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Abstract Let Sbe a set oh points in general position in the plane. Together v8tve are
given a set of parity constraints, that is, every poinSo$ labeled either even or odd. A
graphG on Ssatisfies the parity constraint of a poi Sif the parity of the degree op

in G matches its label. In this paper, we study how well varioass#s of planar graphs can
satisfy arbitrary parity constraints. Specifically, we whihat we can always find a plane
tree, a two-connected outerplanar graph, or a pointed pstighgulation which satisfy all
but at most three parity constraints. For triangulationcae satisfy about 2/3 of the parity
constraints and we show that in the worst case there is a Imeaber of constraints which
cannot be fulfilled. In addition, we prove that for a given plenpolygonH with polygonal
holes orS, it is NP-complete to decide whether there exists a triaatgpn ofH that satisfies
all parity constraints.
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1 Introduction

Computing a simple graph that meets a gidegree sequencdga classical problem in graph
theory and theoretical computer science, dating back tavtirk of Erdds and Gallai [8]. A
degree sequence is a vectbe (di,...,d,) of n positive numbers. It isealizableiff there
exists a simple graph whose nodes have precisely this segoédegrees. Erdés and Gallai
gave necessary and sufficient conditions for a degree sequerme realizable, and several
algorithms have been developed that generate a corresgpaldstract graph.

An extension of this problem prescribes not only a degreaesszed, but also gives a
setS c R? of n points in general position, wheng € Sis assigned degred. It is well
known that a degree sequendds realizable as a tree if and only ¥ ;d = 2n— 2.
Tamura and Tamura [19] extended this result to plane ($trdige) spanning trees, giv-
ing anO(n?logn) time embedding algorithm, which in turn was improved by Bessal. [6]
to optimalO(nlogn) time.

In this paper we study a relaxation of this problem, where a@ace exact degrees
with degree parity: odd or even. Although parity constraans significantly weaker than
actual degree constrains, they still characterize ceftdasses of) graphs. For example,
Eulerian graphs are exactly those connected graphs whevertites have even degree,
and a classical theorem of Whitney states that a maximabplgraph is 3-colorable iff all
vertices have even degree. A given graph might satisfy oslipaet of the parity constraints.
So we study how well various classes of planar graphs casfgatbitrary parity constraints.
A preliminary version of this work has been presented at tgg#hms and Data Structures
Symposium (WADS) in Banff, in August 2009 [1].

Definitions and notationLet Sc R? be a set of points in general position. We denote the
convex hull ofSby CH(S). The points ofShave parity constraints, that is, every point3f

is labeled eitheevenor odd; for ease of explanation we refer to even and odd points. We
denote byne andn, the number of even and odd pointsSnrespectively. Throughout the
paper an even point is depicted by, an odd point by®, and a point that can be either by
® . A graphG on Smakes a poinp € S happyif the parity of deg,(p) matches its label. If

p is not happy, then it isnhappy Throughout the paper a happy point is depictedhyan
unhappy point by®, and a point that can be either 8y.

Results.Clearly, not every set of parity constraints can be fulfillédr example, in any
graph the number of odd-degree vertices is even. Hence,utmbder of unhappy vertices
has the same parity a&ig. For the class of plane trees, the aforementioned resuliegree
sequences immediately imply:

Theorem 1 On every point set 8 R? with parity constraints, there exists a plane spanning
tree that makesi) all but two points happy if i= 0, (ii) all but one point happy if fis
odd, and(iii ) all points happy if g > 2 is even. O

We show that we can always find a two-connected outerplaaphdrvhich is a Hamiltonian
cycle with additional edges in the interior, Theorem 2) amqmbited pseudo-triangulation
(Theorem 3), which satisfy all but at most three parity caasts. In Section 4 we con-
sider triangulations. In Section 4.1 we show that if we axeigia simple polygomd with
polygonal holes or§, it is NP-complete to decide whether there exists a triaatgu ofH
that satisfies all parity constraints. We show that therstepoint sets and parity assign-
ments such that the number of unhappy vertices grows Iyn&ar for every triangulation
on S. On the other hand, we can guarantee to satisfy ab@8ito? the parity constraints
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(Theorem 7). This can be shown using results obtained frdmawestive computations on
small point sets, and alternatively by a proof based on &rmuluctive constructions, that,
however, sometimes involves elaborate case distinctions.

Related work.Many different types of degree restrictions for geometrigpips have been
studied. For example, for a given s®t- R? of n points, are there planar graphs Sifior
which the maximum vertex degree is bounded? There cleadypiath, and hence a span
ning tree, of maximum degree at most two. Furthermore, tiseavays a pointed pseudo-
triangulation of maximum degree five [13], although there point sets where every trian-
gulation must have a vertex of degnee- 1. Another related question is the following: we
are given a se® C R? of n points, together with a planar graghon n vertices. Is there a
plane straight-line embedding & on S? Outerplanar graphs are the largest class of planar
graphs for which this is always possible, in particular, 8¢s] showed how to compute
such an embedding i@(nlog?n) time. Alvarez [4] considers the addition of extra (Steiner)
points to make a triangulation of a planar point set 3-cdilerdi.e., all inner vertices have
even degree). For sets wikhinterior points he proves thatk+ 2)/3| Steiner points suf-
fice. Fernandez Delago et al. [9] issue triangulations affeg point sets with all vertices of
even degree. They give the number of such triangulationsshad that the graph of even
triangulations obtained by exchanging the edges insideagus is connected. They further
prove the NP-completeness of the problem of extending a ggangraph to a 3-colorable
triangulation by adding edges.

