
ar
X

iv
:1

10
1.

57
47

v2
  [

m
at

h.
C

O
] 

 1
 F

eb
 2

01
1

Rainbow connections of graphs – A survey∗

Xueliang Li, Yuefang Sun

Center for Combinatorics and LPMC-TJKLC

Nankai University, Tianjin 300071, P.R. China

E-mails: lxl@nankai.edu.cn, syf@cfc.nankai.edu.cn

Abstract

The concept of rainbow connection was introduced by Chartrand et al. in 2008. It

is fairly interesting and recently quite a lot papers have been published about it. In this

survey we attempt to bring together most of the results and papers that dealt with it.

We begin with an introduction, and then try to organize the work into five categories,

including (strong) rainbow connection number, rainbow k-connectivity, k-rainbow in-

dex, rainbow vertex-connection number, algorithms and computational complexity.

This survey also contains some conjectures, open problems or questions.
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1 Introduction

1.1 Motivation and definitions

Connectivity is perhaps the most fundamental graph-theoretic subject, both in combi-

natorial sense and the algorithmic sense. There are many elegant and powerful results on

connectivity in graph theory. There are also many ways to strengthen the connectivity con-

cept, such as requiring hamiltonicity, k-connectivity, imposing bounds on the diameter, and

so on. An interesting way to strengthen the connectivity requirement, the rainbow connec-

tion, was introduced by Chartrand, Johns, McKeon and Zhang [12] in 2008, which is restated

as follows:

This new concept comes from the communication of information between agencies of

government. The Department of Homeland Security of USA was created in 2003 in response
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1

http://arxiv.org/abs/1101.5747v2


to the weaknesses discovered in the transfer of classified information after the September

11, 2001 terrorist attacks. Ericksen [25] made the following observation: An unanticipated

aftermath of those deadly attacks was the realization that law enforcement and intelligence

agencies couldn’t communicate with each other through their regular channels, from radio

systems to databases. The technologies utilized were separate entities and prohibited shared

access, meaning that there was no way for officers and agents to cross check information

between various organizations.

While the information needs to be protected since it relates to national security, there

must also be procedures that permit access between appropriate parties. This two-fold issue

can be addressed by assigning information transfer paths between agencies which may have

other agencies as intermediaries while requiring a large enough number of passwords and

firewalls that is prohibitive to intruders, yet small enough to manage (that is, enough so

that one or more paths between every pair of agencies have no password repeated). An

immediate question arises: What is the minimum number of passwords or firewalls needed

that allows one or more secure paths between every two agencies so that the passwords along

each path are distinct?

This situation can be modeled by graph-theoretic model. Let G be a nontrivial connected

graph on which an edge-coloring c : E(G) → {1, 2, · · · , n}, n ∈ N, is defined, where adjacent

edges may be colored the same. A path is rainbow if no two edges of it are colored the same.

An edge-coloring graphG is rainbow connected if any two vertices are connected by a rainbow

path. An edge-coloring under which G is rainbow connected is called a rainbow coloring.

Clearly, if a graph is rainbow connected, it must be connected. Conversely, any connected

graph has a trivial edge-coloring that makes it rainbow connected; just color each edge with

a distinct color. Thus, we define the rainbow connection number of a connected graph

G, denoted by rc(G), as the smallest number of colors that are needed in order to make G

rainbow connected [12]. A rainbow coloring using rc(G) colors is called a minimum rainbow

coloring. So the question mentioned above can be modeled by means of computing the value

of rainbow connection number. By definition, if H is a connected spanning subgraph of G,

then rc(G) ≤ rc(H). For a basic introduction to the topic, we refer the readers to Chapter

11 in [16].

In addition to regarding as a natural combinatorial measure and its application for the

secure transfer of classified information between agencies, rainbow connection number can

also be motivated by its interesting interpretation in the area of networking [10]: Suppose

that G represents a network (e.g., a cellular network). We wish to route messages between

any two vertices in a pipeline, and require that each link on the route between the vertices

(namely, each edge on the path) is assigned a distinct channel (e.g. a distinct frequency).

Clearly, we want to minimize the number of distinct channels that we use in our network.

This number is precisely rc(G).

Let c be a rainbow coloring of a connected graph G. For any two vertices u and v of G,

a rainbow u − v geodesic in G is a rainbow u − v path of length d(u, v), where d(u, v) is

the distance between u and v in G. A graph G is strong rainbow connected if there exists a
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rainbow u−v geodesic for any two vertices u and v in G. In this case, the coloring c is called

a strong rainbow coloring of G. Similarly, we define the strong rainbow connection number

of a connected graph G, denoted src(G), as the smallest number of colors that are needed

in order to make G strong rainbow connected [12]. Note that this number is also called the

rainbow diameter number in [10]. A strong rainbow coloring of G using src(G) colors is

called a minimum strong rainbow coloring of G. Clearly, we have diam(G) ≤ rc(G) ≤
src(G) ≤ m, where diam(G) denotes the diameter of G and m is the size of G.

In a rainbow coloring, we only need to find one rainbow path connecting any two vertices.

So there is a natural generalizaiton: the number of rainbow paths between any two vertices

is at least an integer k with k ≥ 1 in some edge-coloring. A well-known theorem of Whitney

[55] shows that in every κ-connected graph G with κ ≥ 1, there are k internally disjoint u−v

paths connecting any two distinct vertices u and v for every integer k with 1 ≤ k ≤ κ. Similar

to rainbow coloring, we call an edge-coloring a rainbow k-coloring if there are at least k

internally disjoint u−v paths connecting any two distinct vertices u and v. Chartrand, Johns,

McKeon and Zhang [13] defined the rainbow k-connectivity rck(G) of G to be the minimum

integer j such that there exists a j-edge-coloring which is a rainbow k-coloring. A rainbow

k-coloring using rck(G) colors is called a minimum rainbow k-coloring. By definition,

rck(G) is the generalization of rc(G) and rc1(G) = rc(G) is the rainbow connection number

of G. By coloring the edges of G with distinct colors, we see that every two vertices of G

are connected by k internally disjoint rainbow paths and that rck(G) is defined for every

1 ≤ k ≤ κ. So rck(G) is well-defined. Furthermore, rck(G) ≤ rcj(G) for 1 ≤ k ≤ j ≤ κ.

Note that this new defined rainbow k-connectivity computes the number of colors, this

is distinct with connectivity (edge-connectivity) which computes the number of internally

(edge) disjoint paths. We can also call it rainbow k-connection number.

Now we introduce another generalization of rainbow connection number by Chartrand,

Okamoto and Zhang [15]. Let G be an edge-colored nontrivial connected graph of order n.

A tree T in G is a rainbow tree if no two edges of T are colored the same. Let k be a fixed

integer with 2 ≤ k ≤ n. An edge coloring of G is called a k-rainbow coloring if for every set

S of k vertices of G, there exists a rainbow tree in G containing the vertices of S. The k-

rainbow index rxk(G) of G is the minimum number of colors needed in a k-rainbow coloring

of G. A k-rainbow coloring using rxk(G) colors is called a minimum k-rainbow coloring.

Thus rx2(G) is the rainbow connection number rc(G) of G. It follows, for every nontrivial

connected graph G of order n, that rx2(G) ≤ rx3(G) ≤ · · · ≤ rxn(G).

The above four new graph-parameters are all defined in edge-colored graphs. Kriv-

elevich and Yuster [36] naturally introduced a new parameter corresponding to rainbow

connection number which is defined on vertex-colored graphs. A vertex-colored graph G

is rainbow vertex-connected if any two vertices are connected by a path whose internal

vertices have distinct colors. A vertex-coloring under which G is rainbow vertex-connected

is called a rainbow vertex-coloring. The rainbow vertex-connection number of a connected

graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to

make G rainbow vertex-connected. The minimum rainbow vertex-coloring is defined sim-
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ilarly. Obviously, we always have rvc(G) ≤ n − 2 (except for the singleton graph), and

rvc(G) = 0 if and only if G is a clique. Also clearly, rvc(G) ≥ diam(G)− 1 with equality if

the diameter of G is 1 or 2.

Note that rvc(G) may be much smaller than rc(G) for some graph G. For example,

rvc(K1,n−1) = 1 while rc(K1,n−1) = n − 1. rvc(G) may also be much larger than rc(G) for

some graph G. For example, take n vertex-disjoint triangles and, by designating a vertex

from each of them, add a complete graph on the designated vertices. This graph has n

cut-vertices and hence rvc(G) ≥ n. In fact, rvc(G) = n by coloring only the cut-vertices

with distinct colors. On the other hand, it is not difficult to see that rc(G) ≤ 4. Just color

the edges of the Kn with, say, color 1, and color the edges of each triangle with the colors

2, 3, 4.

In Section 2, we will focus on the rainbow connection number and strong rainbow con-

nection number. We collect many upper bounds for these two parameters. From Section 3

to Section 5, we survey on the other three parameters: rainbow k-connectivity, k-rainbow

index, rainbow vertex-connection number, respectively. In the last section, we sum up the

results on algorithms and computational complexity.

1.2 Terminology and notations

All graphs considered in this survey are finite, simple and undirected. We follow the

notations and terminology of [7] for all those not defined here. We use V (G) and E(G) to

denote the set of vertices and the set of edges of G, respectively. For any subset X of V (G),

let G[X ] denote the subgraph induced by X , and E[X ] the edge set of G[X ]; similarly, for

any subset F of E(G), let G[F ] denote the subgraph induced by F . Let G be a set of graphs,

then V (G) =
⋃

G∈G V (G), E(G) =
⋃

G∈G E(G). We define a clique in a graph G to be a

complete subgraph of G, and a maximal clique is a clique that is not contained in any larger

clique of G. For a set S, |S| denotes the cardinality of S. An edge in a connected graph

is called a bridge, if its removal disconnects the graph. A graph with no bridges is called

a bridgeless graph. A vertex is called pendant if its degree is 1. We call a path of G with

length k a pendant k-length path if one of its end vertex has degree 1 and all inner vertices

have degree 2 in G. By definition, a pendant k-length path contains a pendant ℓ-length path

(1 ≤ ℓ ≤ k). A pendant 1-length path is a pendant edge. We denote Cn a cycle with n

vertices. For n ≥ 3, the wheel Wn is constructed by joining a new vertex to every vertex of

Cn. We use g(G) to denote the girth of G, that is, the length of a shortest cycle of G.

