreasing labellings.
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for given degree-weight generating functions ϕ[`](t) =
∑

j≥0 ϕ
[`]
j t

j , 1 ≤ ` ≤ s, we define the

degree-weight wdeg(T, L) of a tree T with labelling L ∈ L[s](T ) as follows:

wdeg(T, L) :=
∏
v∈T

ϕ
[L(v)]
deg(v).

Let Ts denote the family of such weighted ordered trees, where the nodes are labelled mono-
tonically decreasing by elements of {1, . . . , s}. It is not difficult to show (see, e.g., [11, 16])
that the generating functions Ts(z) :=

∑
n≥1

∑
T∈O(n)

∑
L∈L[s](T )wdeg(T, L)zn associated to

the families Ts satisfy the following system of functional equations:

T1(z) = zϕ[1](T1(z)), T`(z) = zϕ[`](T`(z)) + T`−1(z), 2 ≤ ` ≤ s.

In order to show hook-length formulas for these tree families it is natural to consider s hook-
weight functions ρ[`], 1 ≤ ` ≤ s, and define the weight w(T, L) of an ordered tree T ∈ O with

labelling L ∈ L[s](T ) as follows (i.e., also the hook-weight factor of a node v depends on the
label of v):

w(T, L) := wdeg(T, L)whook(T, L), wdeg(T, L) :=
∏
v∈T

ϕ
[L(v)]
deg(v), whook(T, L) :=

∏
v∈T

ρ[L(v)](hv).

The following theorem describes then the expansion technique for the families Ts of mono-
tonically labelled weighted ordered trees.

Theorem 5. Given a monotonically labelled weighted tree family Ts associated to degree-
weight generating functions ϕ[`](t), 1 ≤ ` ≤ s, let F`(z), 1 ≤ ` ≤ s, be the generating
functions of the total weights of monotonically labelled trees of T` of size n, i.e.,

F`(z) =
∑
n≥1

( ∑
T∈O(n)

∑
L∈L[`](T )

w(T, L)
)
zn, 1 ≤ ` ≤ s. (22a)

Then the hook-functions ρ[`], 1 ≤ ` ≤ s, satisfy

ρ[1](n) =
[zn]F1(z)

[zn−1]ϕ[1](F1(z))
, ρ[`](n) =

[zn]F`(z)− [zn]F`−1(z)

[zn−1]ϕ[`](F`(z))
, 2 ≤ ` ≤ s. (22b)

Proof. Since the proof uses the same ideas as used for the previous results we just sketch it.
Consider the function F`(z), with 2 ≤ ` ≤ s. By definition we have

[zn]F`(z) =
∑

T∈O(n)

∑
L∈L[`](T )

w(T, L)

=
∑

T∈O(n)

∑
L∈L[`](T ):L(r)=`

w(T, L) +
∑

T∈O(n)

∑
L∈L[`](T ):L(r)≤`−1

w(T, L)

=
∑

T∈O(n)

∑
L∈L[`](T ):L(r)=`

w(T, L) + [zn]F`−1(z).

Let us now assume that the root r of a given size-n tree T with labelling L has out-degree

j ≥ 1 and is labelled by `. Then the weight w(T, L) factorizes into a degree-weight factor ϕ
[`]
j ,

a hook-weight factor ρ[`](n), and factors w(Ti, Li) corresponding to the j subtrees Ti with
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labellings Li, 1 ≤ i ≤ j, dangling from the root. By considering all possible ways to build a
monotonically decreasing labelled tree of size n, such that the root is labelled by `, we get∑
T∈O(n)

∑
L∈L[`](T ):L(r)=`

w(T, L) = ρ[`](n)
∑
j≥1

ϕ
[`]
j

∑
n1+···+nj=n−1,

n1,...,nj≥1

j∏
i=1

∑
Ti∈T (ni)

∑
Li∈L[`](Ti)

w(Ti, Li)

= ρ[`](n)
∑
j≥1

ϕ
[`]
j

∑
n1+···+nj=n−1,

n1,...,nj≥1

j∏
i=1

[zni ]F`(z) = ρ[`](n)[zn−1]ϕ[`]
(
F`(z)

)
.