One motivation for our work on parity restrictions stemaifra bi-colored variation of
a problem stated by Erdés and Szekeres in 1935: Is there hendff(k) such that any set
Sc R? of at leastfES(k) bi-colored points in general position has a monochromatiset
of k points that form an empty convéxgon (that is, &-gon that does not contain any points
of Sin its interior)? It has been shown recently [2] that evergdlored point set of at least
5044 points contains an empty (not necessarily convex) ctoomatic quadrilateral. The
proof uses, among others, a result that for any point se tdsts a triangulation where at
least half of the points have odd parity. Any increase in thargnteed share of odd parity
points translates into a lower minimum number of points neglin the above statement.
More specifically, from our Proposition 2 one can concluda the above result holds for
any set of at least 2080 points.

2 Outerplanar Graphs

After trees as minimally connected graphs, a natural nextistto consider two-connected
graphs. In particular, outerplanar graphs generalizes toe¢h in terms of connectivity and
with respect to treewidth. In this section we consider tworeected outerplanar graphs,
which are the same as outerplanar graphs with a unique Henaiit cycle [7], in other
words, simple polygons augmented with a set of pairwisearossing diagonals.

The following simple construction (see (Fig. 1) makes atldiumost three points happy.
Pick an arbitrary poinp. Setp; = p and denote by, ..., p, the sequence of points fro8)
as encountered by a counterclockwise radial sweep arpustdrting from some suitable di-
rection (if pis on CH'S) towards its counterclockwise neighbor on (3}). The outerplanar
graphG consists of the closed polygonal ch&in= (p,..., pn) plus an edgep; for every
odd pointp;j € {ps,..., pn—1}. All points are happy, with the possible exceptionmfps,
and pp. Fig. 1 shows an example of a point Sawith parity constraints and an outerplanar
graph onSsuch that all but two points are happy.
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Fig. 1 Constructing a two-connected outerplanar graph with at nhosétunhappy vertices.

Theorem 2 For every set $ R? of n points with parity constraints, there exists an outer-
planar graph on S that makes all but at most three points happy O

3 Pointed Pseudo-Triangulations

Pseudo-triangulations are related to triangulations aapseudo-trianglesn addition to
triangles. A pseudo-triangle is a simple polygon with elkattiree interior angles smaller
than . A pseudo-triangulation is callggbintedif every vertexp has one incident region
whose angle ap is greater thamt. In the following we describe a recursive construction for
a pointed pseudo-triangulatio®? on Sthat makes all but at most three pointsSiiappy.

At any time in our construction we have only one recursiveosablem to consider. This
subproblem consists of a point s&t whose convex hull edges have already been added
to &2. The current set” is a pointed set of edges that subdivides the exterior ofSCH
into pseudo-triangles such that all points outside(SH are happy.”” contains no edges
inside CHS"). We say that S* ihopefulif at least one point on C{&*) is made happy by
the current version of”. Otherwise, we say th&" is unhappy

We initialize our construction by settirgf = Sand adding CKiS) to &. Now we dis-
tinguish four cases.

(1) S is hopeful. Let v be a point
on CH(S") that is currently happy,
let p and g be its neighbors, and
let S be the (possibly empty) set
of points fromSthat lie in the in-
terior of the triangle/Aqyp. Then
CH(S U {p,q}) without the edge
pg defines a convex chaf@ from p to g, in a way thatC andv together form a pseudo-
triangle. (If S = 0, thenC = pg.) Removev from consideration by adding to 2. If
|S*| > 5, recurse or$" \ {v}. Otherwise, there are at most three unhappy points in the
remaining triangle.

(2) S is unhappy and has no interior points.
Choose one poirgon CH(S) and triangulate
CH(S") by adding edges from. There are at
most three unhappy points, namedyand its
two neighbors.
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(3) S is unhappy and has exactly one inte-
rior point, p;. Pick an arbitrary pointp on
CH(S") and draw a line througph andp;. This
line intersects exactly one edgef CH(S"),
and e, p, and p; together define a pseudo- :
triangled. Add 0 to £, which splits CHS) p= p
into two sub-polygons. Triangulate the sub-polygon whiohtainsp; by adding edges
from p; to all other vertices, except to its neighbors. Similarigrigulate the other sub-
polygon by adding edges from There are at most three unhappy poimisp;, and a
neighbor ofp.

(4) S is unhappy and has more than one inte-
rior point. Let§ be the set of interior points.
First add the edges of Qi) to &. Then o ©
connect each point on Gi9*) tangentially to ® ® o
CH(S) in clockwise direction, thereby cre-
ating a “lens shutter” pattern. Each point on
CH(S") is now happy. If|S| > 3, then recurse of. Otherwise, there are at most three
unhappy points.

Theorem 3 For every point set 8 R? with parity constraints, there exists a pointed pseu-
do-triangulation on S that makes all but at most three poaftS happy. a

4 Triangulations

The final and maybe most interesting class of planar graphshwire consider are trian-
gulations. If the point se¥ lies in convex position, then all pseudo-triangulationsSaire
in fact triangulations. Thus, Theorem 3 also holds for giations of convex point sets.
Moreover, we may select any three poipt®},r that are consecutive along €8, which
we do not remove when the set is hopeful. When no points caerbeved, we complete
the triangulation by adding edgesdoThis immediately gives the following result.

Corollary 1 For every point set 8 R? in convex position with parity constraints, and any
three points pq,r that are consecutive alonGH(S), there exists a triangulation on S that
makes all points of S happy, with the possible exception @fgnd r. O

In contrast to such a triangulation of a convex domain, itaisyeto construct arbitrary
large examples of simple polygons that do not even have gogyheertex. In the following,
we consider complexity aspects of triangulating polygoith parity constraints. After that,
we give bounds on the number of happy vertices in trianguiatof point sets.