Let G be a connected graph. Recall that the distance between two vertices u and v in G,

denoted by d(u, v), is the length of a shortest path between them in G. The eccentricity of a

vertex v is ecc(v) := maxx∈V (G) d(v, x). The diameter of G is diam(G) := maxx∈V (G) ecc(x).

The radius of G is rad(G) := minx∈V (G) ecc(x). Distance between a vertex v and a set

S ⊆ V (G) is d(v, S) := minx∈S d(v, x). The k-step open neighbourhood of a set S ⊆ V (G)

is Nk(S) := {x ∈ V (G)|d(x, S) = k}, k ∈ {0, 1, 2, · · · }. A set D ⊆ V (G) is called a k-step

dominating set of G, if every vertex in G is at a distance at most k from D. Further, if D
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induces a connected subgraph of G, it is called a connected k-step dominating set of G. The

cardinality of a minimum connected k-step dominating set in G is called its connected k-step

domination number, denoted by γk
c (G). We call a two-step dominating set k-strong [36] if

every vertex that is not dominated by it has at least k neighbors that are dominated by it.

In [11], Chandran, Das, Rajendraprasad and Varma made two new definitions which will be

useful in the sequel. A dominating set D in a graph G is called a two-way dominating set

if every pendant vertex of G is included in D. In addition, if G[D] is connected, we call D

a connected two-way dominating set. A (connected) two-step dominating set D of vertices

in a graph G is called a (connected) two-way two-step dominating set if (i) every pendant

vertex of G is included in D and (ii) every vertex in N2(D) has at least two neighbours in

N1(D). Note that if δ(G) ≥ 2, then every (connected) dominating set in G is a (connected)

two-way dominating set.

A subgraph H of a graph G is called isometric if distance between any pair of vertices in

H is the same as their distance in G. The size of a largest isometric cycle in G is denoted by

iso(G). A graph is called chordal if it contains no induced cycles of length greater than 3.

The chordality of a graph G is the length of a largest induced cycle in G. Note that every

isometric cycle is induced and hence iso(G) is at most the chordality of G. For k ≤ α(G),

we use σk(G) to denote the minimum degree sum that is taken over all independent sets of

k vertices of G, where α(G) is the number of elements of an maximum independent set of

G.

2 (Strong) Rainbow connection number

2.1 Basic results

In [12], Chartrand, Johns, McKeon and Zhang did some basic research on the (strong)

rainbow connection numbers of graphs. They determined the precise (strong) rainbow con-

nection numbers of several special graph classes including trees, complete graphs, cycles,

wheel graphs, complete bipartite graphs and complete multipartite graphs.

Proposition 2.1 [12] Let G be a nontrivial connected graph of size m. Then

(a) rc(G) = 1 if and only if G is complete, src(G) = 1 if and only if G is complete;

(b) rc(G) = 2 if and only if src(G) = 2;

(c) rc(G) = m if and only if G is a tree, src(G) = m if and only if G is a tree.

Proposition 2.2 [12] For each integer n ≥ 4, rc(Cn) = src(Cn) = ⌈n
2
⌉.

Proposition 2.3 [12] For each integer n ≥ 3, we have
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rc(Wn) =







1 if n = 3,

2 if 4 ≤ n ≤ 6,

3 if n ≥ 7.

and src(Wn) = ⌈n
3
⌉.

Proposition 2.4 [12] For integers s and t with 2 ≤ s ≤ t, rc(Ks,t) = min{⌈ s
√
t⌉, 4}, and

for integers s and t with 1 ≤ s ≤ t, src(Ks,t) = ⌈ s
√
t⌉.

Proposition 2.5 [12] Let G = Kn1,n2,...,nk
be a complete k-partite graph, where k ≥ 3 and

n1 ≤ n2 ≤ . . . ≤ nk such that s =
∑k−1

i=1 ni and t = nk. Then

rc(G) =







1 if nk = 1,

2 if nk ≥ 2 and s > t,

min{⌈ s
√
t⌉, 3} if s ≤ t.

and

src(G) =







1 if nk = 1,

2 if nk ≥ 2 and s > t,

⌈ s
√
t⌉ if s ≤ t.

By Proposition 2.1, it follows that for every positive integer a and for every tree T of size

a, rc(T ) = src(T ) = a. Furthermore, for a ∈ {1, 2}, rc(G) = a if and only if src(G) = a. If

a = 3, b ≥ 4, then by Proposition 2.3, rc(W3b) = 3 and src(W3b) = b. For a ≥ 4, we have

the following.

Theorem 2.6 [12] Let a and b be positive integers with a ≥ 4 and b ≥ 5a−6
3

. Then there

exists a connected graph G such that rc(G) = a and src(G) = b.

Then, combining Propositions 2.1 and 2.3 with Theorem 2.6, they got the following result.

Corollary 2.7 [12] Let a and b be positive integers. If a = b or 3 ≤ a < b and b ≥ 5a−6
3

,

then there exists a connected graph G such that rc(G) = a and src(G) = b.

Finally, they thought the question that whether the condition b ≥ 5a−6
3

can be deleted ?

and raised the following conjecture:

Conjecture 2.8 [12] Let a and b be positive integers. Then there exists a connected graph

G such that rc(G) = a and src(G) = b if and only if a = b ∈ {1, 2} or 3 ≤ a ≤ b.

In [19], Chen and Li gave a confirmative solution to this conjecture by showing a class of

graphs with given rainbow connection number a and strong rainbow connection number b.

From the above several propositions, we know rc(G) = src(G) hold for some special

graph classes. A difficult problem is following:
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Problem 2.9 Characterize graphs G for which rc(G) = src(G), or, give some sufficient

conditions to guarantee rc(G) = src(G).

Recall the fact that if H is a connected spanning subgraph of a nontrivial (connected)

graph G, then rc(G) ≤ rc(H). This fact is very useful to bounding the value of rc(G) by

giving bounds for its connected spanning subgraphs. We have noted that if, in addition,

diam(H) = 2, then src(G) ≤ src(H). The authors of [12] naturally raised the following

conjecture:

Conjecture 2.10 [12] If H is a connected spanning subgraph of a nontrivial (connected)

graph G, then src(G) ≤ src(H).

Recently, this conjecture was disproved by Chakraborty, Fischer, Matsliah and Yuster

[10]. They showed the following example: see Figure 2.1, here G is obtained from H by

adding the edge e = uv, then H is a connected spanning subgraph of G. It is easy to show

that there is a strong rainbow coloring of H which costs six colors, but the graph G costs at

least seven colors to ensure its strong rainbow connection.

H

u v

Figure 2.1 A counterexample to Conjecture 2.10.

Suppose that G contains two bridges e = uv and f = xy. Then G− e− f contains three

components Gi(1 ≤ i ≤ 3), where two of these components contain one of u, v, x and y and

the third component contains two of these four vertices, say u ∈ V (G1), x ∈ V (G2) and

v, y ∈ V (G3). If S is a set of k vertices contains u and x, then every tree whose vertex set

contains S must also contain the edges e and f . This gives us a necessary condition for an

edge-colored graph to be k-rainbow colored.

Observation 2.11 [15] Let G be a connected graph of order n containing two bridges e and

f . For each integer k with 2 ≤ k ≤ n, every k-rainbow coloring of G must assign distinct

colors to e and f .

From Observation 2.11, we know that if G is rainbow connected under some edge-coloring,

then any two bridges obtain distinct colors.
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2.2 Upper bounds for rainbow connection number

We know that it is almost impossible to give the precise rainbow connection number of

a given arbitrary graph, so we aim to give some nice bounds for it, especially sharp upper

bounds.

In [9], Caro, Lev, Roditty, Tuza and Yuster investigated the extremal graph-theoretic

behavior of rainbow connection number. Motivated by the fact that there are graphs with

minimum degree 2 and with rc(G) = n−3 (just take two vertex-disjoint triangles and connect

them by a path of length n − 5), it is interesting to study the rainbow connection number

of graphs with minimum degree at least 3 and they thought of the following question: is it

true that minimum degree at least 3 guarantees rc(G) ≤ αn where α < 1 is independant of

n? This turns out to be true, and they proved:

Theorem 2.12 [9] If G is a connected graph with n vertices and δ(G) ≥ 3, then rc(G) < 5
6
n.

In the proof of Theorem 2.12, they first gave an upper bound for the rainbow connection

number of 2-connected graphs (see Theorem 2.23), then from it, they next derived an upper

bound for the rainbow connection number of connected bridgeless graphs (see Theorem 2.25).

The constant 5/6 appearing in Theorem 2.12 is not optimal, but it probably cannot be

replaced with a constant smaller than 3
4
, since there are 3-regular connected graphs with

rc(G) = diam(G) = 3n−10
4

, and one of such graphs can be constructed as follows [53]:

Take two vertex disjoint copies of the graph K5 − P3 and label the two vertices of degree

2 with w1 and w2k+2, where k ≥ 1 is an integer. Next join w1 and w2k+2 by a path of

length 2k + 1 and label the vertices with w1, w2, · · · , w2k+2. Now for 1 ≤ i ≤ k every edge

w2iw2i+1 is replaced by a K4 − e and we identify the two vertices of degree 2 in K4 − e

with w2i and w2i+1. The resulting graph G4k+10 is 3-regular, has order n = 4k + 10 and

rc(G4k+10) = diam(G4k+10) = 3k + 5 = 3n−10
4

. Then Caro, Lev, Roditty, Tuza and Yuster

conjectured:

Conjecture 2.13 [9] If G is a connected graph with n vertices and δ(G) ≥ 3, then rc(G) <
3
4
n.

Schiermeyer proved the conjecture in [53] by showing the following result:

Theorem 2.14 [53] If G is a connected graph with n vertices and δ(G) ≥ 3, then rc(G) <
3n−1
4

.

For 2-connected graphs Theorem 2.14 is true by Theorem 2.23. Hence it remains to

prove it for graphs with connectivity 1. Schiermeyer extended the concept of rainbow con-

nection number as follows: Additionally we require that any two edges of G have different

colors whenever they belong to different blocks of G. The corresponding rainbow connection

8



number will be denoted by rc∗(G). Then they derived Theorem 2.14 by first proving the

following result: let G be a connected graph with n vertices, connectivity 1, and δ ≥ 3, then

rc∗(G) ≤ 3n−10
4

.

Not surprisingly, as the minimum degree increases, the graph would become more dense

and therefore the rainbow connection number would decrease. Specifically, Caro, Lev,

Roditty, Tuza and Yuster also proved the following upper bounds in term of minimum

degree.