Combining these results shows the theorem for 2 ≤ ` ≤ s; the case ` = 1 corresponds to
unlabelled weighted ordered trees and has thus been proven in Theorem 1. �

Example 9. We illustrate Theorem 5 by considering monotonically labelled trees with
degree-weight generating functions ϕ[`](t) = (1 + t)`, 1 ≤ ` ≤ s, i.e., each node of label
` might be considered as an “`-ary node”. We will apply the expansion technique to func-
tions F`(z) = e

z
` − 1. Extracting coefficients according to (22) easily gives

ρ[1](n) =
1

n
, ρ[`](n) =

(
1

`n
− 1

(`− 1)n

)
1

n
, 2 ≤ ` ≤ s.

This shows the following hook-length formula for the family Ts:∑
T∈O(n)

∑
L∈L[s](T )

(∏
v∈T

(
L(v)

deg(v)

)
1

hv

)
·

∏
v∈T :L(v)>1

(
1

L(v)hv
− 1

(L(v)− 1)hv

)
=

1

snn!
. (23)

3.3. Trees with a special treatment of the root. Some combinatorial tree families (as,
e.g., plane trees as considered in [5], and so-called non-crossing trees [14]) are not equivalent
to weighted ordered trees as introduced in Section 2, since the root of any such tree has to be
treated in a separate way. However, one can easily extend the concept of weighted ordered
trees to cover also such situations.

We assume that there are two degree-weight generating functions, namely ϕ[r](t) =
∑

j≥1 ϕ
[r]
j t

j

for the root-node and ϕ[q](t) =
∑

j≥1 ϕ
[q]
j t

j for the non-root nodes, and two hook-weight func-

tions ρ[r] and ρ[q] for the root-node and non-root-nodes, respectively. For a given ordered tree

T ∈ O we define two different degree-weights w
[1]
deg(T ), w

[2]
deg(T ) and hook-weights w

[1]
hook(T ),

w
[2]
hook(T ) as follows:

w
[1]
deg(T ) := ϕ

[r]
deg(r)

∏
v∈T :v 6=r

ϕ
[q]
deg(v), w

[1]
hook(T ) := ρ

[r]
hr

∏
v∈T :v 6=r

ρ[q](hv),

w
[2]
deg(T ) :=

∏
v∈T

ϕ
[q]
deg(v), w

[2]
hook(T ) :=

∏
v∈T

ρ[q](hv).

A straightforward extension of the proof of Theorem 1 shows then the following expansion
formula for such tree families; thus we may omit the proof.

Theorem 6. For given degree-weight generating functions ϕ[r](t) and ϕ[q](t) let the functions
F (z) and G(z) defined as follows:

F (z) =
∑
n≥1

( ∑
T∈O(n)

w
[1]
deg(T )w

[1]
hook(T )

)
zn, G(z) =

∑
n≥1

( ∑
T∈O(n)

w
[2]
deg(T )w

[2]
hook(T )

)
zn. (24a)
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Then the hook-weight functions ρ[r] and ρ[q] satisfy the relations

ρ[r](n) =
[zn]F (z)

[zn−1]ϕ[r](G(z))
, ρ[q](n) =

[zn]G(z)

[zn−1]ϕ[q](G(z))
, n ≥ 1. (24b)

Example 10. A non-crossing tree is a tree whose vertices 1, 2, . . . , n are located at the
corners of a regular n-gon and whose edges are non-crossing straight line segments; the tree
is considered as being rooted at vertex 1. It is known that the family N of non-crossing
trees is equivalent to weighted ordered trees associated to degree-weight generating functions
ϕ[r](t) = 1

1−t and ϕ[q](t) = 1
(1−t)2 for the root-node and non-root-nodes, respectively (see, e.g.,

[14] and references therein). When applying Theorem 6 to the functions F (z) = G(z) = 1−ez
one easily obtains the following hook-length formula for the family N non-crossing trees:

(−1)n−1(n− 1)!
∑

T∈N (n)

∏
v∈T\r(T )

(−1)hv

hv2hv−1
= 1. (25)