4.1 Triangulations of Polygons

It is a well-known and easy fact that there always exists pgroertex 3-coloring of any
triangulation of a simple polygon [17, p. 15]. There alsoisrdgeresting connection between
proper 3-colorings and the parity of the vertices.

Theorem 4 ([10,15])Given a triangulation TP) of a simple polygon P let u, v, and w
be any three consecutive vertices of P. Then, in a propeex&toloring of T(P), the
vertices u and w have the same color if and only if v is odd.
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This follows from the fact that in the sequence of verticest #re neighbors te in the
triangulation their colors must alternate. Fleischner] [@€tually proves this for the more
general case that allows inner vertices of even degree.lesbsand Moret [15] describe
a trivial algorithm for coloring a triangulated polygon iméar time that immediately fol-
lows from the above theorem. Indeed, Theorem 4 gives a sitaptdor checking whether
a simple polygon can be happily triangulated: Start with awoitrary colors for two adja-
cent vertices, and propagate the 3-coloring along the Byndsing Theorem 4. A happy
triangulation exists if and only if this results in a propec@oring of the vertices.

Optimal triangulations of arbitrary simple polygons candmmputed inO(n®) time
by adapting the well-known dynamic-programming approatfilb, 14] (devised for the
minimum-weight triangulation problem), where each tri@ntpat can be incident to a cho-
sen base edge defines two subproblems. As by combining tworahlbms the parity of
their common vertex might change, optimal partial solwiane stored for all four different
parity patterns at the base edge of a subproblem.

In contrast, the situation gets more involved if we consjtdygons with holes.

Theorem 5 It is NP-complete to decide, for a given polygon H with holed aith parity
constraints, whether there exists a triangulation of H stidt all vertices of H are happy.

Proof Following Jansen [12], we use a restricted version of thechipleteplanar 3-SAT
problem [16], in which each clause contains at most threealis and each variable occurs
in at most three clauses.

\(\% ~ (b) — = (c) —

Fig. 2 A wire (a) that transfersrRUE (b), and FALSE (c), and a variable (d) imRUE (e) and RLSE (f) state.
The short edges are part of in every triangulation.

The edgesof the planar formula are representedwiyes (Fig. 2(a)—(c)), narrow cor-
ridors which can be triangulated in two possible ways, amdeby transmit information
between their ends. Negation can easily be achieved by smeaphe labels of a single ver-
tex pair in a wire from both even to both odd. The constructiba variable (Fig. 2(d)—(f))
ensures that all wires emanating from it carry the same,staa¢ is, their diagonals are
oriented in the same direction.

To check clauses we use amr-gate (Fig. 4) with two inputs and one output wire.
The oR-gate is a convex 9-gow ...vg with three attached wires, anddmn’t-care loop
(Fig. 3(a)) attached to the two top-most vertiagsve. This loop has two possible trian-
gulations and gives more freedom for the two vertices to Wwihtics attached: by switching
between the two triangulations of the loop the parity of hattices is changed. All edges of
the 9-gon are either on the boundary of the input polygon ey dre unavoidable: no other
potential edge crosses them, and thus they must belong ity &\gulation. This can be
achieved by making them short enough. Starting at the leftrertexv; (see Fig. 4(a)), the
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[index [ 1] 2[3[4]5]6[7][8[]9]10~1|
At ole|le|lelole|e|o]|o o)
color | 1|2 |3[1|2|1]|3|2|3]| 2#1
Af Jolele|le|]olele|e]e )
color{f1|(2]|3|1]|2|1|3|2]|1 3#41

Table 1 Invalid colorings induced by the vertex constraints show thieexistence of a triangulation of the
OR-gate with both inputs &ALSE and the output RUE.

constraint sequence of the vertices in counterclockwiderdsA = (oeoeeoede wheree
stands for even anadlfor odd.

Fig. 4 shows triangulations of ther-gate for the four possible input configurations of
an OoRr-gate, where the output isAESE iff both inputs are false. There may also be trian-
gulations of aror-gate such that the output can beLBE even if one input is RUE. The
important part is that (i) when at least one input BUE, there is a triangulation with output
TRUE, see Fig. 4(b—d), and (ii) if both inputs araliSE, the output must also berESE.

Suppose the inputs are bothISE and the output iSRUE. Remove the edges outside
of the 9-gon and adjust the labeling of the the 9-gon accgtgiiVe getA; = (oeeeoeedo
and for a different direction of the don’t-care loap = (oeeeoeeéelf we apply the test of
Theorem 4 and try to 3-color the vertices, as shown in Tableelget a conflict, and hence
there is no triangulation with the given parities.

Clauses with two literals can directly be realized by suctegiathree literals require
to cascade twoRr-gates (Fig. 3(b)). In both cases, we fix the outputrkwe by simply
removing the output wire and swapping the parity of the 6etiaxvg.

It is straightforward to combine the constructed elemeata polygonH with holes
representing a given planar 3SAT formula. O

4.2 Triangulations of Point Sets

In this section we present lower and upper bounds on the nuofbeappy vertices for
general point sets. For example, for point sets of smallinality we can investigate the
number of happy vertices with the help of the order type datsel43]. For any set of 11

points with parity constraints we can always find a triangolawhich makes at least 7
vertices happy, cf. Table 2 in Section 4.2.2.

4.2.1 A Lower Bound on Unhappy Vertices

The figure below shows a double circle for 10 points with gacibnstraints, such that at
most 5 points can be made happy. This is in fact the only pantiguration fom = 10 (out

JWW el

Fig. 3 A don't-care loop (a). Checking a claua& bV c by joining two OR-gates (b).