Theorem 2.15 [9] If G is a connected graph with n vertices and minimum degree δ, then

rc(G) ≤ min{n ln δ
δ

(1 + oδ(1)), n
4 ln δ + 3

δ
}.

In the proof, they used the concept of a connected two-dominating set (A set of vertices

S of G is called a connected two-dominating set if S induces a connected subgraph of G and,

furthermore, each vertex outside of S has at least two neighbours in S) and the probabilistic

method. They showed that in any case it cannot be improved below 3n
δ+1

− δ+7
δ+1

as they

constructed a connected n-vertex graph with minimum degree δ and this diameter: Take

m copies of Kδ+1, denoted by X1, · · · , Xm and label the vertices of Xi with xi,1, · · · , xi,δ+1.

Take two copies of Kδ+2, denoted by X0, Xm+1 and similarly label their vertices. Now,

connect xi,2 with xi+1,1 for i = 0, · · · , m with an edge, and delete the edges (xi,1, xi,2) for

i = 0, · · · , m + 1. The obtained graph has n = (m + 2)(δ + 1) + 2 vertices, and minimum

degree δ (and maximum degree δ + 1). It is straightforward to verify that a shortest path

from x0,1 to xm+1,2 has length 3m+ 5 = 3n
δ+1

− δ+7
δ+1

.

This, naturally, raised the open problem of determining the true behavior of rc(G) as a

function of δ.

In [10], Chakraborty, Fischer, Matsliah and Yuster proved that any connected n-vertex

graph with minimum degree Θ(n) has a bounded rainbow connection.

Theorem 2.16 [10] For every ǫ > 0 there is a constant C = C(ǫ) such that if G is a

connected graph with n vertices and minimum degree at least ǫn, then rc(G) ≤ C.

The proof of Theorem 2.16 is based upon a modified degree-form version of Szemerédi

Regularity Lemma (see [35] for a good survey on Regularity Lemma) that they proved.

The above lower bound construction suggests that the logarithmic factor in their upper

bound may not be necessary and that, in fact rc(G) ≤ Cn/δ where C is a universal constant.

If true, notice that for graphs with a linear minimum degree ǫn, this implies that rc(G) is at

most C/ǫ. However, Theorem 2.16 does not even guarantee the weaker claim that rc(G) is a

constant. The constant C = C(ǫ) they obtained is a tower function in 1/ǫ and in particular

extremely far from being reciprocal to 1/ǫ.

Finally, Krivelevich and Yuster in [36] determined the behavior of rc(G) as a function of

δ(G) and resolved the above-mentioned open problem.
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Theorem 2.17 [36] A connected graph G with n vertices has rc(G) < 20n
δ(G)

.

The proof of Theorem 2.17 uses the concept of connected two-step dominating set. Kriv-

elevich and Yuster first proved that for a connected graph H with minimum degree k and

n vertices, there exists a two-step dominating set S whose size is at most n
k+1

and there

is a connected two-step dominating set S ′ containing S with |S ′| ≤ 5|S| − 4. They found

two edge-disjoint spanning subgraphs in a graph G with minimum degree at least ⌊ δ−1
2
⌋.

Then they derived a rainbow coloring for G by giving a rainbow coloring to each subgraphs

according to its connected two-step dominating set.

The authors noted that the constant 20 obtained by their proof is not optimal and can be

slightly improved with additional effort. However, from the example below Theorem 2.15,

one cannot expect to replace C by a constant smaller than 3.

Motivated by the results of Theorems 2.14, 2.15 and 2.17, Schiermeyer raised the following

open problem in [53].

Problem 2.18 [53] For every k ≥ 2 find a minimal constant ck with 0 < ck ≤ 1 such that

rc(G) ≤ ckn for all graphs G with minimum degree δ(G) ≥ k. Is it true that ck = 3
k+1

for

all k ≥ 2 ?

This is true for k = 2, 3 as shown before (c2 = 1 and c3 =
3
4
).

Recently, Chandran, Das, Rajendraprasad and Varma [11] nearly settled the above prob-

lem. They used the concept of a connected two-way two-step dominating set in the argument

and they first proved the following result.

Theorem 2.19 [11] If D is a connected two-way two-step dominating set in a graph G, then

rc(G) ≤ rc(G[D]) + 6.

Furthermore, they gave a nearly sharp bound for the size of D by showing that every

connected graph G of order n ≥ 4 and minimum degree δ has a connected two-way two-step

dominating set D of size at most 3n
δ+1

− 2; moreover, for every δ ≥ 2, there exist infinitely

many connected graphs G such that γ2
c (G) ≥ 3(n−2)

δ+1
− 4. Then the following result is easy.

Theorem 2.20 [11] For every connected graph G of order n and minimum degree δ,

rc(G) ≤ 3n

δ + 1
+ 3.

Moreover, for every δ ≥ 2, there exist infinitely many connected graphs G such that rc(G) ≥
3(n−2)
δ+1

− 1.

Theorem 2.20 answers Problem 2.18 in the affirmative but up to an additive constant

of 3. Moreover, this bound is seen to be tight up to additive factors by the construction
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mentioned in [9] (see the example below Theorem 2.15) and [23]. And therefore, for graphs

with linear minimum degree ǫn, the rainbow connection number is bounded by a constant.

Recently, Dong and Li [22] derived an upper bound on rainbow connection numbers of

graphs under given degree sum condition σ2. Recall that for a graph G, σ2(G) = min{d(u)+
d(v) | u, v are independent in G}. Clearly, the degree sum condition σ2 is weaker than the

minimum degree condition.

Theorem 2.21 [22] For a connected graph G of order n, rc(G) ≤ 6 n−2
σ2+2

+ 7.

Similar to the method of Theorem 2.20, they derived that every connected graph G of

order n with at most one pendant vertex has a connected two-way two-step dominating set

D of size at most 6 n−2
σ2+2

+ 2. Then by using Theorem 2.19, they got the theorem.

From the example below Theorem 2.15, we know their bound are seen to be tight up to

additive factors. Note that by the definition of σ2, we know σ2 ≥ 2δ, so from Theorem 2.21,

we can derive rc(G) ≤ 6 n−2
σ2+2

+ 7 ≤ 3(n−2)
δ+1

+ 7. And the bound in Theorem 2.21 can be seen

as an improvement of that in Theorem 2.20.

With respect to the the relation between rc(G) and the connectivity κ(G), mentioned in

[53], Broersma asked a question at the IWOCA workshop:

Problem 2.22 [53] What happens with the value rc(G) for graphs with higher connectivity?

For κ(G) = 1, Theorem 2.14 means that if G is a graph of order n, connectivity κ(G) = 1

and δ ≥ 3. Then rc(G) ≤ 3n−1
4

. For κ(G) = 2, in the proof of Theorem 2.12, as we mentioned

above, Caro, Lev, Roditty, Tuza and Yuster derived:

Theorem 2.23 [9] If G is a 2-connected graph with n vertices then rc(G) ≤ 2n
3
.

That is, if G is a graph of order n, connectivity κ(G) = 2. Then rc(G) ≤ 2n
3
.

From Theorem 2.20, we can easily obtain an upper bound of the rainbow connection

number according to the connectivity:

rc(G) ≤ 3n

δ + 1
+ 3 ≤ 3n

κ+ 1
+ 3.

Therefore, for κ(G) = 3, rc(G) ≤ 3n
4
+ 3; for κ(G) = 4, rc(G) ≤ 3n

5
+ 3. Motivated by the

results in [9], and by using the Fan Lemma, Li and Shi [41] improved this bound by showing

the following result.

Theorem 2.24 ([41]) If G is a 3-connected graph with n vertices, then rc(G) ≤ 3(n+1)
5

.

However, for general connectivity, there is no upper bound which is better than 3n
κ+1

+ 3.

The following result is an important ingredient in the proof of Theorem 2.12 in [9].
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Theorem 2.25 [9] If G is a connected bridgeless graph with n vertices, then rc(G) ≤ 4n
5
−1.

From Theorem 2.20, we can also easily obtain an upper bound of the rainbow connection

number according to the edge-connectivity λ:

rc(G) ≤ 3n

δ + 1
+ 3 ≤ 3n

λ+ 1
+ 3.

Note that all the above upper bounds are determined by n and other parameters such as

(edge)-connectivity, minimum degree. Diameter of a graph, and hence its radius, are obvious

lower bounds for rainbow connection number. Hence it is interesting to see if there is an

upper bound which is a function of the radius r or diameter alone. Such upper bounds were

shown for some special graph classes in [11] which we will introduce in the sequel. But, for a

general graph, the rainbow connection number cannot be upper bounded by a function of r

alone. For instance, the star K1,n has a radius 1 but rainbow connection number n. Still, the

question of whether such an upper bound exists for graphs with higher connectivity remains.

Basavaraju, Chandran, Rajendraprasad and Ramaswamy [4] answered this question in the

affirmative. The key of their argument is the following lemma, and in the proof of this

lemma, we can obtain a connected (k − 1)-step dominating set from a connected k-step

dominating set.

Lemma 2.26 [4] If G is a bridgeless graph, then for every connected k-step dominating set

Dk of G, k ≥ 1, there exists a connected (k − 1)-step dominating set Dk−1 ⊃ Dk such that

rc(G[Dk−1]) ≤ rc(G[Dk]) + min{2k + 1, ζ},

where ζ = iso(G).

Given a graph G and a set D ⊂ V (G), A D-ear is a path P = (x0, x1, · · · , xp) in G

such that P ∩ D = {x0, xp}. P may be a closed path, in which case x0 = xp. Further,

P is called an acceptable D-ear if either P is a shortest D-ear containing (x0, x1) or P is

a shortest D-ear containing (xp−1, xp). Let A = {a1, a2, · · · } and B = {b1, b2, · · · } be two

pools of colors, none of which are used to color G[Dk]. A Dk-ear P = (x0, x1, · · · , xp) will

be called evenly colored if its edges are colored a1, a2, · · · , a⌈ p
2
⌉, b⌊ p

2
⌋, · · · , b2, b1 in that order.

Basavaraju, Chandran, Rajendraprasad and Ramaswamy proved this lemma by constructing

a sequence of sets Dk = D0 ⊂ D1 ⊂ · · · ⊂ Dt = Dk−1 and coloring the new edges in every

induced graph G[Di] such that the following property is maintained for all 0 ≤ i ≤ t: every

x ∈ Di\Dk lies in an evenly colored acceptable Dk-ear in G[Di].

The following theorem can be derived from Lemma 2.26 easily.

