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Abstract Let Sbe a set ofn points in general position in the plane. Together withSwe are
given a set of parity constraints, that is, every point ofS is labeled either even or odd. A
graphG on Ssatisfies the parity constraint of a pointp∈ S if the parity of the degree ofp
in G matches its label. In this paper, we study how well various classes of planar graphs can
satisfy arbitrary parity constraints. Specifically, we show that we can always find a plane
tree, a two-connected outerplanar graph, or a pointed pseudo-triangulation which satisfy all
but at most three parity constraints. For triangulations wecan satisfy about 2/3 of the parity
constraints and we show that in the worst case there is a linear number of constraints which
cannot be fulfilled. In addition, we prove that for a given simple polygonH with polygonal
holes onS, it is NP-complete to decide whether there exists a triangulation ofH that satisfies
all parity constraints.
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1 Introduction

Computing a simple graph that meets a givendegree sequenceis a classical problem in graph
theory and theoretical computer science, dating back to thework of Erdős and Gallai [8]. A
degree sequence is a vectord = (d1, . . . ,dn) of n positive numbers. It isrealizableiff there
exists a simple graph whose nodes have precisely this sequence of degrees. Erdős and Gallai
gave necessary and sufficient conditions for a degree sequence to be realizable, and several
algorithms have been developed that generate a corresponding abstract graph.

An extension of this problem prescribes not only a degree sequenced, but also gives a
setS⊂ R

2 of n points in general position, wherepi ∈ S is assigned degreedi . It is well
known that a degree sequenced is realizable as a tree if and only if∑n

i=1 di = 2n− 2.
Tamura and Tamura [19] extended this result to plane (straight line) spanning trees, giv-
ing anO(n2 logn) time embedding algorithm, which in turn was improved by Boseet al. [6]
to optimalO(nlogn) time.

In this paper we study a relaxation of this problem, where we replace exact degrees
with degree parity: odd or even. Although parity constrainsare significantly weaker than
actual degree constrains, they still characterize certain(classes of) graphs. For example,
Eulerian graphs are exactly those connected graphs where all vertices have even degree,
and a classical theorem of Whitney states that a maximal planar graph is 3-colorable iff all
vertices have even degree. A given graph might satisfy only asubset of the parity constraints.
So we study how well various classes of planar graphs can satisfy arbitrary parity constraints.
A preliminary version of this work has been presented at the Algorithms and Data Structures
Symposium (WADS) in Banff, in August 2009 [1].

Definitions and notation.Let S⊂ R
2 be a set ofn points in general position. We denote the

convex hull ofSby CH(S). The points ofShave parity constraints, that is, every point ofS
is labeled eitherevenor odd; for ease of explanation we refer to even and odd points. We
denote byne andno the number of even and odd points inS, respectively. Throughout the
paper an even point is depicted by, an odd point by , and a point that can be either by

. A graphG onSmakes a pointp∈ S happy, if the parity of degG(p) matches its label. If
p is not happy, then it isunhappy. Throughout the paper a happy point is depicted by, an
unhappy point by , and a point that can be either by? .

Results.Clearly, not every set of parity constraints can be fulfilled. For example, in any
graph the number of odd-degree vertices is even. Hence, the number of unhappy vertices
has the same parity asno. For the class of plane trees, the aforementioned results ondegree
sequences immediately imply:

Theorem 1 On every point set S⊂R
2 with parity constraints, there exists a plane spanning

tree that makes(i) all but two points happy if no = 0, (ii) all but one point happy if no is
odd, and(iii ) all points happy if no ≥ 2 is even. ⊓⊔

We show that we can always find a two-connected outerplanar graph (which is a Hamiltonian
cycle with additional edges in the interior, Theorem 2) and apointed pseudo-triangulation
(Theorem 3), which satisfy all but at most three parity constraints. In Section 4 we con-
sider triangulations. In Section 4.1 we show that if we are given a simple polygonH with
polygonal holes onS, it is NP-complete to decide whether there exists a triangulation ofH
that satisfies all parity constraints. We show that there exist point sets and parity assign-
ments such that the number of unhappy vertices grows linearly in n for every triangulation
on S. On the other hand, we can guarantee to satisfy about 2/3 of the parity constraints
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(Theorem 7). This can be shown using results obtained from exhaustive computations on
small point sets, and alternatively by a proof based on simple inductive constructions, that,
however, sometimes involves elaborate case distinctions.

Related work.Many different types of degree restrictions for geometric graphs have been
studied. For example, for a given setS⊂ R

2 of n points, are there planar graphs onS for
which the maximum vertex degree is bounded? There clearly isa path, and hence a span-
ning tree, of maximum degree at most two. Furthermore, thereis always a pointed pseudo-
triangulation of maximum degree five [13], although there are point sets where every trian-
gulation must have a vertex of degreen−1. Another related question is the following: we
are given a setS⊂ R

2 of n points, together with a planar graphG on n vertices. Is there a
plane straight-line embedding ofG on S? Outerplanar graphs are the largest class of planar
graphs for which this is always possible, in particular, Bose [5] showed how to compute
such an embedding inO(nlog2n) time. Alvarez [4] considers the addition of extra (Steiner)
points to make a triangulation of a planar point set 3-colorable (i.e., all inner vertices have
even degree). For sets withk interior points he proves that⌊(k+ 2)/3⌋ Steiner points suf-
fice. Fernández Delago et al. [9] issue triangulations of convex point sets with all vertices of
even degree. They give the number of such triangulations andshow that the graph of even
triangulations obtained by exchanging the edges inside a hexagon is connected. They further
prove the NP-completeness of the problem of extending a geometric graph to a 3-colorable
triangulation by adding edges.

One motivation for our work on parity restrictions stems from a bi-colored variation of
a problem stated by Erdős and Szekeres in 1935: Is there a number f ES(k) such that any set
S⊂ R

2 of at leastf ES(k) bi-colored points in general position has a monochromatic subset
of k points that form an empty convexk-gon (that is, ak-gon that does not contain any points
of S in its interior)? It has been shown recently [2] that every bi-colored point set of at least
5044 points contains an empty (not necessarily convex) monochromatic quadrilateral. The
proof uses, among others, a result that for any point set there exists a triangulation where at
least half of the points have odd parity. Any increase in the guaranteed share of odd parity
points translates into a lower minimum number of points required in the above statement.
More specifically, from our Proposition 2 one can conclude that the above result holds for
any set of at least 2080 points.