TRUE
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:idce : idc : idc

T (b) F T (d) T

Fig. 4 An oR-gate with inputs ELSE, FALSE (a), TRUE, FALSE (b), FALSE, TRUE (c), and TRUE, TRUE
(d). The two inputs are at the bottom and the output is at thEeupgght side. A don't-care loop “dc” is
attached to the two top-most vertices.

of 14 309 547 [3]) with this property. Aouble circleof even sizen = 2his a point set witth
extreme vertices in which each of the remainimigterior points is placed sufficiently close
to a different edge of the convex hull. For each interior pdime edges to the two adjacent
hull vertices are unavoidable; they are part of every tnidagpn.

These unavoidable edges form a poly- .
gon Therefore, triangulating the interior of @ ©
the double circle is equivalent to triangulat-
ing a simple polygon. This allows examining  ® :;m
the double circle using the already mentioned e
dynamic-programming approach without ex- Ol .
plicitly generating geometric representations. "o

Based on the double circle we constructed large examplbésawépeating parity pattern
o = ((egloe)3eq0e)'eg(0e)°)3) of length 108, starting at an extreme vertex and proceeding
counterclockwise. We will show that for these configuragi@my triangulation has at least
n/108+ 2 unhappy vertices. Our proof uses computer aid. An exterdiscussion of the
proof and its underlying parity pattern can be found in theste@s thesis of one of the
authors [18].

The proof is inspired by the dynamic-programming approacbombining two sub-
polygons which are separated by a triangle and for which timnmam number of unhappy
vertices has already been determined. The proof works hyctiah over the size of the
subproblem. Consider a double circle of size |g| - s, labeled withs repetitions ofo. We
call a sequence of points labeled by such a repetitianiastance Add the unavoidable
edges and remove the convex hull edges. Let the resultiyg@olbe called aouble circle
polygon

Consider a diagona from thei-th vertex in ac-instance to thg-th vertex in thek-
th following o-instance in the counterclockwise direction, see Fig. 6r k= 0, the two
vertices are taken from the sargeinstance. These diagonals will form thired-size sub-
problems) We denote byfij (k) the minimum possible mumber of unhappy vertices in a
triangulation of the polygon formed by and the vertices between the endpointsl oFor
small values ok, these numbers can be explicitly calculated with a dyngmigramming
recursion. We make a claim of the following form:

fij (0) = kij, for1<i<j<|ol, (2)
fij (k) > cij +k, fork>1,1<i,j <|ag|, (2)
for constants;; andc;;.

Our goal is to prove (2) by induction on the number of vertisesveen the endpoints of
d. Inthe triangulations over which we optimize for the sulighemn fj; (k), fork > 1, consider



Plane Graphs with Parity Constraints — VERSION April 28, 2010 9

the triangle with base edgk It can partition the subproblerfy (k) in three ways, see Fig. 5:
its apexvy, is either in the starting-instance or in the ending-instance (together with one
of the endpoints ofl), or in some intermediate-instance. We must take the minimum of
these cases. When disregarding for a moment the pariis@nd vertices, we get:

£ (K) = Min <, <o [ fimg (0) + finy j (K)] = MiNi <y <|o [Kimy + frnyj (K)],
5 (k) = Ming<m, <[ fim, (K) + fmyj (0)] = Min<m, <[ fim, (K) + K],
fl?(k) = minlgrr13§|a\,0<l<k[fim3(|) + fm3j (k— I)]

fij (k) = min{ £} (k), % (k), 3 (k) }.

fmlj Kim;y

Fig. 5 The different types of subproblems formed by triangles witkitbase atl.

The simplified hypothesis (2) which we want to prove by intutbver the size of the
subproblem is thafjj (k) > k+ ¢j for some constant;;. The induction hypothesis (1-2)
gives

fi%(k) > mini<m1§\o| [Kiml + k+cmlj]7
% (k)

£23(K) > MiN<my<|o(,0<1 <k [l + Cimg +K—1 + Cogj]-

Y

MiNg<my < j [K+ Cimy + Kmyj],

To provefij (k) > k+ ¢ for k> 1 it therefore suffices to show that

Kim, -+ K=+ Cm,j > K+ Gjj Vmy,i <my < |0]
K+ Cim, + Kmyj > K+ Gij Vmp,1<nmp < |
| 4 Cimz +K—1 4+ Cmyj > K+ Gjj Vmg, 1 <mg < |0, Vk,l.

These inequalities obviously allow us to disregard theadesl andk. We only need to
compare the constants.

Let us now take the parity of end vertices of the diagonal azwount. Leﬁi?h(k) define
the least number of unhappy vertices in the subproblem k#thl o-instances and with
both end vertices happy, and IQTh(k), fi*j“’(k) and f"(k) be defined analogously with
the first, the second and both end vertices unhappy, regplyctbimilarly, we extend the
notion for fixed-size subproblem minima tqi‘ KIJ , ,rj‘ andkjj. By convention, we do
not include the number of unhappy end verticeg/ffi(k) and«;". Further note that some
of the fixed-size subproblems may not exist. Inequalitiegaiaing them do not impose a
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valid subproblem and therefore need not be checked. Wheminorg two subproblems,
they have a common vertex at the apgx If it is happy in one subproblem and unhappy in
the other, the combined degree is odd. Hence, we incremenutmber of unhappy vertices
if v, is labeled even (recall that, has not been counted before). Otherwisey,ifhas
the same state of happiness in both subproblems, the cothtewree is even. Therefore,
we increment the number of unhappy verticesyifis labeled odd. Further, the addition
of d changes the parity of its end vertices. For, efgh, we therefore have to consider the
combinations of subproblems that have unhappy verticearatj. LetL( ) = 1if themth

label ino is odd and.(m) = O otherwise. We now have to prove for, e. r’