Theorem 2.27 [4] For every connected bridgeless graph G,

rc(G) ≤
r

∑

i=1

min{2i+ 1, ζ} ≤ rζ,

where r is the radius of G.
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Theorem 2.27 has two corollaries.

Corollary 2.28 [4] For every connected bridgeless graph G with radius r,

rc(G) ≤ r(r + 2).

Moreover, for every integer r ≥ 1, there exists a bridgeless graph with radius r and rc(G) =

r(r + 2).

Corollary 2.29 [4] For every connected bridgeless graph G with radius r and chordality k,

rc(G) ≤
r

∑

i=1

min{2i+ 1, k} ≤ rk.

Moreover, for every two integers r ≥ 1 and 3 ≤ k ≤ 2r + 1, there exists a bridgeless graph

G with radius r and chordality k such that rc(G) =
∑r

i=1min{2i+ 1, k}.

Corollary 2.28 answered the above question in the affirmative, the bound is sharp and is a

function of the radius r alone. Basavaraju, Chandran, Rajendraprasad and Ramaswamy also

demonstrated that the bound cannot be improved even if we assume stronger connectivity

by constructing a κ-vertex-connected graph of radius r whose rainbow connection number

is r(r + 2) for any two given integers κ, r ≥ 1: Let s(0) := 0, s(i) := 2
∑r−i+1

j=r j for 1 ≤ i ≤ r

and t := s(r) = r(r + 1). Let V = V0 ⊎ V1 ⊎ · · · ⊎ Vt where Vi = {xi,0, xi,1, · · · , xi,κ−1} for

0 ≤ i ≤ t− 1 and Vt = {xt,0}. Construct a graph Xr,κ on V by adding the following edges.

E(X) = {{xi,j, xi′,j′} : |i− i′| ≤ 1} ∪ {{xs(i),0, xs(i+1),0} : 0 ≤ i ≤ r − 1}.

Corollary 2.29 generalises a result from [11] that the rainbow connection number of any

bridgeless chordal graph is at most three times its radius as the chordality of a chordal graph

is three.

In [9], Caro, Lev, Roditty, Tuza and Yuster also derived a result which gives an upper

bound for rainbow connection number according to the order and the number of vertex-

disjoint cycles. Here χ′(G) is the chromatic index of G.

Theorem 2.30 [9] Suppose G is a connected graph with n vertices, and assume that there

is a set of vertex-disjoint cycles that cover all but s vertices of G. Then rc(G) < 3n/4 +

s/4− 1/2. In particular:

(i). If G has a 2-factor then rc(G) < 3n/4.

(ii). If G is k-regular and k is even then rc(G) < 3n/4.

(iii). If G is k-regular and χ′(G) = k then rc(G) < 3n/4.

Another approach for achieving upper bounds is based on the size (number of edges) m

of the graph. Those type of sufficient conditions are known as Erdős-Gallai type results.

Research on the following Erdős-Gallai type problem has been started in [34].
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Problem 2.31 [34] For every k, 1 ≤ k ≤ n−1, compute and minimize the function f(n, k)

with the following property: If |E(G)| ≥ f(n, k), then rc(G) ≤ k.

In [34], Kemnitz and Schiermeyer gave a lower bound for f(n, k), i.e., f(n, k) ≥
(

n−k+1
2

)

+

(k−1). They also computed f(n, k) for k ∈ {1, n−2, n−1}, i.e., f(n, 1) =
(

n
2

)

, f(n, n−1) =

n− 1, f(n, n− 2) = n, and obtained f(n, 2) =
(

n−1
2

)

+ 1 for k = 2.

In [48], Li and Sun provided a new approach to investigate the rainbow connection

number of a graph G according to some constraints to its complement graph G. They gave

two sufficient conditions to guarantee that rc(G) is bounded by a constant. By using the

fact that rc(G) ≤ rc(H) where H is a connected spanning subgraph of a connected graph G,

and the structure of its complement graph as well as Propositions 2.4 and 2.5, they derived

the following result.

Theorem 2.32 [48] For a connected graph G, if G does not belong to the following two

cases: (i) diam(G) = 2, 3, (ii) G contains exactly two connected components and one of

them is trivial, then rc(G) ≤ 4. Furthermore, this bound is best possible.

For the remaining cases, rc(G) can be very large as discussed in [48]. So They add a

constraint: let G be triangle-free, then G is claw-free. And they derived the following result.

In their argument, Theorem 2.40 is useful.

Theorem 2.33 [48] For a connected graph G, if G is triangle-free, then rc(G) ≤ 6.

The readers may consider the rainbow connection number of a graph G according to

some other condition to its complement graph.

Chen, Li and Lian [17] investigated Nordhaus-Gaddum-type result. A Nordhaus-Gaddum-

type result is a (sharp) lower or upper bound on the sum or product of the values of a parame-

ter for a graph and its complement. The name “Nordhaus-Gaddum-type” is so given because

it is Nordhaus and Gaddum [49] who first established the following type of inequalities for

chromatic number of graphs in 1956.

Theorem 2.34 [17] Let G and G be connected with n ≥ 4, then

4 ≤ rc(G) + rc(G) ≤ n + 2.

Furthermore, the upper bound is sharp for n ≥ 4 and the low bound is sharp for n ≥ 8.

They also proved that rc(G)+ rc(G) ≥ 6 for n = 4, 5; and rc(G)+ rc(G) ≥ 5 for n = 6, 7

and these bounds are best possible.
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2.3 For some graph classes

Some graph classes, such as line graphs, have many special properties, and by these

properties we can get some interesting results on their rainbow connection numbers in terms

of some graph parameters. For example, in [9] Caro, Lev, Roditty, Tuza and Yuster derived

Theorem 2.23 according to the ear-decomposition of a 2-connected graph. In this subsection,

we will introduce some results on rainbow connection numbers of line graphs, etc.

In [42] and [43], Li and Sun studied the rainbow connection numbers of line graphs in

the light of particular properties of line graphs shown in [30] and [31]. They gave two sharp

upper bounds for rainbow connection number of a line graph and one sharp upper bound

for rainbow connection number of an iterated line graph.

Recall the line graph of a graph G is the graph L(G) (or L1(G)) whose vertex set

V (L(G)) = E(G), and two vertices e1, e2 of L(G) are adjacent if and only if they are

adjacent in G. The iterated line graph of a graph G, denoted by L2(G), is the line graph

of the graph L(G). More generally, the k-iterated line graph Lk(G) is the line graph of

Lk−1(G) (k ≥ 2). We also need the following new terminology.

For a connected graph G, we call G a clique-tree-structure, if it satisfies the following

condition: each block is a maximal clique. We call a graph H a clique-forest-structure,

if H is a disjoint union of some clique-tree-structures, that is, each component of a clique-

forest-structure is a clique-tree-structure. By the above condition, we know that any two

maximal cliques of G have at most one common vertex. Furthermore, G is formed by its

maximal cliques. The size of a clique-tree(forest)-structure is the number of its maximal

cliques. An example of clique-forest-structure is shown in Figure 2.2. If each block of a

Figure 2.2 A clique-forest-structure with size 6 and 2 components.

clique-tree-structure is a triangle, we call it a triangle-tree-structure. Let ℓ be the size

of a triangle-tree-structure. Then, by definition, it is easy to show that there are 2ℓ + 1

vertices in it. Similarly, we can give the definition of a triangle-forest-structure and there

are 2ℓ+ c vertices in a triangle-forest-structure with size ℓ and c components. We denote n2

the number of inner vertices (degrees at least 2) of a graph.

Theorem 2.35 [43] For any set T of t edge-disjoint triangles of a connected graph G, if
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the subgraph induced by the edge set E(T ) is a triangle-forest-structure, then

rc(L(G)) ≤ n2 − t.

Moreover, the bound is sharp.

Theorem 2.36 [43] If G is a connected graph, T is a set of t edge-disjoint triangles that

cover all but n′
2 inner vertices of G and c is the number of components of the subgraph

G[E(T )], then

rc(L(G)) ≤ t+ n′
2 + c.

Moreover, the bound is sharp.

Theorem 2.37 [43] Let G be a connected graph with m edges and m1 pendant 2-length

paths. Then

rc(L2(G)) ≤ m−m1.

The equality holds if and only if G is a path of length at least 3.

In the proofs of the above three theorems, Li and Sun used the particular structure of

line graphs and the observation: If G is a connected graph and {Ei}i∈[t] is a partition of the

edge set of G into connected subgraphs Gi = G[Ei], then rc(G) ≤
∑t

i=1 rc(Gi) (see [42]).

The above three theorems give upper bounds for rainbow connection number of Lk(G)(k =

1, 2) according to some parameters of G. One may consider the relation between rc(G) and

rc(L(G)).

Problem 2.38 Determine the relationship between rc(G) and rc(L(G)), is there an upper

bound for one of these parameters in terms of the other?

One also can consider the rainbow connection number of the general iterated line graph

Lk(G) when k is sufficiently large.

Problem 2.39 Consider the value of rc(Lk(G)) as k → ∞, is it bounded by a constant?

or, does it convergence to a function of some graph parameters, such as the order n of G?

For Problem 2.39, we know if G is a cycle Cn (n ≥ 4), then Lk(G) = G, so rc(Lk(G)) =

⌈n
2
⌉. But for many graphs, we know, as k grows, Lk(G) will become more dense, and

rc(Lk(G)) may decrease.

An intersection graph of a family of sets F , is a graph whose vertices can be mapped

to the sets in F such that there is an edge between two vertices in the graph if and only

if the corresponding two sets in F have a non-empty intersection. An interval graph is

an intersection graph of intervals on the real line. A unit interval graph is an intersection
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graph of unit length intervals on the real line. A circular arc graph is an intersection

graph of arcs on a circle. An independant triple of vertices x, y, z in a graph G is an

asteroidal triple (AT ), if between every pair of vertices in the triple, there is a path that

does not contain any neighbour of the third. A graph without asteroidal triples is called

an AT -free graph [20]. A graph G is a threshold graph, if there exists a weight function

w : V (G) → R and a real constant t such that two vertices u, v ∈ V (G) are adjacent if and

only if w(u) + w(v) ≥ t. A bipartite graph G(A,B) is called a chain graph if the vertices

of A can be ordered as A = (a1, a2, · · · , ak) such that N(a1) ⊆ N(a2) ⊆ · · · ⊆ N(ak) [56].

In [11], Chandran, Das, Rajendraprasad and Varma investigated the rainbow connection

numbers of these special graph classes. They first showed a result concerning the connected

two-way dominating sets.