2 Outerplanar Graphs

After trees as minimally connected graphs, a natural next step is to consider two-connected
graphs. In particular, outerplanar graphs generalize trees both in terms of connectivity and
with respect to treewidth. In this section we consider two-connected outerplanar graphs,
which are the same as outerplanar graphs with a unique Hamiltonian cycle [7], in other
words, simple polygons augmented with a set of pairwise non-crossing diagonals.

The following simple construction (see (Fig. 1) makes all but at most three points happy.
Pick an arbitrary pointp. Setp1 = p and denote byp2, . . . , pn the sequence of points fromS,
as encountered by a counterclockwise radial sweep aroundp, starting from some suitable di-
rection (if p is on CH(S) towards its counterclockwise neighbor on CH(S)). The outerplanar
graphG consists of the closed polygonal chainP = (p1, . . . , pn) plus an edgeppj for every
odd pointp j ∈ {p3, . . . , pn−1}. All points are happy, with the possible exception ofp, p2,
andpn. Fig. 1 shows an example of a point setSwith parity constraints and an outerplanar
graph onSsuch that all but two points are happy.
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p

pn

p2

p

pn

p2

Fig. 1 Constructing a two-connected outerplanar graph with at most three unhappy vertices.

Theorem 2 For every set S⊂ R
2 of n points with parity constraints, there exists an outer-

planar graph on S that makes all but at most three points happy. ⊓⊔

3 Pointed Pseudo-Triangulations

Pseudo-triangulations are related to triangulations and usepseudo-trianglesin addition to
triangles. A pseudo-triangle is a simple polygon with exactly three interior angles smaller
thanπ . A pseudo-triangulation is calledpointed if every vertexp has one incident region
whose angle atp is greater thanπ . In the following we describe a recursive construction for
a pointed pseudo-triangulationP on Sthat makes all but at most three points ofShappy.

At any time in our construction we have only one recursive subproblem to consider. This
subproblem consists of a point setS∗ whose convex hull edges have already been added
to P . The current setP is a pointed set of edges that subdivides the exterior of CH(S∗)
into pseudo-triangles such that all points outside CH(S∗) are happy.P contains no edges
inside CH(S∗). We say that S* ishopefulif at least one point on CH(S∗) is made happy by
the current version ofP . Otherwise, we say thatS∗ is unhappy.

We initialize our construction by settingS∗ = Sand adding CH(S) to P . Now we dis-
tinguish four cases.

?

v

?

?

? ?

?

v

?

?

? ?

q q

p p

(1) S∗ is hopeful. Let v be a point
on CH(S∗) that is currently happy,
let p and q be its neighbors, and
let S′ be the (possibly empty) set
of points fromS that lie in the in-
terior of the triangle△qvp. Then
CH(S′ ∪ {p,q}) without the edge
pq defines a convex chainC from p to q, in a way thatC andv together form a pseudo-
triangle. (If S′ = /0, thenC = pq.) Removev from consideration by addingC to P . If
|S∗| ≥ 5, recurse onS∗ \ {v}. Otherwise, there are at most three unhappy points in the
remaining triangle.

p p
?

(2) S∗ is unhappy and has no interior points.
Choose one pointp on CH(S∗) and triangulate
CH(S∗) by adding edges fromp. There are at
most three unhappy points, namelyp and its
two neighbors.
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p pp

?

?

(3) S∗ is unhappy and has exactly one inte-
rior point, pi . Pick an arbitrary pointp on
CH(S∗) and draw a line throughp andpi . This
line intersects exactly one edgee of CH(S∗),
and e, p, and pi together define a pseudo-
triangle∇. Add ∇ to P , which splits CH(S∗)
into two sub-polygons. Triangulate the sub-polygon which containspi by adding edges
from pi to all other vertices, except to its neighbors. Similarly, triangulate the other sub-
polygon by adding edges fromp. There are at most three unhappy points:p, pi , and a
neighbor ofp.

?

?

?

?

(4) S∗ is unhappy and has more than one inte-
rior point. Let Si be the set of interior points.
First add the edges of CH(Si) to P . Then
connect each point on CH(S∗) tangentially to
CH(Si) in clockwise direction, thereby cre-
ating a “lens shutter” pattern. Each point on
CH(S∗) is now happy. If|Si | > 3, then recurse onSi . Otherwise, there are at most three
unhappy points.

Theorem 3 For every point set S⊂ R
2 with parity constraints, there exists a pointed pseu-

do-triangulation on S that makes all but at most three pointsof S happy. ⊓⊔

4 Triangulations

The final and maybe most interesting class of planar graphs which we consider are trian-
gulations. If the point setS lies in convex position, then all pseudo-triangulations ofS are
in fact triangulations. Thus, Theorem 3 also holds for triangulations of convex point sets.
Moreover, we may select any three pointsp,q, r that are consecutive along CH(S), which
we do not remove when the set is hopeful. When no points can be removed, we complete
the triangulation by adding edges toq. This immediately gives the following result.

Corollary 1 For every point set S⊂ R
2 in convex position with parity constraints, and any

three points p,q, r that are consecutive alongCH(S), there exists a triangulation on S that
makes all points of S happy, with the possible exception of p,q, and r. ⊓⊔

In contrast to such a triangulation of a convex domain, it is easy to construct arbitrary
large examples of simple polygons that do not even have one happy vertex. In the following,
we consider complexity aspects of triangulating polygons with parity constraints. After that,
we give bounds on the number of happy vertices in triangulations of point sets.

4.1 Triangulations of Polygons

It is a well-known and easy fact that there always exists a proper vertex 3-coloring of any
triangulation of a simple polygon [17, p. 15]. There also is an interesting connection between
proper 3-colorings and the parity of the vertices.