K,‘r‘rﬁ‘lhjt Ch i +L(my) > cﬁ: )
Kimy, +Cmij +1—L(m) > cf .
Vmy,i<m <|o 3
Kimh 4+ i +1—L(my) > ¢ff° ! 1< [0 3)
Kih 4+ +L(mg) > ¢
hh
N Ciy huK““1+tEmz§ > cIth
cud kMU, + mg) > cf} .
Vmp,1<mp < 4
c}ﬂQZ+K““ +1— L(mz)ZCnh M, L= M2 < | )
c,L,'ﬂszKh“ +L(mp) > cf}h
uu uu hh
” C.m3ht0 1+ I[Emsi = a) )
ciu i+ mg) > cf
Vmg, 1< <l|al. 5
C:Jrg?)_'_cuu +1— L(ms)chhjh mg, _mS_’ ‘ (5)
i YA, L) > i

The inequalities forff!, fi and fi“ are analogous.
As mentioned above, a dynamic-programming recursion caficély calculate the
£A(k), £U(k), fi(k), and fi!(k) for small values ok. This gives us the values af"*
and it allows us to guess the values for the constq?‘?tsfor all combinations of happiness
labels p,g. Once these constants are found, we just have to check thealitges (3-5),
again using a computer program.
However, it turned out that this setup did not lead to a vatmbp We have to refine the

inductive claim (1-2) by treating also the cdse 1 as a “fixed-size” problem:

fij (0) = kij, forl<i<j<|ol, (6)
fij (1) = Ki o]+ for1<i,j<|ol, (1)
fij(k)ZCij—i—k, fork>2,1<i,j <|0g|, (8)

The inequalities have to be modified accordingly. For exampé have to add assertions
for the two following inequalities (again simplified, withbtaking into account the states
p, q of the boundary vertices).

Kim + Cm—|g|,j — 1 > Gij vm,jo| <m< 2|o|
—1+Km|g|+j = Gij vYm1<m<|o|.

In both inequalities we have to subtract 1 on the left sideabse the non-fixed-size sub-
problem has now sizk— 1 and the fixed-size subproblem extends over twimstances.
Taking ¢} := £9(2) — 2, all inequalities in this modified setting are now satisfiestab-
lishing that our polygon witln = s-|g| = 108 vertices makes at least 2 vertices unhappy:



Plane Graphs with Parity Constraints — VERSION April 28, 2010 11

Theorem 6 The maximum number of unhappy vertices in the best triatigngof all point
sets of size n with parity constraints@n). O

Open Problem 1 in [2] asks for the maximum constasitich that for any point set there
always exists a triangulation wheca— o(n) points have odd degree. While for the question
as stated we still believe that= 1 is possible, the above construction shows (using the
double circle) that for general parity constraints we M@%.

The upper bound oacan be improved té% by removing the nine even extremal vertices
of g and flipping the labels of the neighboring vertices. Thengyigations of the resulting
smaller polygorP’ with 99s vertices are in one-to-one correspondence with thoseguilan
tions of the original polygor® in which the removed vertices form ears (degree-2 vertices)
and are thus happy. Since the original polyg®dmvith 108s vertices has no triangulation
with more than 103 happy vertices, it is clear th& has no triangulation with more than

98s happy vertices.

4.2.2 A Lower Bound on Happy Vertices

As already mentioned, using the order type data base [3] we ingestigated point sets of
small cardinality by computer. Table 2 shows the values gigsmax, mint u(T,A), where
u(T,A) is the number of unhappy vertices in a triangulatibrof a point setS for parity
constraintsA. For all-odd and all-even, respectively, the magrm is replaced by parity
constraints such that all vertices have to be odd (even)il&lynfor all-inner-odd and all-
inner-even all the inner vertices have to be odd (even), anthé extremal vertices we take
the worst parity constraints.

[ n [3[4[5[6[7[8][9]10]11]
worst parityconstraintg| 3 | 4 | 3| 4|4 |4 4]| 5 4
all odd 312323 |]2]|3]| 2 3
all even 0| 4|2|4|2|4|4)| 4 4
all inner odd 313|333 |3]3 3 3
all inner even 314|134 |4]4|4] 5 4

Table 2 Maximum number of unhappy vertices in the best trianguladicanset o points with the described
parity constraintsn < 11

It is noteworthy that the all-inner-even cases already treeworst bounds among all
parity constraints. (In line with this observation, the Habeling that we chose for the
double-circle in the previous section had indeed all inretiges even.) In contrast, the
all-inner-odd case never causes more than 3 unhappy \eertice

The results of Table 2 allow a simple construction for a lolveuand on the number of
happy vertices.

Proposition 1 For every set $ R? of n points with parity constraints, there exists a trian-
gulation on S that makes at le&gjt{} | — 1 points happy.

Proof Given a point sef, select an extreme vertgxand radially sort the remaining— 1
vertices aroung. We call every twelfth vertex in this order a separating eeriThe lines
throughp and every separating vertex around it split gro@®f eleven points (probably
less in the last group). Construct the convex hull boundargéch of these groups. We show
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Fig. 6 Construction for the lower bound using the order type data besmdts. The gray regions depict the
convex hulls of groups of eleven points. The three differases to handle the separating vertices are shown.

that there always exists a triangulation®f= CH(S) \ U; CH(G;i) such that all separating
vertices are happy. Consider a separating vegtend let its two neighboring groups kg
andG;j, 1. Further, let andt’ be the predecessor and successay iof the order aroung,
respectively, see Fig. 6.