Theorem 2.40 [11] If D is a connected two-way dominating set in a graph G, then

rc(G) ≤ rc(G[D]) + 3.

They also proved that every connected graph G of order n and minimum degree δ has a

connected two-step dominating set D of size at most 3(n−|N2(D)|)
δ+1

− 2.

From Theorem 2.40, the following result can be derived.

Theorem 2.41 [11] Let G be a connected graph with δ(G) ≥ 2. Then

(i) if G is an interval graph, diam(G) ≤ rc(G) ≤ diam(G) + 1, in particular, if G is a unit

interval graph, then rc(G) = diam(G);

(ii) if G is AT -free, diam(G) ≤ rc(G) ≤ diam(G) + 3;

(iii) if G is a threshold graph, diam(G) ≤ rc(G) ≤ 3;

(iv) if G is a chain graph, diam(G) ≤ rc(G) ≤ 4;

(v) if G is a circular arc graph, diam(G) ≤ rc(G) ≤ diam(G) + 4.

Moreover, there exist threshold graphs and chain graphs with minimum degree at least 2 and

rainbow connection number equal to the corresponding upper bound above. There exists an

AT -free graph G with minimum degree at least 2 and rc(G) = diam(G) + 2, which is 1 less

than the upper bound above.

Recall that the concept of rainbow connection number is of great use in transferring

information of high security in multicomputer networks. Cayley graphs are very good models

that have been used in communication networks. So, it is of significance to study the rainbow

connection numbers of Cayley graphs. Li, Li and Liu [38] investigated the rainbow connection

numbers of cayley graphs on Abelian groups.

Let Γ be a group, and let a ∈ Γ be an element. We use 〈a〉 to denote the cyclic subgroup

of Γ generated by a. The number of elements of 〈a〉 is called the order of a, denoted by |a|.
A pair of elements a and b in a group commutes if ab = ba. A group is Abelian if every

pair of its elements commutes. A Cayley graph of Γ with respect to S is the graph C(Γ, S)

with vertex set Γ in which two vertices x and y are adjacent if and only if xy−1 ∈ S (or

equivalently, yx−1 ∈ S), where S ⊆ Γ \ {1} is closed under taking inverse [52].
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Theorem 2.42 [38] Given an Abelian group Γ and an inverse closed set S ⊆ Γ \ {1}, we
have the following results:

(i) rc(C(Γ, S)) ≤ min{
∑

a∈S∗⌈|a|/2⌉ | S∗ ⊆ S is a minimal generating set of Γ}.

(ii) If S is an inverse closed minimal generating set of Γ, then

∑

a∈S∗

⌊|a|/2⌋ ≤ rc(C(Γ, S)) ≤ src(C(Γ, S)) ≤
∑

a∈S∗

⌈|a|/2⌉,

where S∗ ⊆ S is a minimal generating set of Γ.

Moreover, if every element a ∈ S has an even order, then

rc(C(Γ, S)) = src(C(Γ, S)) =
∑

a∈S∗

|a|/2.

They also investigated the rainbow connection numbers of recursive circulants (see [50]

for an introduction to recursive circulants).

Let G be an r-regular graph with n vertices. G is said to be strongly regular and denoted

by SRG(v, k, λ, µ) if there are also integers λ and µ such that every two adjacent vertices

have λ common neighbours and every two nonadjacent vertices have µ common neighbours.

Clearly, a strongly regular graph with parameters (v, k, λ, µ) is connected if and only if µ ≥ 1.

In [1], Ahadi and Dehghan derived the following result: For every connected strongly regular

graph G, rc(G) ≤ 600. As each strongly regular graph is a graph with diam(G) = 2, from

our next subsection (Theorem 2.51), we know rc(G) ≤ 5 if G is a strongly regular graph

with parameters (v, k, λ, µ), other than a star [39]. But 5 may not be the optimal upper

bound, so one may consider the following question.

Question 2.43 [1] Determine max{rc(G)| G is an SRG}.

There are other results on some special graph classes. In [14], Chartrand, Johns, McK-

eon and Zhang investigated the rainbow connection numbers of cages, and in [33], Johns,

Okamoto and Zhang investigated the rainbow connection numbers of small cubic graphs.

The details are omitted.

2.4 For dense and sparse graphs

For any given graph G, we know 1 ≤ rc(G) ≤ src(G) ≤ m. Here a graph G is called

a dense graph if its (strong) rainbow connection number is small, especially it is close to

1; while G is called a sparse graph if its (strong) rainbow connection number is large,

especially it is close to m. By Proposition 2.1, the cases that rc(G) = 1, src(G) = 1 and

rc(G) = m, src(G) = m are clear. So we want to investigate other cases.
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In [9], Caro, Lev, Roditty, Tuza and Yuster investigated the graphs with small rainbow

connection numbers, and they gave a sufficient condition that guarantees rc(G) = 2.

Theorem 2.44 [9] Any non-complete graph with δ(G) ≥ n/2 + log n has rc(G) = 2.

We know that having diameter 2 is a necessary requirement for having rc(G) = 2, al-

though certainly not sufficient (e.g., consider a star). Clearly, if δ(G) ≥ n/2 then diam(G) =

2, but we do not know if this guarantees rc(G) = 2. The above theorem shows that by slightly

increasing the minimum degree assumption, rc(G) = 2 follows.

Kemnitz and Schiermeyer [34] gave a sufficient condition to guarantee rc(G) = 2 accord-

ing to the number of edges m.

Theorem 2.45 [34] Let G be a connected graph of order n and size m. If
(

n−1
2

)

+1 ≤ m ≤
(

n
2

)

− 1, then rc(G) = 2.

Let G = G(n, p) denote, as usual [3], the random graph with n vertices and edge proba-

bility p. For a graph property A and for a function p = p(n), we say that G(n, p) satisfies A

almost surely if the probability that G(n, p(n)) satisfies A tends to 1 as n tends to infinity.

We say that a function f(n) is a sharp threshold function for the property A if there are

two positive constants c and C so that G(n, cf(n)) almost surely does not satisfy A and

G(n, p) satisfies A almost surely for all p ≥ Cf(n). It is well known that all monotone graph

properties have a sharp threshold function (see [6] and [27]). Since having rc(G) ≤ 2 is

a monotone graph property (adding edges does not destroy this property), it has a sharp

threshold function. The following theorem establishes it.

Theorem 2.46 [9] p =
√

logn/n is a sharp threshold function for the graph property

rc(G(n, p)) ≤ 2.

Theorem 2.44 asserts that minimum degree n/2 + logn guarantees rc(G) = 2. Clearly,

minimum degree n/2 − 1 does not, as there are connected graphs with minimum degree

n/2− 1 and diameter 3 (just take two vertex-disjoint cliques of order n/2 each and connect

them by a single edge. It is therefore interesting to raise:

Problem 2.47 [9] Determine the minimum degree threshold that guarantees rc(G) = 2.

By Proposition 2.1, we know that the problem of considering graphs with rc(G) = 2 is

equivalent to that of considering graphs with src(G) = 2.

A bipartite graph which is not complete has diameter at least 3. A proof similar to that

of Theorem 2.46 gives the following result.
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Theorem 2.48 [9] Let c = 1/log(9/7). If G is a non-complete bipartite graph with n vertices

and any two vertices in the same vertex class have at least 2clog n common neighbors in the

other vertex class, then rc(G) = 3.

The following theorem asserts however that having diameter 2 and only logarithmic

minimum degree suffices to guarantee rainbow connection 3.

Theorem 2.49 [10] If G is an n-vertex graph with diameter 2 and minimum degree at least

8 logn, then rc(G) ≤ 3.

Since a graph with minimum degree n/2 is connected and has diameter 2, we have as

an immediate result [10]: If G is an n-vertex graph with minimum degree at least n/2 then

rc(G) ≤ 3. We know that any graph G with rc(G) = 2 must have diam(G) = 2, so graphs

with rc(G) = 2 belong to the graph class with diam(G) = 2. By Corollary 2.28, we know

that for a bridgeless graph with diam(G) = 2, rc(G) ≤ r(r+2) ≤ 8. As rc(G) is at least the

number of bridges of G, so it may be very large if the number of bridges of G is sufficiently

large by Observation 2.11. So there is an interesting problem:

Problem 2.50 For any bridgeless graph G with diam(G) = 2, determine the smallest con-

stant c such that rc(G) ≤ c.

Recently, Li, Li and Liu [39] derived that c ≤ 5 by showing the following result:

Theorem 2.51 [39] rc(G) ≤ 5 if G is a bridgeless graph with diameter 2; and that rc(G) ≤
k + 2 if G is a connected graph with diameter 2 and k bridges, where k ≥ 1.

In the proof, Li, Li and Liu derived that if G is a bridgeless graph with order n and

diameter 2, then it is either 2-connected, or it has only one cut vertex v, furthermore, v

is the center of G with radius 1. They showed that 5 is almost best possible as there are

infinity many bridgeless graphs with diameter 2 whose rainbow connection numbers are 4,

however they have not found examples of such graphs with rc(G) = 5. The bound k + 2 is

sharp as there are infinity graphs with diameter 2 and k bridges whose rainbow connection

numbers attain this bound [39].

In [46] and [47], Li and Sun investigated the graphs with large rainbow connection num-

bers and strong rainbow connection numbers, respectively. They derived the two following

results. Note that each path Pj in the member of graph class Gi (1 ≤ i ≤ 4) of Figure 2.3

may be trivial.

Theorem 2.52 [46] For a connected graph G with m edges, we have rc(G) 6= m − 1; and

rc(G) = m − 2 if and only if G is a 5-cycle or belongs to one of four graph classes Gi’s

(1 ≤ i ≤ 4) shown in Figure 2.3.
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Figure 2.3 The figure for the four graph classes.

We now introduce two graph classes. Let C be the cycle of a unicyclic graph G, V (C) =

{v1, · · · , vk} and TG = {Ti : 1 ≤ i ≤ k} where Ti is the unique tree containing vertex vi in

subgraph G\E(C). We say Ti and Tj are adjacent (nonadjacent) if vi and vj are adjacent

(nonadjacent) in cycle C. Then let

G5 = {G : G is a unicyclic graph, k = 3, TG contains at most two nontrivial elements},
G6 = {G : G is a unicyclic graph, k = 4, TG contains two nonadjacent trivial elements and

the other two (nonadjacent) elements are paths}.