Theorem 4 ([10,15])Given a triangulation T(P) of a simple polygon P let u, v, and w
be any three consecutive vertices of P. Then, in a proper vertex 3-coloring of T(P), the
vertices u and w have the same color if and only if v is odd.
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This follows from the fact that in the sequence of vertices that are neighbors tov in the
triangulation their colors must alternate. Fleischner [10] actually proves this for the more
general case that allows inner vertices of even degree. Kooshesh and Moret [15] describe
a trivial algorithm for coloring a triangulated polygon in linear time that immediately fol-
lows from the above theorem. Indeed, Theorem 4 gives a simpletest for checking whether
a simple polygon can be happily triangulated: Start with twoarbitrary colors for two adja-
cent vertices, and propagate the 3-coloring along the boundary, using Theorem 4. A happy
triangulation exists if and only if this results in a proper 3-coloring of the vertices.

Optimal triangulations of arbitrary simple polygons can becomputed inO(n3) time
by adapting the well-known dynamic-programming approach of [11,14] (devised for the
minimum-weight triangulation problem), where each triangle that can be incident to a cho-
sen base edge defines two subproblems. As by combining two subproblems the parity of
their common vertex might change, optimal partial solutions are stored for all four different
parity patterns at the base edge of a subproblem.

In contrast, the situation gets more involved if we considerpolygons with holes.

Theorem 5 It is NP-complete to decide, for a given polygon H with holes and with parity
constraints, whether there exists a triangulation of H suchthat all vertices of H are happy.

Proof Following Jansen [12], we use a restricted version of the NP-completeplanar 3-SAT
problem [16], in which each clause contains at most three literals and each variable occurs
in at most three clauses.

(d) (e) (f)

(a) (b) (c)

Fig. 2 A wire (a) that transfersTRUE (b), and FALSE (c), and a variable (d) inTRUE (e) and FALSE (f) state.
The short edges are part of in every triangulation.

The edgesof the planar formula are represented bywires (Fig. 2(a)–(c)), narrow cor-
ridors which can be triangulated in two possible ways, and thereby transmit information
between their ends. Negation can easily be achieved by swapping the labels of a single ver-
tex pair in a wire from both even to both odd. The constructionof a variable (Fig. 2(d)–(f))
ensures that all wires emanating from it carry the same state, that is, their diagonals are
oriented in the same direction.

To check clauses we use anOR-gate (Fig. 4) with two inputs and one output wire.
The OR-gate is a convex 9-gonv1 . . .v9 with three attached wires, and adon’t-care loop
(Fig. 3(a)) attached to the two top-most verticesv8,v9. This loop has two possible trian-
gulations and gives more freedom for the two vertices to which it is attached: by switching
between the two triangulations of the loop the parity of bothvertices is changed. All edges of
the 9-gon are either on the boundary of the input polygon or they are unavoidable: no other
potential edge crosses them, and thus they must belong to every triangulation. This can be
achieved by making them short enough. Starting at the leftmost vertexv1 (see Fig. 4(a)), the
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index 1 2 3 4 5 6 7 8 9 10≃ 1

λ f o e e e o e e o o o
color 1 2 3 1 2 1 3 2 3 2 6= 1

λ ′
f o e e e o e e e e o

color 1 2 3 1 2 1 3 2 1 3 6= 1

Table 1 Invalid colorings induced by the vertex constraints show the nonexistence of a triangulation of the
OR-gate with both inputs FALSE and the output TRUE.

constraint sequence of the vertices in counterclockwise order isλ = 〈oeoeeoeoe〉, wheree
stands for even ando for odd.

Fig. 4 shows triangulations of theOR-gate for the four possible input configurations of
an OR-gate, where the output is FALSE iff both inputs are false. There may also be trian-
gulations of anOR-gate such that the output can be FALSE even if one input is TRUE. The
important part is that (i) when at least one input is TRUE, there is a triangulation with output
TRUE, see Fig. 4(b–d), and (ii) if both inputs are FALSE, the output must also be FALSE.

Suppose the inputs are both FALSE and the output isTRUE. Remove the edges outside
of the 9-gon and adjust the labeling of the the 9-gon accordingly. We getλ f = 〈oeeeoeeoo〉,
and for a different direction of the don’t-care loopλ ′

f = 〈oeeeoeeee〉. If we apply the test of
Theorem 4 and try to 3-color the vertices, as shown in Table 1,we get a conflict, and hence
there is no triangulation with the given parities.

Clauses with two literals can directly be realized by such gates, three literals require
to cascade twoOR-gates (Fig. 3(b)). In both cases, we fix the output toTRUE by simply
removing the output wire and swapping the parity of the 6-th vertexv6.

It is straightforward to combine the constructed elements to a polygonH with holes
representing a given planar 3SAT formula. ⊓⊔

4.2 Triangulations of Point Sets

In this section we present lower and upper bounds on the number of happy vertices for
general point sets. For example, for point sets of small cardinality we can investigate the
number of happy vertices with the help of the order type data base [3]. For any set of 11
points with parity constraints we can always find a triangulation which makes at least 7
vertices happy, cf. Table 2 in Section 4.2.2.

4.2.1 A Lower Bound on Unhappy Vertices

The figure below shows a double circle for 10 points with parity constraints, such that at
most 5 points can be made happy. This is in fact the only point configuration forn= 10 (out

(b)

∨

∨

a b c

True

(a)

Fig. 3 A don’t-care loop (a). Checking a clausea∨b∨c by joining twoOR-gates (b).
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(a)

dc dc

(b)

dc

(c) (d)

dc

v1

F F T F F T T T

F T T T

v6 v6

v2

v9

Fig. 4 An OR-gate with inputs FALSE, FALSE (a), TRUE, FALSE (b), FALSE, TRUE (c), and TRUE, TRUE

(d). The two inputs are at the bottom and the output is at the upper right side. A don’t-care loop “dc” is
attached to the two top-most vertices.

of 14 309 547 [3]) with this property. Adouble circleof even sizen= 2h is a point set withh
extreme vertices in which each of the remainingh interior points is placed sufficiently close
to a different edge of the convex hull. For each interior point, the edges to the two adjacent
hull vertices are unavoidable; they are part of every triangulation.

These unavoidable edges form a poly-
gon Therefore, triangulating the interior of
the double circle is equivalent to triangulat-
ing a simple polygon. This allows examining
the double circle using the already mentioned
dynamic-programming approach without ex-
plicitly generating geometric representations.