(1) The separatoq is inside the trianglet't. If g is labeled odd, we draw edges between
each of these four vertices, see Fig. 6(1aj i$ labeled even, leg be a neighbor of
on CH(G;) which is visible fromg. Draw the quadrilatergbt’tg (or pt'gt) and draw the
edges frong to all of them, see Fig. 6(1b-1c).

(2) The quadrilaterapt’qt is convex. Draw the quadrilateral and the eqmg If, after tri-
angulating the rest dD, q is unhappy, exchange the edge by the edget’ to makeq
happy.

According to Table 2 we can make all but 4 vertices happy itemoup of 11. Len =k
(mod 12. We have”l;zk full groups containing at least 7 happy vertices each,fq?gﬁm 1
happy separating vertices. The verfeand thek remaining vertices after the last full group
might be unhappy.Thus, we have at leastizk + "= — 1 =81k — 1 =8| 1| — 1 happy
vertices. O

Proposition 2 For any point set S of size n with all vertices labeled oddrethexists a
triangulation making at leastO| 5 | — 2 vertices happy.

Proof The proof uses the same technique and notation as the onemddftion 1. Instead
of one vertexg we now use two vertices andb between groups of 11 points and show that
we can always makaandb odd, see Fig. 7. We consider three different cases.

(1) If a, b, p, t, andt’ are in convex position, after triangulating the exteriandb can be
made happy due to Corollary 1.

(2) If both, a andb, are inside of the trianglpt’t, removeb and makea even as in the proof
of Proposition 1, Case (2). Addagain. It is now inside a triangle that is incidentao
Draw the edges betwedrand all the vertices of the triangle. Batrandb are now odd.

(3) If w.l.o.g. a, t, p, andt’ form a convex quadrilateral, we distinguish between two- sub
cases.

(3.1) Supposeéb is inside of the trianglatt’. Removeb and makea even like in the proof
of Proposition 1, Case (3). Then abdagain and draw the edges to the vertices of the
triangle containing it. One of these verticesithat now becomes happy.

(3.2) Vertexb is inside the trianglgot't. There exists a vertexnext tot on CH(G;j) that is

visible tob. Form a (not necessarily convex) 5-gon by addijrtg the quadrilateral in a
radial order around.

1 Depending ork we could perform better for the vertices of the last group,thist would only give a
marginal improvement of the additive factor, while makihg bound dependent dn
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Fig. 7 Two vertices between two groups can be made odd. Examplekddtifferent cases are shown, as
well as the two possibilities for Case (3.1). The dashed strok€dse (3.2.2) depicts the flipped edge.

(3.2.1)If ais a reflex vertex, draw the edgfg that is outside of the 5-gon. Draw the edges
at andtt’, as well as the edges frobto p, t, andt’.

(3.2.2)If ais a convex vertex of the 5-gon, triangulate the exterioa i§ unhappy, draw
all edges fromb to the vertices of the 5-gon. H is happy, draw the edge between
anda’s neighbor (which is eithetror g). Add all edges fronto to the remaining vertices.
Sinceb is of degree four, one of the edges incident to it carlipped(i.e., the edge is
removed and the other diagonal of the resulting convex 4igyadded). After the fliph

has degree 3 aralremains happy.
The bound calculated in Proposition 1 improves t¢ {0 — 2 happy vertices for all-odd

constraints, using the all-inner-odd result from Table 2. O

Alternatively to the bound construction using the orderetglata base, we also give a
stand-alone construction for the general case. The fatigwimple observation will prove
to be useful.

Observation 1 For every set 8 R? of four points in convex position with parity constraints
and every pe S there exists a triangulation on S that makes at least twheopbints from

S\ {p} happy. O

Theorem 7 For every set $ R? of n points with parity constraints, there exists a triangu-
lation on S that makes at Ieaﬁ%J — 6 points of S happy.

Proof Pick an arbitrary poinp on CH(S), setp; = p, and denote by, ..., p, the sequence
of points fromS, as encountered by a counterclockwise radial sweep arpua@dnsider the
closed polygonal chaif® = (pi,...,pn) and observe tha® describes the boundary of a
simple polygon (Fig. 8). With/ pgr denote the counterclockwise angle between the edges
pg andqgr aroundg. A point p;, 2 < i < n, is reflexif the interior angle ofP at p; is reflex,
that is,Zpi_1pipir1 > 1T, otherwise p; is convex Thus,p1, p2, andp, are convex.

We construct a triangulation on S as follows. As a start, we take the edges of(GH
and all edges oP, and denote the resulting graph By. If P is convex thenlp forms a
convex polygon. Otherwise Q9) is partitioned into two or more faces by the edge®of
Thinking of p as a light source and &fas opaque, we call the face fif that containg the
light faceand the other faces dp dark facesDark faces are shown gray in figures.
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In a next step, we insert further edges to ensure that alsfamconvex. The light face
is made convex by adding all edgpp wherep; is reflex. Hence the light face dp might
be split into a number of faces, all of which we refer to astligices in the following. We
partition the dark faces into convex faces as follows. Fiwgt add all edges to connect the
subsequence @ that consists of all convex points by a polygonal path. Nb&t some of
those edges may be edgedair CH(S) and, hence, already be present. Next, we triangulate
those dark faces that are not convex. For now, let us say libaetfaces are triangulated
arbitrarily. Later, we add a little twist.

Our construction is based on choosing particular triartguia for those faces that share
at least two consecutive edges with Let us refer to these faces ageresting while
the remaining ones are callemhinteresting The interesting faces can be ordered linearly
alongP, such that any two successive faces share exactly one edgdeléte this order
by f1,..., fm. Note thatf; is light for i odd and dark for even, and that botly and fy, are
light. Also observe thap is a vertex of every light face; therefore, any interestigbtiface
other thanf; and f,,, has at least four vertices and all uninteresting light faredriangles.
On the dark side, however, there may be both interestinggies and uninteresting faces
with more than three vertices. Similar to above, we triaagubll uninteresting dark faces,
for now, arbitrarily (a little twist will come later). We dete the resulting graph bi.