Theorem 2.53 [47] For a connected graph G with m edges, src(G) 6= m−1; src(G) = m−2

if and only if G is a 5-cycle or belongs to one of the Gi’s (i = 5, 6).

By Proposition 2.1, Theorems 2.52 and 2.53, we investigated the graphs with rc(G) ≥
m− 2 (src(G) ≥ m− 2). Furthermore, we have the following interesting problem.

Problem 2.54 Give a sufficient condition to guarantee rc(G) ≥ αm (src(G) ≥ αm), where

0 < α < 1.

2.5 For graph operations

Products of graphs occur naturally in discrete mathematics as tools in combinatorial

constructions, they give rise to important classes of graphs and deep structural problems.

The extensive literature on products that has evolved over the years presents a wealth

of profound and beautiful results [32]. In [46], Li and Sun obtained some results on the

rainbow connection numbers of products of graphs, including Cartesian product, composition

(lexicographic product), union of graphs, etc. Actually, we know that the line graph of a

graph is also a graph operation.

We first introduce the rainbow connection number of the Cartesian product of some

graphs. The Cartesian product of graphs G and H is the graph G�H whose vertex set

is V (G) × V (H) and whose edge set is the set of all pairs (u1, v1)(u2, v2) such that either

u1u2 ∈ E(G) and v1 = v2, or v1v2 ∈ E(H) and u1 = u2. The strong product of G and H is

the graph G⊠H whose vertex set is V (G)× V (H) and whose edge set is the set of all pairs
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(u1, v1)(u2, v2) such that either u1u2 ∈ E(G) and v1 = v2, or v1v2 ∈ E(H) and u1 = u2, or

u1u2 ∈ E(G) and v1v2 ∈ E(H). By definition, the graph G�H is the spanning subgraph of

the graph G ⊠ H . By using the definition and structure of Cartesian product, Li and Sun

derived the following.

Theorem 2.55 [46] Let G∗ = G1�G2� · · ·�Gk (k ≥ 2), where each Gi (1 ≤ i ≤ k) is

connected. Then we have

rc(G∗) ≤
k

∑

i=1

rc(Gi).

Moreover, if diam(Gi) = rc(Gi) for each Gi, then the equality holds.

We know that there are infinity many graph with diam(G) = rc(G), such as the unit

interval graphs shown in Theorem 2.41. The following problem could be interesting but

maybe difficult:

Problem 2.56 Characterize the graphs G with rc(G) = diam(G), or give some sufficient

conditions to guarantee that rc(G) = diam(G).

Similar problem for src(G) can be considered.

Let G∗ = G1 ⊠G2 ⊠ · · ·⊠Gk (k ≥ 2), where each Gi (1 ≤ i ≤ k) is connected. Since the

Cartesian product of any two graphs is a spanning subgraph of their strong product, G∗ is

the spanning subgraph of G∗, then we have the following result.

Corollary 2.57 [46] Let G∗ = G1 ⊠ G2 ⊠ · · · ⊠ Gk (k ≥ 2), where each Gi (1 ≤ i ≤ k) is

connected. Then we have

rc(G∗) ≤
k

∑

i=1

rc(Gi).

For i = 1, 2, · · · , r, let mi ≥ 2 be given integers. Consider the graph G whose vertices

are the r-tuples b1b2 · · · br with bi ∈ {0, 1, · · · , mi−1}, and let two vertices be adjacent if the

corresponding tuples differ in precisely one place. Such a graph is called a Hamming graph.

Clearly, a graph G is a Hamming graph if and only if it can be written in the form G =

Km1�Km2 · · ·�Kmr for some r ≥ 1, where mi ≥ 2 for all i. So we call G a Hamming graph

with r factors. A Hamming graph is a hypercube (or r-cube) [28], denoted by Qr, if and only

mi = 2 for all i. The concept of Hamming graph is useful in communication networks [32].

Corollary 2.58 [46] If G is a Hamming graph with r factors, then rc(G) = r. In particular,

rc(Qr) = r.

The composition (lexicographic product) of two graphs G and H is the simple graph

G[H ] with vertex set V (G)× V (H) in which (u, v) is adjacent to (u′, v′) if and only if either
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uu′ ∈ E(G) or u = u′ and vv′ ∈ E(H). By definition, G[H ] can be obtained from G by

substituting a copy Hv of H for every vertex v of G and by joining all vertices of Hv with

all vertices of Hu if uv ∈ E(G). Note that G[H ] is connected if and only if G is connected.

By definition, it is easy to show: If G is complete, then diam(G[H ]) = 1 if H is complete

(as now G[H ] is complete), diam(G[H ]) = 2 if H is not complete; If G is not complete, then

diam(G[H ]) = diam(G). Then we have the following result.

Theorem 2.59 [46] If G and H are two graphs and G is connected, then we have

(1) if H is complete, then

rc(G[H ]) ≤ rc(G).

In particular, if diam(G) = rc(G), then rc(G[H ]) = rc(G).

(2) if H is not complete, then

rc(G[H ]) ≤ rc(G) + 1.

In particular, if diam(G) = rc(G), then diam(G[H ]) = 2 if G is complete and rc(G) ≤
diam(G[H ]) ≤ rc(G) + 1 if G is not complete.

In [46], Li and Sun also investigated other graph operations, such as the union of graphs

which we will not introduce here.

2.6 An upper bound for strong rainbow connection number

The topic of rainbow connection number is fairly interesting and recently a series papers

have been published about it. The strong rainbow connection number is also interesting, and

by definition, the investigation of it is more challenging than that of the rainbow connection

number. However, there are very few papers that have been published about it. In [12],

Chartrand, Johns, McKeon and Zhang determined the precise strong rainbow connection

numbers for some special graph classes including trees, complete graphs, wheels and complete

bipartite (multipartite) graphs as shown in Subsection 2.1. However, for a general graph G,

it is almost impossible to give the precise value for src(G), so we aim to give upper bounds

for it according to some graph parameters. Li and Sun [47] derived a sharp upper bound for

src(G) according to the number of edge-disjoint triangles (if exist) in a graph G, and give

a necessary and sufficient condition for the sharpness. We need to introduce a new graph

class.

Recall that a block of a connected graph G is a maximal connected subgraph without a

cut vertex. Thus, every block of G is either a maximal 2-connected subgraph or a bridge.

We now introduce a new graph class. For a connected graph G, we say G ∈ Gt, if it satisfies

the following conditions:

C1. Each block of G is a bridge or a triangle;

C2. G contains exactly t triangles;
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C3. Each triangle contains at least one vertex of degree two in G.

By the definition, each graph G ∈ Gt is formed by (edge-disjoint) triangles and paths

(may be trivial), these triangles and paths fit together in a treelike structure, and G contains

no cycles but the t (edge-disjoint) triangles. For example, see Figure 2.4, here t = 2, and

u2

u1

u3

T1

T2

u4

u5 u6

u7

u8

G TG

u1

u3

u4

u5

u7

u8

Figure 2.4 An example of G ∈ Gt with t = 2.

u1, u2 and u6 are vertices of degree 2 in G. If a tree is obtained from a graph G ∈ Gt by

deleting one vertex of degree 2 from each triangle, then we call this tree is a D2-tree of G,

denoted by TG. For example, in Figure 2.4, TG is a D2-tree of G. Clearly, the D2-tree is

not unique, since in this example, we can obtain another D2-tree by deleting the vertex u1

instead of u2. On the other hand, we can say that any element of Gt can be obtained from

a tree by adding t new vertices of degree 2. It is easy to show that the number of edges of

TG is m− 2t where m is the number of edges of G.

They derived the following result.

Theorem 2.60 [47] If G is a graph with m edges and t edge-disjoint triangles, then

src(G) ≤ m− 2t,

the equality holds if and only if G ∈ Gt.

In [1], Ahadi and Dehghan also derived an upper bound for strongly regular graph: if G

is an SRG(n, r, λ, µ), then src(G) ≤ ⌈(e(4µr− 4µλ− 6µ+ 1))
1
µ ⌉. However, we do not know

whether it is sharp.

Unlike rainbow connection number, which is a monotone graph property (adding edges

never increases the rainbow connection number), this is not the case for the strong rainbow

connection number (see Figure 2.1 for an example). The investigation of strong rainbow

connection number is much harder than that of rainbow connection number. Chakraborty,

Fischer, Matsliah and Yuster gave the following conjecture.

Conjecture 2.61 [10] If G is a connected graph with minimum degree at least ǫn, then it

has a bounded strong rainbow connection number.
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3 Rainbow k-connectivity

In this section, we survey the results on rainbow k-connectivity. By its definition, we know

that it is difficult to derive exact value or a nice upper bound of the rainbow k-connectivity

for a general graph. Chartrand, Johns, McKeon and Zhang [13] did some basic research

on the rainbow k-connectivity of two special graph classes. They first studied the rainbow

k-connectivity of the complete graph Kn for various pairs k, n of integers, and derived the

following result:

Theorem 3.1 [13] For every integer k ≥ 2, there exists an integer f(k) such that if n ≥
f(k), then rck(Kn) = 2.

They obtained an upper bound (k + 1)2 for f(k), namely f(k) ≤ (k + 1)2. Li and Sun

[44] continued their investigation, and the following result is derived:

Theorem 3.2 [44] For every integer k ≥ 2, there exists an integer f(k) = ck
3
2 +C(k) where

c is a constant and C(k) = o(k
3
2 ) such that if n ≥ f(k), then rck(Kn) = 2.

From Theorem 3.2, we can obtain an upper bound ck
3
2 + C(k) for f(k), where c is a

constant and C(k) = o(k
3
2 ), that is, they improved the upper bound of f(k) from O(k2)

to O(k
3
2 ), a considerable improvement. Dellamonica, Magnant and Martin [21] got the

best possible upper bound 2k, which is linear in k (see Theorem 3.3). However, the proof

of Theorem 3.2 is more structural or constructive, and informative. In the argument of

[21], Dellamonica, Magnant and Martin put forward a new concept, the rainbow (k, l)-

connectivity.

Given an edge-colored simple graph G, let l ≤ k be integers. Suppose the edges of G

are k-colored. For a, b ∈ V (G), denote by p(a, b) the maximum number of internally dis-

joint rainbow paths of length l having endpoints a and b. The rainbow (k, l)-connectivity

of G is the minimum p(a, b) among all distinct a, b ∈ V (G). Note that this new defined

rainbow (k, l)-connectivity computes the number of internally disjoint paths with the same

length l (this is distinct from the rainbow k-connectivity which, as mentioned above, com-

putes the number of colors); and by definition, for different edge-colorings, the values of

rainbow (k, l)-connectivity could be different.