Based on the double circle we constructed large examples with a repeating parity pattern
σ = 〈(ee(oe)3ee(oe)7ee(oe)5)3〉 of length 108, starting at an extreme vertex and proceeding
counterclockwise. We will show that for these configurations any triangulation has at least
n/108+ 2 unhappy vertices. Our proof uses computer aid. An extensive discussion of the
proof and its underlying parity pattern can be found in the master’s thesis of one of the
authors [18].

The proof is inspired by the dynamic-programming approach of combining two sub-
polygons which are separated by a triangle and for which the minimum number of unhappy
vertices has already been determined. The proof works by induction over the size of the
subproblem. Consider a double circle of sizen = |σ | ·s, labeled withs repetitions ofσ . We
call a sequence of points labeled by such a repetition aσ -instance. Add the unavoidable
edges and remove the convex hull edges. Let the resulting polygon be called adouble circle
polygon.

Consider a diagonald from the i-th vertex in aσ -instance to thej-th vertex in thek-
th following σ -instance in the counterclockwise direction, see Fig. 5. (For k = 0, the two
vertices are taken from the sameσ -instance. These diagonals will form thefixed-size sub-
problems.) We denote byfi j (k) the minimum possible mumber of unhappy vertices in a
triangulation of the polygon formed byd and the vertices between the endpoints ofd. For
small values ofk, these numbers can be explicitly calculated with a dynamic-programming
recursion. We make a claim of the following form:

fi j (0) = κi j , for 1≤ i < j ≤ |σ |, (1)

fi j (k) ≥ ci j +k, for k≥ 1, 1≤ i, j ≤ |σ |, (2)

for constantsκi j andci j .
Our goal is to prove (2) by induction on the number of verticesbetween the endpoints of

d. In the triangulations over which we optimize for the subproblem fi j (k), for k≥ 1, consider
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the triangle with base edged. It can partition the subproblemfi j (k) in three ways, see Fig. 5:
its apexvm is either in the startingσ -instance or in the endingσ -instance (together with one
of the endpoints ofd), or in some intermediateσ -instance. We must take the minimum of
these cases. When disregarding for a moment the parity ofd’s end vertices, we get:

f 1
i j (k) = mini<m1≤|σ |[ fim1(0)+ fm1 j(k)] = mini<m1≤|σ |[κim1 + fm1 j(k)],

f 2
i j (k) = min1≤m2< j [ fim2(k)+ fm2 j(0)] = min1≤m2< j [ fim2(k)+κm2 j ],

f 3
i j (k) = min1≤m3≤|σ |,0<l<k[ fim3(l)+ fm3 j(k− l)]

fi j (k) = min{ f 1
i j (k), f 2

i j (k), f 3
i j (k)}.

i

m1

j
d

σ

fm1j κim1

i

m3

j

σ

fim3

fm3j

d

σ

σl

σk−l

Fig. 5 The different types of subproblems formed by triangles with their base atd.

The simplified hypothesis (2) which we want to prove by induction over the size of the
subproblem is thatfi j (k) ≥ k+ ci j for some constantci j . The induction hypothesis (1–2)
gives

f 1
i j (k) ≥ mini<m1≤|σ |[κim1 +k+cm1 j ],

f 2
i j (k) ≥ min1≤m2< j [k+cim2 +κm2 j ],

f 3
i j (k) ≥ min1≤m3≤|σ |,0≤l<k[l +cim3 +k− l +cm3 j ].

To prove fi j (k) ≥ k+ci j for k≥ 1 it therefore suffices to show that

κim1 +k+cm1 j ≥ k+ci j ∀m1, i < m1 ≤ |σ |

k+cim2 +κm2 j ≥ k+ci j ∀m2,1≤ m2 < j

l +cim3 +k− l +cm3 j ≥ k+ci j ∀m3,1≤ m3 ≤ |σ |,∀k, l .

These inequalities obviously allow us to disregard the variablesl andk. We only need to
compare the constants.

Let us now take the parity of end vertices of the diagonal intoaccount. Letf hh
i j (k) define

the least number of unhappy vertices in the subproblem withk+ 1 σ -instances and with
both end vertices happy, and letf uh

i j (k), f hu
i j (k) and f uu

i j (k) be defined analogously with
the first, the second and both end vertices unhappy, respectively. Similarly, we extend the
notion for fixed-size subproblem minima toκhh

i j ,κuh
i j ,κhu

i j andκuu
i j . By convention, we do

not include the number of unhappy end vertices inf pq
i j (k) andκ pq

i j . Further note that some
of the fixed-size subproblems may not exist. Inequalities containing them do not impose a
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valid subproblem and therefore need not be checked. When combining two subproblems,
they have a common vertex at the apexvm. If it is happy in one subproblem and unhappy in
the other, the combined degree is odd. Hence, we increment the number of unhappy vertices
if vm is labeled even (recall thatvm has not been counted before). Otherwise, ifvm has
the same state of happiness in both subproblems, the combined degree is even. Therefore,
we increment the number of unhappy vertices ifvm is labeled odd. Further, the addition
of d changes the parity of its end vertices. For, e.g.,f hh

i j we therefore have to consider the
combinations of subproblems that have unhappy vertices ati and j. LetL(m) = 1 if them-th
label inσ is odd andL(m) = 0 otherwise. We now have to prove for, e.g.,f hh

i j

κuu
im1

+cuu
m1 j +L(m1) ≥ chh

i j

κuu
im1

+chu
m1 j +1−L(m1) ≥ chh

i j

κuh
im1

+cuu
m1 j +1−L(m1) ≥ chh

i j

κuh
im1

+chu
m1 j +L(m1) ≥ chh

i j















∀m1, i < m1 ≤ |σ | (3)

cuu
im2

+κuu
m2 j +L(m2) ≥ chh

i j

cuu
im2

+κhu
m2 j +1−L(m2) ≥ chh

i j

cuh
im2

+κuu
m2 j +1−L(m2) ≥ chh

i j

cuh
im2

+κhu
m2 j +L(m2) ≥ chh

i j















∀m2,1≤ m2 < j (4)

cuu
im3

+cuu
m3 j +L(m3) ≥ chh

i j

cuu
im3

+chu
m3 j +1−L(m3) ≥ chh

i j

cuh
im3

+cuu
m3 j +1−L(m3) ≥ chh

i j

cuh
im3

+chu
m3 j +L(m3) ≥ chh

i j















∀m3,1≤ m3 ≤ |σ |. (5)

The inequalities forf hu
i j , f uh

i j and f uu
i j are analogous.