As afinal step, we triangulate the interesting fatgs. ., f,, of Ty in this order to obtain
a triangulation orswith the desired happiness ratio. We always treat a ligha faand the
following dark facefi,1 together. The vertices that do not occur in any of the remgini
faces areemovedand the goal is to choose a local triangulation ficaind f;, 1 that makes
a large fraction of those vertices happy. The progress issured by thehappiness ratio
h/t, if h vertices among removed vertices are happy. Note that these ratios aressitoil
fractions. But in order to determine the collective happseatio of two successive steps,
the corresponding ratios have to be added component-wigieat view, for instance, /2 is
different from ¥3.

We say that some set of points can be made happy “using affacé f can be
triangulated—for instance using Corollary 1 or Observatle—such that all these points
are happy. Two vertices aedigned if either both are currently happy or both are currently
unhappy. Two vertices that are not aligned esatrary. Denote the boundary of a fadeby
Jf, and letd fi = (p, pj, ..., px), for somek > j +2, andd fi 1 = (Pk—1,.-., Pr), for some
r>k+1.

After treatingf; and fi;1, we have removed all vertices up to, but not including, tis¢ la
two verticesp,_1 and p; of fi1, which coincide with the first two vertices of the next face
fi 2. Sometimes, the treatment §fand i1 leaves the freedom to vary the parity of the
vertex py—1 while maintaining the desired happiness ratio as well ap#riy of p,. This
means that the future treatment ff, and f;,3 does not need to take care of the parity
of pr_1. By adjusting the triangulation of and fi 1 we can always guarantee that 1 is

happy.

pn p2 p?’L p2

p=n pP=n

Fig. 8 The simple polygon bounded I8 the initial graphly (with dark faces shown gray), and the gragh
in which all faces are convex (interesting light and dark $agigown light gray and dark gray, respectively).
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Therefore, we distinguish two different settings regagdime treatment of a face pair:
no choice (the default setting with no additional help frontside) and ' choice (we can
flip the parity of the first vertey; of the face and, thus, always make it happy).

No choice.We distinguish cases according to the number of verticés in

(1.1) k > j+ 3, that is, fj has at least five vertices. Then p, Pk-1 Pr—2
Pj.---, Pk—2 can be made happy usirfg andpx_1,...,Pr—3 .
can be made happy usirfg, 1. Out of ther — j — 1 points
removed, at leastk—2— j+1)+(r—3—(k—1)+1) =
r — j — 2 are happy. As — j > 4, this yields a happiness fit1
ratio of at least 23. The figure to the right shows the case p
r =k+1 as an example.

(1.2)k= j+2, that s, f; is a convex quadrilateral. We distinguish subcases acugtdithe
number of vertices irfi ;1.

(1.2.0)r > j+4, that is, fi;1 has at least four ver-  p;
tices. Usingfi1, all of pj3,..., pr—2 can be made ‘
happy. Then at least two out pf, ..., pj+2 can be
made happy using. Overall, at least —2— (j +

Pj+1
?

3)+1+2=r—j—2outofr—j—1 removed
points are happy. As— j > 4, the happiness ratio °p
is at least 23.

(2.2.2)r = j 43, that is, fi11 Dj+1
is a triangle. If bothp; and ~ pr
Pj+1 can be made happy us-
ing fj, the happiness ratio is
2/2. Otherwise, regardless
of how fj is triangulated ex- D
actly one ofp; andpj+1 is happy, see the figure to the right. This yields a ratio &f 1

and P! choice forfi, .

First choice. Denote byf’ the other (tharf;) face incident to the edge pj-1 in the current
graph. As all offy, ..., fi_; are triangulated already/, is a triangle whose third vertex (other
than p; and pj+1) we denote byp'. Recall that in the ¥ choice setting we assume that,
regardless of how; is triangulatedp; can be made happy. More precisely, we assume the
following in a 1 choice scenario with a face pdir, fi,.1 to be triangulated: By adjusting the
triangulations offy,..., fi_1, we can synchronously flip the parity of bogh and p’, such
that

(C1) Allfacesfi, fi.1,..., fm as well asf’ remain unchanged,
(C2) the degree of all opj1, ..., pn remains unchanged, and
(C3) the number of happy vertices amopg. .., pj—1 does not decrease.

Observe that these conditions hold after Case 1.2.2. Ukiag choice flip, we may sup-
pose thatp' is happy. Then by (C3) the number of happy vertices amigng. .., pj—1} \
{p'} does not decrease, in case we do tfechoice flip (again) when processirfg fi 1.
We distinguish cases according to the number of verticds in
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(2.1) k > j+ 3, that is, fi has at least five vertices. Then p, Pk-1 pr—2
Pj+1,---, Pk—1 can be made happy usirdg If fi; is a trian- "<
gle (as shown in the figure to the right), this yields a ratio of
at least 33. Otherwise( > k+ 2), apart from keepingy_1
happy, fi. 1 can be used to make all @,..., pr_3 happy.
Atleastr — j — 2 out ofr — j — 1 vertices removed are happy, p
for a happiness ratio of at least®8

(2.2)k=j+2, that s, f; is a convex quadrilateral. We distinguish subcases acuptdithe
size offi,1.

(2.2.1)r > j+5, that s, fi11 has at least five vertices.  pr Dj+1
Triangulatef; arbitrarily and usdfj; to make all ¢
of pj+1,..., pr—3 happy. At least — j — 2 out of
r — j — 1 vertices removed are happy, for a happi-
ness ratio of at least/3.