From Theorem 3.1, we know that for any r, there exists an explicit 2-coloring of Kr in

which the number of bi-chromatic paths of length 2 between any pair of vertices is at least

⌊√r− 1⌋. Using the above definition, it is a statement about the rainbow (2,2)-connectivity

of a given 2-coloring of the edges of Kr. In [21], Dellamonica, Magnant and Martin greatly

improve and generalize the above lower bound for graphs of sufficiently large order by provid-

ing a different constructive coloring. Their construction attains asymptotically the maximum

rainbow connectivity possible.
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Theorem 3.3 [21] For any k ≥ 2 and r ≥ r0 = r0(k) there exists an explicit k-coloring of

the edges of Kr having rainbow (k, 2)-connectivity

(
k − 1

k
− o(1))r.

More generally, They considered the problem of finding longer rainbow paths.

Theorem 3.4 [21] For any 3 ≤ l ≤ k, there exists r0 = r0(k) such that for every r ≥ r0,

there is an explicit k-coloring of the edges of Kr having rainbow (k, 2)-connectivity

(1− o(1))
r

l − 1
.

This result is also asymptotically best possible, since any collection of internally disjoint

paths of length l can contain at most r
l−1

paths. Their proof employed a very recent break-

through due to Bourgain [8, 51], which consists of a powerful explicit extractor. Roughly

speaking, an (explicit) extractor is a polynomial time algorithm used to convert some spe-

cial probability distributions into uniform distributions. See [54] for a good but somewhat

outdated survey on extractors.)

Chartrand, Johns, McKeon and Zhang [13] also investigated the rainbow k-connectivity

of r-regular complete bipartite graphs for some pairs k, r of integers with 2 ≤ k ≤ r, and

they showed:

Theorem 3.5 [13] For every integer k ≥ 2, there exists an integer r such that rck(Kr,r) = 3.

However, they could not show a similar result for complete graphs, and therefore they

left an open question: For every integer k ≥ 2, determine an integer (function) g(k), for

which rck(Kr,r) = 3 for every integer r ≥ g(k), that is, the rainbow k-connectivity of the

complete bipartite graph Kr,r is essentially 3. In [45], Li and Sun solved this question using

a similar but more complicated method to that of Theorem 3.5, and they proved:

Theorem 3.6 [45] For every integer k ≥ 2, there exists an integer g(k) = 2k⌈k
2
⌉ such that

rck(Kr,r) = 3 for any r ≥ g(k).

More generally, we have the following question.

Question 3.7 [13] Does the following hold? For each integer k ≥ 2, there exists an integer

h(k) such that for every two integers s and t with h(k) ≤ s ≤ t, we have rck(Ks,t) = 3.

Recently, He and Liang [29] investigated the rainbow k-connectivity in the setting of

random graphs. They determined a sharp threshold function for the property rck(G(n, p)) ≤
d for every fixed integer d ≥ 2. This substantially generalizes a result due to Caro, Lev,

Roditty, Tuza and Yuster (see Theorem 2.46). Their main result is as follows.
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Theorem 3.8 [29] Let d ≥ 2 be a fixed integer and k = k(n) ≤ O(logn). Then p = (logn)1/d

n(d−1)/d

is a sharp threshold function for the property rck(G(n, p)) ≤ d.

The key ingredient of their proof is the following result: With probability at least 1 −
n−Ω(1), every two different vertices of G(n, C(logn)1/d

n(d−1)/d ) are connected by at least 210dc0logn

internally disjoint paths of length exactly d.

So far, results on the rainbow k-connectivity are just those for two special graph classes,

and a sharp threshold function for the property rck(G(n, p)) ≤ d where d ≥ 2 is a fixed

integer and k = k(n) ≤ O(logn). Clearly, there are a lot of things one can do further on

this concept. As mentioned above, it is difficult to derive the precise value or a nice upper

bound for rck(G) of a κ-connected graph G, where 2 ≤ k ≤ κ. So one may consider the

following problem.

Problem 3.9 Derive a sharp upper bound for rc2(G), where G is a κ-connected graph with

κ ≥ 2. Does rc2(G) ≤ αn, where 0 < α < 1 is independent of n?

4 k-rainbow index

The k-rainbow coloring as defined above, is another generalization of the rainbow coloring.

In [15], Chartrand, Okamoto and Zhang did some basic research on this topic. There is a

rather simple upper bound for rxk(G) in terms of the order of G, regardless the value of k.

Proposition 4.1 [15] Let G be a nontrivial connected graph of order n ≥ 3. For each

integer k with 3 ≤ k ≤ n− 1, rxk(G) ≤ n− 1 while rxn(G) = n− 1.

There is a class of graphs of order n ≥ 3 whose k-rainbow index attains the upper bound

of Proposition 4.1, it is an immediate consequence of Observation 2.11.

Proposition 4.2 [15] Let T be a tree of order n ≥ 3. For each integer k with 3 ≤ k ≤ n,

rxk(T ) = n− 1.

There is also a rather obvious lower bound for the k-rainbow index of a connected graph

G of order n, where 3 ≤ k ≤ n. The Steiner distance d(S) of a set S of vertices in G is the

minimum size of a tree in G containing S. Such a tree is called a Steiner S-tree or simply a

Steiner tree. The k-Steiner diameter, say sdiamk(G) of G is the maximum Steiner distance

of S among all sets S with k vertices in G. Thus if k = 2 and S = {u, v}, then d(S) = d(u, v)

and the 2-Steiner diameter sdiam2(G) = diam(G). The k-Steiner diameter then provides a

lower bound for the k-rainbow index of G: for every connected graph G of order n ≥ 3 and

each integer k with 3 ≤ k ≤ n, rxk(G) ≥ sdiamk(G) ≥ k − 1.
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Theorem 4.3 [15] If G is a unicyclic graph of order n ≥ 3 and girth g ≥ 3, then

rxk(G) =

{

n− 2 if k = 3 and g ≥ 4,

n− 1 if g = 3 or 4 ≤ k ≤ n.

The investigation of rxk(G) for a general k and a general graph G is rather difficult. So

one may consider rxk(G) for a special graph class, or, for a general graph and small k, such

as k = 3.

Problem 4.4 Derive a sharp upper bound for rx3(G).

There is also a generalization of the k-rainbow index, say (k, ℓ)-rainbow index rxk,ℓ, of

G which is mentioned in [15] and we will not introduce it here.

5 Rainbow vertex-connection number

The above several parameters are all defined on edge-colored graphs. Here we will intro-

duce a new graph parameter which is defined on vertex-colored graphs. It is, as mentioned

above, a vertex-version of the rainbow connection number. Krivelevich and Yuster [36] put

forward this new concept and proved a theorem analogous to Theorem 2.17.

Theorem 5.1 [36] A connected graph G with n vertices has rvc(G) < 11n
δ(G)

.

The argument of this theorem used the concept of k-strong two-step dominating sets.

They proved that if H is a connected graph with n vertices and minimum degree δ, then it

contains a δ
2
-strong two-step dominating set S whose size is at most 2n

δ+2
. Then they derived

an edge-coloring for G according to its connected δ
2
-strong two-step dominating set. And

they showed that, with positive probability, their coloring yields a rainbow connected graph

by the Lovász Local Lemma (see [3]).

Motivated by the method of Theorem 5.1, Li and Shi derived an improved result.

Theorem 5.2 [40] A connected graph G of order n with minimum degree δ has rvc(G) ≤
3n/(δ + 1) + 5 for δ ≥

√
n− 1 − 1, n ≥ 290, while rvc(G) ≤ 4n/(δ + 1) + 5 for 16 ≤ δ ≤

√
n− 1−2, rvc(G) ≤ 4n/(δ+1)+C(δ) for 6 ≤ δ ≤ 16 where C(δ) = e

3 log(δ3+2δ2+3)−3(log 3−1)
δ−3

−2,

rvc(G) ≤ n/2 − 2 for δ = 5, rvc(G) ≤ 3n/5 − 8/5 for δ = 4,rvc(G) ≤ 3n/4 − 2 for δ = 3.

Moreover, an example shows that when when δ ≥
√
n− 1− 1, and δ = 3, 4, 5 the bounds are

seen to be tight up to additive factors.

Motivated by the method of Theorem 5.1, Dong and Li [22] also proved a theorem

analogous to Theorem 2.21 for the rainbow vertex-connection version according to the degree

sum condition σ2, which is stated as the following theorem.
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Theorem 5.3 [22] For a connected graph G of order n, rvc(G) ≤ 8 n−2
σ2+2

+10 for 2 ≤ σ2 ≤ 6

and σ2 ≥ 28, while for 7 ≤ σ2 ≤ 8 and 16 ≤ σ2 ≤ 27, rvc(G) ≤ 10n−16
σ2+2

+ 10, and for

9 ≤ σ2 ≤ 15, rvc(G) ≤ 10n−16
σ2+2

+ A(σ2), where A(σ2) = 63, 41, 27, 20, 16, 13, 11, respectively.

Note that by the definition of σ2, we know σ2 ≥ 2δ, so we have 8 n−2
σ2+2

+10 ≤ 4(n−2)
δ+1

+10,

and hence the bound of Theorem 5.3 is an improvement to that of Theorem 5.2 in the case

16 ≤ δ ≤
√
n− 1− 2.

6 Algorithms and computational complexity

At the end of [9], Caro, Lev, Roditty, Tuza and Yuster gave two conjectures (see Conjec-

ture 4.1 and Conjecture 4.2 in [9]) on the complexity of determining the rainbow connection

numbers of graphs. Chakraborty, Fischer, Matsliah and Yuster [10] solved these two conjec-

tures by the following theorem.

Theorem 6.1 [10] Given a graph G, deciding if rc(G) = 2 is NP-Complete. In particular,

computing rc(G) is NP-Hard.

Chakraborty, Fischer, Matsliah and Yuster divided the proof of Theorem 6.1 into three

steps: the first step is showing the computational equivalence of the problem of rainbow

connection number 2, that asks for a red-blue edge coloring in which all vertex pairs have

a rainbow path connecting them, to the problem of subset rainbow connection number 2,

that asks for a red-blue coloring in which every pair of vertices in a given subset of pairs has

a rainbow path connecting them. In the second step, they reduced the problem of extending

to rainbow connection number 2, asking whether a given partial red-blue coloring can be

completed to obtain a rainbow connected graph, to the problem of subset rainbow connection

number 2. Finally, the proof of Theorem 6.1 is completed by reducing 3-SAT to the problem

of extending to rainbow connection number 2.