As mentioned above, a dynamic-programming recursion can explicitly calculate the
f hh
i j (k), f hu

i j (k), f uh
i j (k), and f uu

i j (k) for small values ofk. This gives us the values ofκ pq
i j

and it allows us to guess the values for the constantscpq
i j , for all combinations of happiness

labels p,q. Once these constants are found, we just have to check the inequalities (3–5),
again using a computer program.

However, it turned out that this setup did not lead to a valid proof. We have to refine the
inductive claim (1–2) by treating also the casek = 1 as a “fixed-size” problem:

fi j (0) = κi j , for 1≤ i < j ≤ |σ |, (6)

fi j (1) = κi,|σ |+ j , for 1≤ i, j ≤ |σ |, (7)

fi j (k) ≥ ci j +k, for k≥ 2, 1≤ i, j ≤ |σ |, (8)

The inequalities have to be modified accordingly. For example, we have to add assertions
for the two following inequalities (again simplified, without taking into account the states
p,q of the boundary vertices).

κim +cm−|σ |, j −1≥ ci j ∀m, |σ | < m≤ 2|σ |

cim−1+κm,|σ |+ j ≥ ci j ∀m,1≤ m≤ |σ |.

In both inequalities we have to subtract 1 on the left side, because the non-fixed-size sub-
problem has now sizek− 1 and the fixed-size subproblem extends over twoσ -instances.
Taking cpq

i j := f pq
i j (2)−2, all inequalities in this modified setting are now satisfied, estab-

lishing that our polygon withn= s·|σ |= 108svertices makes at leasts+2 vertices unhappy:
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Theorem 6 The maximum number of unhappy vertices in the best triangulations of all point
sets of size n with parity constraints isΘ(n). ⊓⊔

Open Problem 1 in [2] asks for the maximum constantc such that for any point set there
always exists a triangulation wherecn−o(n) points have odd degree. While for the question
as stated we still believe thatc = 1 is possible, the above construction shows (using the
double circle) that for general parity constraints we havec≤ 107

108.
The upper bound onccan be improved to98

99 by removing the nine even extremal vertices
of σ and flipping the labels of the neighboring vertices. The triangulations of the resulting
smaller polygonP′ with 99svertices are in one-to-one correspondence with those triangula-
tions of the original polygonP in which the removed vertices form ears (degree-2 vertices)
and are thus happy. Since the original polygonP with 108s vertices has no triangulation
with more than 107s happy vertices, it is clear thatP′ has no triangulation with more than
98s happy vertices.

4.2.2 A Lower Bound on Happy Vertices

As already mentioned, using the order type data base [3] we have investigated point sets of
small cardinality by computer. Table 2 shows the values max|S|=n maxλ minT u(T,λ ), where
u(T,λ ) is the number of unhappy vertices in a triangulationT of a point setS for parity
constraintsλ . For all-odd and all-even, respectively, the maxλ -term is replaced by parity
constraints such that all vertices have to be odd (even). Similarly for all-inner-odd and all-
inner-even all the inner vertices have to be odd (even), and for the extremal vertices we take
the worst parity constraints.

n 3 4 5 6 7 8 9 10 11

worst parity constraints 3 4 3 4 4 4 4 5 4
all odd 3 2 3 2 3 2 3 2 3
all even 0 4 2 4 2 4 4 4 4
all inner odd 3 3 3 3 3 3 3 3 3
all inner even 3 4 3 4 4 4 4 5 4

Table 2 Maximum number of unhappy vertices in the best triangulationof a set ofn points with the described
parity constraints,n≤ 11

It is noteworthy that the all-inner-even cases already givethe worst bounds among all
parity constraints. (In line with this observation, the badlabeling that we chose for the
double-circle in the previous section had indeed all inner vertices even.) In contrast, the
all-inner-odd case never causes more than 3 unhappy vertices.

The results of Table 2 allow a simple construction for a lowerbound on the number of
happy vertices.

Proposition 1 For every set S⊂ R
2 of n points with parity constraints, there exists a trian-

gulation on S that makes at least8⌊ n
12⌋−1 points happy.

Proof Given a point setS, select an extreme vertexp and radially sort the remainingn−1
vertices aroundp. We call every twelfth vertex in this order a separating vertex. The lines
throughp and every separating vertex around it split groupsGi of eleven points (probably
less in the last group). Construct the convex hull boundary for each of these groups. We show
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(1b)(1a)

p
q

t

Gj

Gj+1

t′

(1c) (2)
g g

Fig. 6 Construction for the lower bound using the order type data base results. The gray regions depict the
convex hulls of groups of eleven points. The three different cases to handle the separating vertices are shown.

that there always exists a triangulation ofD = CH(S) \
⋃

i CH(Gi) such that all separating
vertices are happy. Consider a separating vertexq, and let its two neighboring groups beG j

andG j+1. Further, lett andt′ be the predecessor and successor ofq in the order aroundp,
respectively, see Fig. 6.
(1) The separatorq is inside the trianglept′t. If q is labeled odd, we draw edges between

each of these four vertices, see Fig. 6(1a). Ifq is labeled even, letg be a neighbor oft
on CH(G j) which is visible fromq. Draw the quadrilateralpt′tg (or pt′gt) and draw the
edges fromq to all of them, see Fig. 6(1b–1c).

(2) The quadrilateralpt′qt is convex. Draw the quadrilateral and the edgepq. If, after tri-
angulating the rest ofD, q is unhappy, exchange the edgepq by the edgett′ to makeq
happy.