4. Increasing trees and hook-length formulas

4.1. The hook-expansion formula for weighted increasing trees. Increasing trees are
labelled trees, where the nodes of a tree of size n are labelled by distinct integers of the set
{1, . . . , n} in such a way that each sequence of labels along any path starting at the root is
increasing. Several hook-length formulas appearing in the literature have an interpretation in
terms of increasing trees (see, e.g., [3, 6]). In the following we consider families of increasingly
labelled weighted ordered trees (weighted increasing trees for short), and show that hook-
length formulas for weighted ordered trees have a natural counterpart in hook-length formulas
for weighted increasing trees and vice versa.

Let us denote by Ô the family of ordered increasing trees, i.e., increasingly labelled ordered
trees. We assume that a degree-weight sequence (ϕj)j≥0, with ϕ0 6= 0, is given. Then,

analogous to weighted ordered trees, a family T̂ of weighted increasing trees can be defined
in the following way. The degree-weight wdeg(T̂ ) of any ordered increasing tree T̂ ∈ Ô is

defined by wdeg(T̂ ) :=
∏
v∈T̂ ϕdeg(v). The family T̂ consists then of all ordered increasing trees

T̂ together with their degree-weights wdeg(T̂ ). For a given degree-weight sequence (ϕj)j≥0
with a degree-weight generating function ϕ(t) :=

∑
j≥0 ϕjt

j , we define now the total degree-

weights by Tn :=
∑

T̂∈Ô(n)wdeg(T̂ ). It can be shown easily that the corresponding exponential

generating function T (z) :=
∑

n≥1 Tn
zn

n! satisfies the first order differential equation T ′(z) =

ϕ
(
T (z)

)
, with T (0) = 0.

Given a family T̂ of weighted increasing trees associated to a degree-weight generating func-
tion ϕ(t) we consider now a hook-weight-function ρ̂: N+ → C. Completely analogous to

Section 2 one can define the hook-weight ŵhook(T̂ ) and the weight w(T̂ ) of an increasing

ordered tree T̂ via ŵhook(T̂ ) :=
∏
v∈T̂ ρ̂(hv), and w(T̂ ) := wdeg(T̂ ) · ŵhook(T̂ ). Using the

decomposition of an ordered increasing tree into the root node and its subtrees as celebrated
earlier several times one can show the following expansion formula for weighted increasing
trees; however, we will skip this proof, since below we will give an easy argument leading to
it, too.

Theorem 7. Given a family T̂ of weighted increasing trees associated to a degree-weight
generating function ϕ(t), let F̂ (z) be the exponential generating function of the total weights
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of trees of size n, i.e.,

F̂ (z) =
∑
n≥1

( ∑
T̂∈Ô(n)

w(T̂ )
)
zn. (26a)

Then the hook-function ρ̂ satisfies

ρ̂(n) =
[zn−1]F̂ ′(z)

[zn−1]ϕ(F̂ (z))
=

n[zn]F̂ (z)

[zn−1]ϕ(F̂ (z))
, n ≥ 1. (26b)

4.2. Connections between weighted ordered trees and weighted increasing trees.
Alternatively, a family T̂ of weighted increasing trees can be defined also by starting with
a family T of weighted ordered trees associated to a degree-weight generating function ϕ(t)
and considering, for each ordered tree T ∈ O, all increasing labellings of it. Given an ordered
tree T we denote by LI(T ) the set of increasing labellings of T , i.e, labellings of the nodes of
the tree T with distinct integers from {1, 2, . . . , |T |} such that the sequence of labels along

any path starting at the root is increasing. Thus the members of a family T̂ of weighted
increasing trees could be considered as pairs (T, L), with T an ordered tree and L ∈ LI(T )
an increasing labelling, together with their degree-weights wdeg(T ) defined as for weighted
ordered trees.

It is well-known (see, e.g., [6]) and can be shown easily by induction, that for any ordered
tree T ∈ O(n) the number |LI(T )| of increasing labellings of T is given as follows:

|LI(T )| = n!∏
v∈T hv

.