Chakraborty, Fischer, Matsliah and Yuster [10] also raised the following problem.

Problem 6.2 [10] Suppose that we are given a graph G for which we are told that rc(G) = 2.

Can we rainbow-color it in polynomial time with o(n) colors ?

For the usual coloring problem, this version has been well studied. It is known that if

a graph is 3-colorable (in the usual sense), then there is a polynomial time algorithm that

colors it with Õ(n3/14) colors [5].

Suppose we are given an edge coloring of the graph. Is it then easier to verify whether

the colored graph is rainbow connected? Clearly, if the number of colors is constant then this

problem becomes easy. However, if the coloring is arbitrary (with an unbounded number of

colors), the problem becomes NP-Complete.

29



Theorem 6.3 [10] The following problem is NP-Complete: Given an edge-colored graph G,

check whether the given coloring makes G rainbow connected.

For the proof of Theorem 6.3, Chakraborty, Fischer, Matsliah and Yuster first showed

that the s− t version of the problem is NP-Complete. That is, given two vertices s and t of

an edge-colored graph, decide whether there is a rainbow path connecting them. Then they

reduced the problem of Theorem 6.3 from it.

More generally it has been shown in [37], that for any fixed k ≥ 2, deciding if rc(G) = k

is NP -complete.

In [10], Chakraborty, Fischer, Matsliah and Yuster also derived some positive algorithmic

results. Parts of the following two results were shown in Theorems 2.16 and 2.48. They

proved:

Theorem 6.4 [10] For every ǫ > 0 there is a constant C = C(ǫ) such that if G is a connected

graph with n vertices and minimum degree at least ǫn, then rc(G) ≤ C. Furthermore, there

is a polynomial time algorithm that constructs a corresponding coloring for a fixed ǫ.

As mentioned above, Theorem 6.4 is based upon a modified degree-form version of Sze-

merédis Regularity Lemma that they proved and that may be useful in other applications.

From their algorithm it is also not hard to find a probabilistic polynomial time algorithm

for finding this coloring with high probability (using on the way the algorithmic version of

the Regularity Lemma from [2] or [26]).

Theorem 6.5 [10] If G is an n-vertex graph with diameter 2 and minimum degree at least

8logn, then rc(G) ≤ 3. Furthermore, such a coloring is given with high probability by a

uniformly random 3-edge-coloring of the graph G, and can also be found by a polynomial

time deterministic algorithm.

As mentioned, He and Liang [29] investigated the rainbow k-connectivity in the setting

of random graphs. They also investigated rainbow k-connectivity from the algorithmic point

of view. The NP-hardness of determining rc(G) was shown by Chakraborty et al. as shown

above. They showed that the problem (even the search version) becomes easy in random

graphs.

Theorem 6.6 [29] For any constant ǫ ∈ [0, 1), p = n−ǫ(1±o(1)) and k ≤ O(logn), there

is a randomized polynomial time algorithm that, with probability 1 − o(1), makes G(n, p)

rainbow-k-connected using at most one more than the optimal number of colors.

Since almost all natural edge probability functions p encountered in various scenarios have

such form, their result is quite strong. Note that G(n, n−ǫ) is almost surely disconnected
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when ǫ > 1 [24], which makes the problem become trivial. Therefore they ignored these

cases.

Recall that the values of rainbow (k, l)-connectivity may be different for distinct edge-

colorings. In [21], Dellamonica, Magnant and Martin derived that a random k-coloring

of a sufficiently large complete graph has asymptotically optimal rainbow rainbow (k, l)-

connectivity (see Theorems 3.3 and 3.4). They obtained an explicit edge-coloring. By

explicit, we mean that they gave a polynomial time algorithm to compute such an edge-

coloring.

Recently, the computational complexity of rainbow vertex-connection numbers has been

determined by Chen, Li and Shi [18].

Motivated by the proofs of Theorems 6.1 and 6.3, they derived two corresponding results

to the rainbow vertex-connection.

Theorem 6.7 [18] Given a graph G, deciding if rvc(G) = 2 is NP-Complete. In particular,

computing rvc(G) is NP-Hard.

Theorem 6.8 [18] The following problem is NP-Complete: given a vertex-colored graph G,

check whether the given coloring makes G rainbow vertex-connected.
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[5] A. Blum, D. Karger, An Õ(n3/14)-coloring algorithm for 3-colorable graphs, Infor.

Process. Lett. 61(1)(1997), 49-53.

[6] B. Bollobás, A. Thomason, Threshold functions, Combinatorica 7(1986), 35-38.

[7] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.

[8] J. Bourgain, More on the sum-product phenomenon in prime fields and its

applications, Intern. J. Number Theory 1(2005) 1-32.

[9] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron. J.

Combin. 15 (2008), R57.

31

http://arxiv.org/abs/1001.3413
http://arxiv.org/abs/1011.0620


[10] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for

rainbow connectivity, 26th International Symposium on Theoretical Aspects of Com-

puter Science STACS 2009 (2009), 243-254. Also, see J. Combin. Optim., in press.

[11] L.S. Chandran, A. Das, D. Rajendraprasad, N.M. Varma, Rainbow connection number

and connected dominating sets, Arxiv preprint arXiv:1010.2296v1 [math.CO] (2010).

[12] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs,

Math. Bohem. 133(2008) 85-98.

[13] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connectivity of a

graph, Networks 54(2)(2009) 75-81.

[14] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, On the rainbow connectivity of

cages, Congr. Numer. 184(2007), 209-222.

[15] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized

connectivity, Networks 55(2010), 360-367.

[16] G. Chartrand, P. Zhang, Chromatic Graph Theory, Chapman & Hall, 2008.

[17] L. Chen, X. Li, H. Lian, Nordhaus-Gaddum-type theorem for rainbow connection

number of graphs, Arxiv preprint arXiv:1012.2641v2 [math.CO] (2010).

[18] L. Chen, X. Li, Y. Shi, The complexity of determining the rainbow vertex-connection

of graphs, Arxiv preprint arXiv:1101.3126v1 [math.CO] (2011).

[19] X. Chen, X. Li, A solution to a conjecture on the rainbow connection number, Arxiv

preprint arXiv:1012.2693v2 [math.CO] (2010).

[20] D. Corneil, S. Olariu, L. Stewart, Asteroidal triple-free graphs. SIAM J. Discrete

Math. 10(3)(1997), 399-430.

[21] D. Dellamonica Jr., C. Magnant, D. Martin, Rainbow paths, Discrete Math. 310(2010),

774-781.

[22] J. Dong, X. Li, Upper bounds involving parameter σ2 for the rainbow connection,

Arxiv preprint arXiv:1101.3119v1 [math.CO] (2011).
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Eighty. Bolyai society mathematical studies, 2(1996). Budapest, pp. 295-352.

[36] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal

to its minimum degree, J. Graph Theory 63(3)(2009), 185-191.

[37] V. Le, Z. Tuza, Finding optimal rainbow connection is hard, Preprint 2009.

[38] H. Li, X. Li, S. Liu, The (strong) rainbow connection numbers of Cayley graphs on

Abelian groups, Arxiv preprint arXiv:1011.0827v3 [math.CO] (2010).

[39] H. Li, X. Li, S. Liu, Rainbow connection in graphs with diameter 2, Arxiv preprint

arXiv:1101.2765v1 [math.CO] (2011).

[40] X. Li, Y. Shi, On the rainbow vertex-connection, Arxiv preprint arXiv:1012.3504v1

[math.CO] (2010).

33

http://arxiv.org/abs/1012.1942
http://arxiv.org/abs/1011.0827
http://arxiv.org/abs/1101.2765
http://arxiv.org/abs/1012.3504


[41] X. Li, Y. Shi, Rainbow connection in 3-connected graphs, Arxiv preprint

arXiv:1010.6131v1 [math.CO] (2010).

[42] X. Li, Y. Sun, Rainbow connection numbers of line graphs, Ars Combin., to appear.

[43] X. Li, Y. Sun, Upper bounds for the rainbow connection numbers of line graphs,

Graphs & Combin., to appear.

[44] X. Li, Y. Sun, On the rainbow k-connectivity of complete graphs, Australasian J.

Combin., to appear.

[45] X. Li, Y. Sun, Note on the rainbow k-connectivity of regular complete bipartite

graphs, Ars Combin., to appear.

[46] X. Li, Y. Sun, Characterize graphs with rainbow connection number m − 2 and

rainbow connection numbers of some graph operations, submitted.

[47] X. Li, Y. Sun, On strong rainbow connection number, Arxiv preprint

arXiv:1010.6139v1 [math.CO] (2010).

[48] X. Li, Y. Sun, Rainbow connection numbers of complementary graphs, Arxiv preprint

arXiv:1011.4572v3 [math.CO] (2010).

[49] E.A. Nordhaus, J.W. Gaddum, On complementary graphs, Amer. Math. Monthly

63(1956), 175-177.

[50] J.H. Park and K.Y. Chwa, Recursive circulants and their embeddings among

hypercubes, Theoret. Computer Science 244(2000), 35-62.

[51] A. Rao, An exposition of Bourgain′s 2-source extractor, in: ECCCTR: Electronic

Colloquium on Computational Complexity, Technical Reports, 2007.

[52] J.J. Rotman, An Introduction to the Theory of Groups, GTM 148, Springer, 1994.

[53] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, IWOCA

2009, LNCS 5874 (2009), 435-437.

[54] R. Shaltiel, Recent developments in explicit constructions of extractors, Bull. EATCS

(2002), 67-95.

[55] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math.

54(1932), 150-168.

[56] M. Yannakakis, The complexity of the partial order dimension problem, SIAM J. Alg.

& Discrete Methods 3(3)(1982), 351-358.

34

http://arxiv.org/abs/1010.6131
http://arxiv.org/abs/1010.6139
http://arxiv.org/abs/1011.4572

	1 Introduction
	1.1 Motivation and definitions
	1.2 Terminology and notations

	2 (Strong) Rainbow connection number
	2.1 Basic results
	2.2 Upper bounds for rainbow connection number
	2.3 For some graph classes
	2.4 For dense and sparse graphs
	2.5  For graph operations
	2.6 An upper bound for strong rainbow connection number

	3 Rainbow k-connectivity
	4 k-rainbow index
	5 Rainbow vertex-connection number
	6 Algorithms and computational complexity