According to Table 2 we can make all but 4 vertices happy in each group of 11. Letn≡ k
(mod 12). We haven−k

12 full groups containing at least 7 happy vertices each, andn−k
12 −1

happy separating vertices. The vertexp and thek remaining vertices after the last full group
might be unhappy.1 Thus, we have at least 7n−k

12 + n−k
12 −1 = 8n−k

12 −1 = 8⌊ n
12⌋−1 happy

vertices. ⊓⊔

Proposition 2 For any point set S of size n with all vertices labeled odd, there exists a
triangulation making at least10⌊ n

13⌋−2 vertices happy.

Proof The proof uses the same technique and notation as the one of Proposition 1. Instead
of one vertexq we now use two verticesa andb between groups of 11 points and show that
we can always makea andb odd, see Fig. 7. We consider three different cases.
(1) If a, b, p, t, andt′ are in convex position, after triangulating the exterior,a andb can be

made happy due to Corollary 1.
(2) If both, a andb, are inside of the trianglept′t, removeb and makea even as in the proof

of Proposition 1, Case (2). Addb again. It is now inside a triangle that is incident toa.
Draw the edges betweenb and all the vertices of the triangle. Botha andb are now odd.

(3) If w.l.o.g. a, t, p, andt′ form a convex quadrilateral, we distinguish between two sub-
cases.

(3.1) Supposeb is inside of the triangleatt′. Removeb and makea even like in the proof
of Proposition 1, Case (3). Then addb again and draw the edges to the vertices of the
triangle containing it. One of these vertices isa that now becomes happy.

(3.2)Vertexb is inside the trianglept′t. There exists a vertexg next tot on CH(G j) that is
visible tob. Form a (not necessarily convex) 5-gon by addingg to the quadrilateral in a
radial order aroundb.

1 Depending onk we could perform better for the vertices of the last group, butthis would only give a
marginal improvement of the additive factor, while making the bound dependent onk.
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p t

Gj

Gj+1

t′

a

b

g
(1)

(2)

(3.1a)

(3.1b)

(3.2.1)

g
(3.2.2)

a
b

ab b

b a

a

Fig. 7 Two vertices between two groups can be made odd. Examples forthe different cases are shown, as
well as the two possibilities for Case (3.1). The dashed stroke forCase (3.2.2) depicts the flipped edge.

(3.2.1)If a is a reflex vertex, draw the edget′g that is outside of the 5-gon. Draw the edges
at andtt′, as well as the edges fromb to p, t, andt′.

(3.2.2) If a is a convex vertex of the 5-gon, triangulate the exterior. Ifa is unhappy, draw
all edges fromb to the vertices of the 5-gon. Ifa is happy, draw the edge betweent
anda’s neighbor (which is eithert or g). Add all edges fromb to the remaining vertices.
Sinceb is of degree four, one of the edges incident to it can beflipped(i.e., the edge is
removed and the other diagonal of the resulting convex 4-gonis added). After the flip,b
has degree 3 anda remains happy.

The bound calculated in Proposition 1 improves to 10⌊ n
13⌋− 2 happy vertices for all-odd

constraints, using the all-inner-odd result from Table 2. ⊓⊔

Alternatively to the bound construction using the order type data base, we also give a
stand-alone construction for the general case. The following simple observation will prove
to be useful.

Observation 1 For every set S⊂R
2 of four points in convex position with parity constraints

and every p∈ S there exists a triangulation on S that makes at least two of the points from
S\{p} happy. ⊓⊔

Theorem 7 For every set S⊂ R
2 of n points with parity constraints, there exists a triangu-

lation on S that makes at least⌊ 2n
3 ⌋−6 points of S happy.

Proof Pick an arbitrary pointp on CH(S), setp1 = p, and denote byp2, . . . , pn the sequence
of points fromS, as encountered by a counterclockwise radial sweep aroundp. Consider the
closed polygonal chainP = (p1, . . . , pn) and observe thatP describes the boundary of a
simple polygon (Fig. 8). With∠pqr denote the counterclockwise angle between the edges
pq andqr aroundq. A point pi , 2≤ i < n, is reflex if the interior angle ofP at pi is reflex,
that is,∠pi−1pi pi+1 > π ; otherwise,pi is convex. Thus,p1, p2, andpn are convex.

We construct a triangulationT on Sas follows. As a start, we take the edges of CH(S)
and all edges ofP, and denote the resulting graph byT0. If P is convex thenT0 forms a
convex polygon. Otherwise CH(S) is partitioned into two or more faces by the edges ofP.
Thinking of p as a light source and ofP as opaque, we call the face ofT0 that containsp the
light faceand the other faces ofT0 dark faces. Dark faces are shown gray in figures.
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In a next step, we insert further edges to ensure that all faces are convex. The light face
is made convex by adding all edgesppi wherepi is reflex. Hence the light face ofT0 might
be split into a number of faces, all of which we refer to as light faces in the following. We
partition the dark faces into convex faces as follows. First, we add all edges to connect the
subsequence ofP that consists of all convex points by a polygonal path. Note that some of
those edges may be edges ofP or CH(S) and, hence, already be present. Next, we triangulate
those dark faces that are not convex. For now, let us say that these faces are triangulated
arbitrarily. Later, we add a little twist.

Our construction is based on choosing particular triangulations for those faces that share
at least two consecutive edges withP. Let us refer to these faces asinteresting, while
the remaining ones are calleduninteresting. The interesting faces can be ordered linearly
alongP, such that any two successive faces share exactly one edge. We denote this order
by f1, . . . , fm. Note thatfi is light for i odd and dark fori even, and that bothf1 and fm are
light. Also observe thatp is a vertex of every light face; therefore, any interesting light face
other thanf1 and fm has at least four vertices and all uninteresting light facesare triangles.
On the dark side, however, there may be both interesting triangles and uninteresting faces
with more than three vertices. Similar to above, we triangulate all uninteresting dark faces,
for now, arbitrarily (a little twist will come later). We denote the resulting graph byT1.

As a final step, we triangulate the interesting facesf1, . . . , fm of T1 in this order to obtain
a triangulation onSwith the desired happiness ratio. We always treat a light face fi and the
following dark face fi+1 together. The vertices that do not occur in any of the remaining
faces areremoved, and the goal is to choose a local triangulation forfi and fi+1 that makes
a large fraction of those vertices happy. The progress is measured by thehappiness ratio
h/t, if h vertices amongt removed vertices are happy. Note that these ratios are similar to
fractions. But in order to determine the collective happiness ratio of two successive steps,
the corresponding ratios have to be added component-wise. In that view, for instance, 2/2 is
different from 3/3.