(222) r = j+ 3, that is, fi;1 is a triangle.
Use fi to make pj;1 happy for a perfect ratio
of 2/2.

(2.2.3)r = j+4, thatis, fi,1 is a convex quadrilateral. If  pj1a  Pi+2~ = Pj+1

pj+1 and pj.» are aligned, then triangulating arbi- fir1 Y
trarily makes them contrary. Using,1 both can be Dit3 J
made happy, for a perfecy3 ratio overall. Thus, sup-
pose thatpj,1 and pj,» are contrary. We make a fur-

p

ther case distinction according to the position mf
with respect tofj 1.

(2.2.3.1)£pj+3pj+2pj < T, thatis,p, pj, Pj+2, Pj+3 form  pjia
a convex quadrilateral. Add edgep;» and exchange
edgeppj2 with edgep;jpj+3. In this way, pj;+1 and
Pj+2 remain contrary. Hence, bothy.1 andpj.» can
be made happy usin§.1, for a perfect ratio of 33
overall. p

(2.2.3.2)Zpjpj+1Pj+3 < m, that is, the points
Pj, Pj+4, Pj+3, Pj+1 form a convex quadri-
lateral. To conquer this case we need
P’ pj+4 to be an edge of1. In order to en-

Dj+2 Pj+1

fit1

Dj

sure this, we apply the before mentioned ijr _
little twist: before triangulating the non- v
convex dark faces, we scan through the se- Pj+2

guence of dark faces for configurations of °p

points like in this case. Call a dark quadrilatefawith J fi = (pj+1,..., pj+4) delicate

if Zpjpj+1Pj+3 < 1. For every delicate dark quadrilateriain fg, fe, ..., fm—1 such that
fi_2 is not delicate, add the edge, 4 pn, wherepy, is the first vertex offi_,. Observe that
this is possible agn, ..., pj+1, Pj+3, Pj+4 form a convex polygorf*: p,...,pj+1 and
Pj+1, Pj+3, Pj+4 form convex chains being vertices Hf , and fj, respectively, ang; 1

is a convex vertex of * because/p;jpj;+1pj+3 < 1. Then we triangulate the remaining
non-convex and the uninteresting dark faces arbitrarityetior; .
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To handle this case we joifi; with
f’ by removing the edgepj,1pj+4 and
P'pj+1 and adding the edgej,spj1,
which vyields a convex pentagor* =
Pj+4, Pj+3; Pj+1, Pj, p'. Observe thapj,1
and pj,» are aligned now. Thus, making
Pj+2 happy usingfi leavespj1 unhappy.
If p andp; are aligned, then triangulafé
using a star fronp’, makingp;1 happy. Asp’ andp; remain aligned, both can be made
happy—possibly using the?'ichoice flip—for a perfect 3/3 ratio. If, on the other hand,
p’ and p; are contrary, then triangulate’ using a star fronp;..4, makingpj+1 happy.
Now p’ and p; are aligned and both can made happy—possibly using thehbice
flip—for a perfect 3/3 ratio.

(2.2.3.3) Neither of the previous two cases occurs and, pj44 Dj+1
thus, pj, Pj+1, Pj+3, Pj+2 form a convex quadrilateral
f*. Removepj,1pj+2 and addpj1pj+3 and pj pj2.
Note thatp; is happy because oftlchoice forf;, and
pj+1 and pj,» are still contrary. Therefore, indepen-
dent of the triangulation of*, at least two vertices out p
of pj, Pj+1, Pj+2 are happy. Moreover, usin we can synchronously flip the parity of
both p;11 andpj3 such that (C1)—(C3) hold. This gives us a ratio g82nd %' choice
for fiio.

Dj

Putting things together. Recall that the first facé; and the last facé,, are the only light
faces that may be triangles. In case tligis a triangle, we just accept thab may stay
unhappy, and usinfp the remaining vertices removed, if any, can be made happylesly,
from the last facef,, up to three vertices may remain unhappy. To the remainingsfac
fs,..., fm—1 we apply the algorithm described above.

In order to analyze the overall happiness ratio, denotegy) the minimum number
of happy vertices obtained by applying the algorithm désatiabove to a sequenBe=
(p1,--.,Pn) Of N> 3 points in a no choice scenario. Similarly, denotehpfn) the minimum
number of happy vertices obtained by applying the algorittescribed above to a sequence
P=(pa,...,Pn) of n> 3 points in a ¥ choice scenario. From the case analysis given above
we deduce the following recursive bounds.

a) ho(n) =0andhi(n) =1, forn < 4.
b) ho(n) > min{2+ho(n—3),1+hy(n—2)}.
¢) hi(n) > min{3+ho(n—4),2+hg(n—2),24+h;(n—3)}.

By induction onn we can show thdtg(n) > [(2n—8)/3] andhy(n) > [(2n—7)/3]. Taking
the at most four unhappy vertices frof and f, into account yields the claimed overall
happiness ratio. ad

5 Conclusion

In this paper we considered the construction of crossiag-fyeometric graphs on point
sets with constraints on the parity of the vertex degreesaldut at most three vertices
the constraints can be fulfilled when constructing outergtagraphs and pointed pseudo-
triangulations. For triangulations, we showed that thexe be a linear number of such
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vertices and gave a construction that allows mal{i@bj — 6 vertices happy. For polygons
with polygonal holes, we proved the according decision j@molio be NP-complete.

For the case where all vertices are labeled odd, Proposttishowed that one can
achieve a fraction}—g of happy vertices. There might be ways to further improve tan-
stant factor. We even conjecture that this factor is 1, thaevery planar point set has a
triangulation with at mosKK even vertices, for some absolute constant
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