Now, we consider a family T of weighted ordered trees, and also the corresponding family T̂
of weighted increasing trees, both associated to the degree-weight generating function ϕ(t).
Furthermore, we assume that for the family T a hook-weight function ρ: N+ → C and
for the family T̂ a hook-weight function ρ̂: N+ → C is given. The following lemma shows
that each hook-length formula for a weighted ordered tree family naturally corresponds to a
hook-length formula for the corresponding weighted increasing tree family and vice versa.

Lemma 8. If the hook-weight functions ρ̂ and ρ of the families T̂ and T , respectively, satisfy
the relation

ρ̂(n) = nρ(n),

then the following relation between the total weights of weighted increasing trees T̂ ∈ Ô(n)
and weighted ordered trees T ∈ O(n) holds:∑

T̂∈Ô(n)

wdeg(T̂ ) · ŵhook(T̂ ) = n!
∑

T∈O(n)

wdeg(T ) · whook(T ). (27)

Proof. ∑
T̂∈Ô(n)

wdeg(T̂ ) · ŵhook(T̂ ) =
∑

T∈O(n)

∑
L∈LI(T )

wdeg(T ) · ŵhook(T )

=
∑

T∈O(n)

wdeg(T )ŵhook(T ) · |LI(T )| =
∑

T∈O(n)

wdeg(T )
∏
v∈T

ρ̂(hv) ·
∏
v∈T

n!∏
v∈T hv

= n!
∑

T∈O(n)

wdeg(T )
∏
v∈T

ρ(hv) = n!
∑

T∈O(n)

wdeg(T ) · whook(T ).

�
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When assuming that ρ̂(n) = nρ(n) and defining the functions

F (z) =
∑
n≥1

∑
T∈O(n)

wdeg(T )whook(T )zn, F̂ (z) =
∑
n≥1

∑
T̂∈Ô(n)

wdeg(T̂ )ŵhook(T̂ )
zn

n!
,

we get F (z) = F̂ (z) by applying Lemma 8; thus an application of Theorem 1 also shows
Theorem 7.

Example 11. Let us denote by B̂ the family of increasingly labelled binary trees; it is
well-known that this tree-model is equivalent to so-called binary search trees generated by
permutations (see, e.g., [4]), which appear frequently in theoretical computer science. Using
(27) we obtain from Han’s formula (4) the following hook-length formula for increasingly
labelled binary trees (and for binary search trees):∑

T̂∈B̂(n)

∏
v∈T̂

1

2hv−1
= 1. (28)

We want to add that, when considering relation (27) with hook-weight-functions ρ(n) = 1
n

and ρ̂(n) = nρ(n) = 1, respectively, then ŵhook(T̂ ) = 1 for any tree T̂ ∈ Ô and the left-hand

side of (27) simply counts the total degree-weights of weighted increasing trees in T̂ of size
n. Since various weighted ordered tree models are equivalent to important combinatorial
tree families S as already mentioned previously, in such cases the left-hand side can be
interpreted simply as the number of increasingly labelled trees of S of size n. We add that
such a hook-function ρ(n) = 1

n corresponds to the relation F ′(z) = ϕ(F (z)) and F (0) = 0,

when considering the corresponding generating functions F (z) and F̂ (z).

Example 12. We consider exemplarily the case ϕ(t) = 1/(1− t)α, α > 0. The function F (z)

satisfying F ′(z) = ϕ(F (z)) and F (0) = 0 has the solution F (z) = 1 − (1 − (α + 1)z)1/(α+1).

Hence, we obtain [zn]F (z) =
∑

T∈O(n)wdeg(T ) ·whook(T ) = (α+ 1)n−1(n− 1)!
(n−1− 1

α+1
n−1

)
and

thus the hook-length formula∑
T∈O(n)

∏
v∈T

(
α− 1 + deg(v)

deg(v)

)
· n!∏

v∈T hv
= (α+ 1)n−1(n− 1)!

(
n− 1− 1

α+1

n− 1

)
, (29)

where the right-hand side has the interpretation of the total degree-weights of increasingly
labelled trees of T of size n. The case α = 1 corresponds to increasingly labelled ordered
trees (so-called plane recursive trees) and appears in [3].
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