We say that some set of points can be made happy “using a facef ”, if f can be
triangulated—for instance using Corollary 1 or Observation 1—such that all these points
are happy. Two vertices arealigned, if either both are currently happy or both are currently
unhappy. Two vertices that are not aligned arecontrary. Denote the boundary of a facef by
∂ f , and let∂ fi = (p, p j , . . . , pk), for somek ≥ j +2, and∂ fi+1 = (pk−1, . . . , pr), for some
r ≥ k+1.

After treating fi and fi+1, we have removed all vertices up to, but not including, the last
two verticespr−1 andpr of fi+1, which coincide with the first two vertices of the next face
fi+2. Sometimes, the treatment offi and fi+1 leaves the freedom to vary the parity of the
vertex pr−1 while maintaining the desired happiness ratio as well as theparity of pr . This
means that the future treatment offi+2 and fi+3 does not need to take care of the parity
of pr−1. By adjusting the triangulation offi and fi+1 we can always guarantee thatpr−1 is
happy.

p = p1

pn p2

?

?

?

?

?

? ?

?
?

?

p = p1

pn p2

?

?

?

?

?

? ?

?
?

?

p = p1

pn p2

?

?

?

?

?

? ?

?
?

?

Fig. 8 The simple polygon bounded byP, the initial graphT0 (with dark faces shown gray), and the graphT1
in which all faces are convex (interesting light and dark faces shown light gray and dark gray, respectively).
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Therefore, we distinguish two different settings regarding the treatment of a face pair:
no choice (the default setting with no additional help from outside) and 1st choice (we can
flip the parity of the first vertexp j of the face and, thus, always make it happy).

No choice.We distinguish cases according to the number of vertices infi .

pj

p

pk

pk−2pk−1

.

.

.

pr
?

?

?

?

fi

fi+1

(1.1) k ≥ j + 3, that is, fi has at least five vertices. Then
p j , . . . , pk−2 can be made happy usingfi , andpk−1, . . . , pr−3

can be made happy usingfi+1. Out of ther − j − 1 points
removed, at least(k− 2− j + 1) + (r −3− (k− 1) + 1) =
r − j − 2 are happy. Asr − j ≥ 4, this yields a happiness
ratio of at least 2/3. The figure to the right shows the case
r = k+1 as an example.

(1.2)k = j +2, that is, fi is a convex quadrilateral. We distinguish subcases according to the
number of vertices infi+1.

pj

p

pj+2

pj+1

pr−1

.
.
.

pr

fi

fi+1

?

?

?

?

(1.2.1) r ≥ j + 4, that is, fi+1 has at least four ver-
tices. Usingfi+1, all of p j+3, . . . , pr−2 can be made
happy. Then at least two out ofp j , . . . , p j+2 can be
made happy usingfi . Overall, at leastr −2− ( j +
3) + 1+ 2 = r − j − 2 out of r − j − 1 removed
points are happy. Asr − j ≥ 4, the happiness ratio
is at least 2/3.

pj

p

pj+2

pj+1

pr fi+1

?

?

?

pj

p

pj+2

pj+1

pr fi+1

?

?

?

(1.2.2) r = j + 3, that is, fi+1

is a triangle. If bothp j and
p j+1 can be made happy us-
ing fi , the happiness ratio is
2/2. Otherwise, regardless
of how fi is triangulated ex-
actly one ofp j and p j+1 is happy, see the figure to the right. This yields a ratio of 1/2
and 1st choice for fi+2.

First choice.Denote byf ′ the other (thanfi) face incident to the edgep j p j+1 in the current
graph. As all off1, . . . , fi−1 are triangulated already,f ′ is a triangle whose third vertex (other
than p j and p j+1) we denote byp′. Recall that in the 1st choice setting we assume that,
regardless of howfi is triangulated,p j can be made happy. More precisely, we assume the
following in a 1st choice scenario with a face pairfi , fi+1 to be triangulated: By adjusting the
triangulations off1, . . . , fi−1, we can synchronously flip the parity of bothp j and p′, such
that

(C1) All faces fi , fi+1, . . . , fm as well asf ′ remain unchanged,
(C2) the degree of all ofp j+1, . . . , pn remains unchanged, and
(C3) the number of happy vertices amongp2, . . . , p j−1 does not decrease.

Observe that these conditions hold after Case 1.2.2. Using this 1st choice flip, we may sup-
pose thatp′ is happy. Then by (C3) the number of happy vertices among{p2, . . . , p j−1} \
{p′} does not decrease, in case we do the 1st choice flip (again) when processingfi , fi+1.
We distinguish cases according to the number of vertices infi .
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pj

p

pk

pk−2pk−1

.

.

.

pr
?

?

?

fi

fi+1

(2.1) k ≥ j + 3, that is, fi has at least five vertices. Then
p j+1, . . . , pk−1 can be made happy usingfi . If fi+1 is a trian-
gle (as shown in the figure to the right), this yields a ratio of
at least 3/3. Otherwise (r ≥ k+2), apart from keepingpk−1

happy, fi+1 can be used to make all ofpk, . . . , pr−3 happy.
At leastr− j−2 out ofr− j−1 vertices removed are happy,
for a happiness ratio of at least 3/4.

(2.2)k = j +2, that is, fi is a convex quadrilateral. We distinguish subcases according to the
size of fi+1.

pj

p

pj+2

pj+1

pr−1

.
.
.

pr

fi

fi+1

?

?

?

?

(2.2.1)r ≥ j +5, that is, fi+1 has at least five vertices.
Triangulatefi arbitrarily and usefi+1 to make all
of p j+1, . . . , pr−3 happy. At leastr − j − 2 out of
r − j −1 vertices removed are happy, for a happi-
ness ratio of at least 3/4.

pj

p

pj+2

pj+1

pj+3

fi

fi+1

?

?

?

(2.2.2) r = j + 3, that is, fi+1 is a triangle.
Use fi to make p j+1 happy for a perfect ratio
of 2/2.

pj

p

pj+1

pj+3

pj+4

fi

fi+1

?

?

?

pj+2(2.2.3)r = j + 4, that is, fi+1 is a convex quadrilateral. If
p j+1 and p j+2 are aligned, then triangulatingfi arbi-
trarily makes them contrary. Usingfi+1 both can be
made happy, for a perfect 3/3 ratio overall. Thus, sup-
pose thatp j+1 and p j+2 are contrary. We make a fur-
ther case distinction according to the position ofp j

with respect tofi+1.

pj

p

pj+1

pj+3

pj+4

fi+1

?

?

?

pj+2(2.2.3.1)∠p j+3p j+2p j ≤ π , that is,p, p j , p j+2, p j+3 form
a convex quadrilateral. Add edgep j p j+2 and exchange
edgeppj+2 with edgep j p j+3. In this way, p j+1 and
p j+2 remain contrary. Hence, bothp j+1 andp j+2 can
be made happy usingfi+1, for a perfect ratio of 3/3
overall.

pj

p

pj+3

pj+4
?

?

? fi

pj+2

p′
?

pj+1

fi+1

f ′
?

?

?

(2.2.3.2)∠p j p j+1p j+3 ≤ π , that is, the points
p j , p j+4, p j+3, p j+1 form a convex quadri-
lateral. To conquer this case we need
p′p j+4 to be an edge ofT1. In order to en-
sure this, we apply the before mentioned
little twist: before triangulating the non-
convex dark faces, we scan through the se-
quence of dark faces for configurations of
points like in this case. Call a dark quadrilateralfi with ∂ fi = (p j+1, . . . , p j+4) delicate
if ∠p j p j+1p j+3 ≤ π . For every delicate dark quadrilateralfi in f4, f6, . . . , fm−1 such that
fi−2 is not delicate, add the edgep j+4ph, whereph is the first vertex offi−2. Observe that
this is possible asph, . . . , p j+1, p j+3, p j+4 form a convex polygonf ∗: ph, . . . , p j+1 and
p j+1, p j+3, p j+4 form convex chains being vertices offi−2 and fi , respectively, andp j+1

is a convex vertex off ∗ because∠p j p j+1p j+3 ≤ π . Then we triangulate the remaining
non-convex and the uninteresting dark faces arbitrarily togetT1.
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pj

p

pj+3

pj+4
?

?

? fi

pj+2

p′

pj+1f∗

To handle this case we joinfi+1 with
f ′ by removing the edgesp j+1p j+4 and
p′p j+1 and adding the edgep j+3p j+1,
which yields a convex pentagonf ∗ =
p j+4, p j+3, p j+1, p j , p′. Observe thatp j+1

and p j+2 are aligned now. Thus, making
p j+2 happy usingfi leavesp j+1 unhappy.
If p′ andp j are aligned, then triangulatef ∗

using a star fromp′, makingp j+1 happy. Asp′ andp j remain aligned, both can be made
happy—possibly using the 1st choice flip—for a perfect 3/3 ratio. If, on the other hand,
p′ and p j are contrary, then triangulatef ∗ using a star fromp j+4, makingp j+1 happy.
Now p′ and p j are aligned and both can made happy—possibly using the 1st choice
flip—for a perfect 3/3 ratio.

pj

p

pj+1

pj+3

pj+4

fi+1

?

?

?

pj+2

(2.2.3.3)Neither of the previous two cases occurs and,
thus, p j , p j+1, p j+3, p j+2 form a convex quadrilateral
f ∗. Removep j+1p j+2 and addp j+1p j+3 and p j p j+2.
Note thatp j is happy because of 1st choice for fi , and
p j+1 and p j+2 are still contrary. Therefore, indepen-
dent of the triangulation off ∗, at least two vertices out
of p j , p j+1, p j+2 are happy. Moreover, usingf ∗ we can synchronously flip the parity of
both p j+1 andp j+3 such that (C1)–(C3) hold. This gives us a ratio of 2/3 and 1st choice
for fi+2.

Putting things together.Recall that the first facef1 and the last facefm are the only light
faces that may be triangles. In case thatf1 is a triangle, we just accept thatp2 may stay
unhappy, and usingf2 the remaining vertices removed, if any, can be made happy. Similarly,
from the last facefm up to three vertices may remain unhappy. To the remaining faces
f3, . . . , fm−1 we apply the algorithm described above.

In order to analyze the overall happiness ratio, denote byh0(n) the minimum number
of happy vertices obtained by applying the algorithm described above to a sequenceP =
(p1, . . . , pn) of n≥ 3 points in a no choice scenario. Similarly, denote byh1(n) the minimum
number of happy vertices obtained by applying the algorithmdescribed above to a sequence
P= (p1, . . . , pn) of n≥ 3 points in a 1st choice scenario. From the case analysis given above
we deduce the following recursive bounds.

a) h0(n) = 0 andh1(n) = 1, for n≤ 4.
b) h0(n) ≥ min{2+h0(n−3),1+h1(n−2)}.
c) h1(n) ≥ min{3+h0(n−4),2+h0(n−2),2+h1(n−3)}.

By induction onn we can show thath0(n)≥ ⌈(2n−8)/3⌉ andh1(n)≥ ⌈(2n−7)/3⌉. Taking
the at most four unhappy vertices fromf1 and fm into account yields the claimed overall
happiness ratio. ⊓⊔

5 Conclusion

In this paper we considered the construction of crossing-free geometric graphs on point
sets with constraints on the parity of the vertex degrees. For all but at most three vertices
the constraints can be fulfilled when constructing outerplanar graphs and pointed pseudo-
triangulations. For triangulations, we showed that there can be a linear number of such
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vertices and gave a construction that allows making⌊ 2n
3 ⌋−6 vertices happy. For polygons

with polygonal holes, we proved the according decision problem to be NP-complete.
For the case where all vertices are labeled odd, Proposition2 showed that one can

achieve a fraction10
13 of happy vertices. There might be ways to further improve this con-

stant factor. We even conjecture that this factor is 1, that is, every planar point set has a
triangulation with at mostK even vertices, for some absolute constantK.
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