Stability Number and f-Factors in Graphs

Mekkia KOUIDER

November 2, 2018
km@lri.fr

Abstract

Let $f: X \longrightarrow N$ be an integer function. An f-factor is a spanning subgraph of a graph $G=(X, E)$ whose vertices have degrees defined by f. In this paper, we prove a sufficient condition for the existence of a f-factor which involves the stability number, the minimun degree of G or the connectivity of the graph.

Keywords: Factor, stability number, connectivity, toughness, minimum degree.

1 Introduction

We consider simple graphs without loops. For notation and graph theory terminology we follow in general [10]. Let G be a graph with vertex set X and edge set $E(G)$. Denote by $d_{G}(x)$ the degree of a vertex x in G, and by $\delta(G)$ the minimum degree of G. A spanning subgraph of G is a subgraph of G with vertex set X. Let $f: X \longrightarrow N$ be an integer function. For any subset A of X, we denote by $f(A)$ the sum $\sum_{x \in A} f(x)$. A spanning subgraph H of a graph G such for every vertex $x, d_{H}(x)=f(x)$, is called an f-factor of G. Let a, b be fixed integers. A spanning subgraph F of G is called an [$a, b]$-factor of G if $a \leq d_{F}(x) \leq b$ for all $x \in X$.

For $S \subseteq X$, let $|S|$ be the number of vertices in S and let $G[S]$ be the subgraph of G induced by S. We write $G-S$ for $G[X \backslash S]$. A set $S \subseteq X$
is called independent if $G[S]$ has no edges. Denote by $\alpha(G)$ the stability number of a graph G, by $\kappa(G)$ its vertex connectivity. For any vertex $v \in X$, the open neighborhood of v is the set $N(v)=\{u \in X \backslash u v \in E(G)\}$; for a set $A \subseteq X, N_{G}(A)$ denotes the set of neighbors in G of vertices in A. Given disjoint subsets $A, B \subseteq X$, we write $e(A, B)$ for the number of edges in G with one extremity in A and the other one in B.
If S is a cutset, let $h^{\prime}(G-S)$ be the number of components C of $G-S$ such that $\sum_{x \in C} f(x)$ is odd.

Let t be a nonnegative real number. We say that G is t odd-tough if for each cutset $S, h^{\prime}(G-S) \leq|S| / t$. We remark that if G is t tough then G is t odd-tough.

2 Known Results

Given a graph $G=(X, E)$, an application f and a cuple of disjoint subsets of X, we recall that an odd component C of $G-(S \cup T)$ is a component C such that odd.

Many authors have investigated f-factors, see for example [5]. Tutte ([6]) gave the well-known necessary and sufficient condition for existence of an f-factor.
Condition [9] A graph $G=(X, E)$ has an f-factor if and only if

1) $\delta(S, T)=f(S)-f(T)+\sum_{v \in T} d_{G \backslash S}(v)-h(S, T) \geq 0$, disjoint subsets S and T of X
where $h(S, T)$ is the number of odd components of $G-(S \cup T)$
2) $\delta(S, T) \equiv f(X)(\bmod 2)$.

This condition is also a corollary of the (g, f) factor theorem of Lovász in [6]. However, in practise, this condition remains difficult to verify.

Katerinis and Tsikopoulos established a condition on the minimum degree for the existence of f-factors.

Theorem 1 [3] Let $b \geq a$ two positive integers and let $G=(X, E)$ be a graph with the minimum degree δ. Suppose $\delta \geq \frac{b .|X|}{a+b}$, and $|X|>$
$(a+b)(b+a-3) / a$. If f is a function from X to $\{a, a+1, \ldots, b\}$ such that $f(X)$ is even, then G has an f-factor.

In [2], Katerinis has a condition on the toughness of the graph.
Only few results are known which relate the stability number and factors. Nishimura had sufficient condition for a k factor.

Theorem 2 Let $r \geq 1$ be an odd integer, and G be a graph of even order. of connectivity κ. If $\kappa \geq(r+1)^{2} / 2$, and, $\alpha(G) \leq \frac{4 r . \kappa}{(r+1)^{2}}$, then G has an r-factor.

The following result involving the stability number and the minimum degree of a graph was given by M. Kouider and Zbigniew Lonc [4]:

Theorem 3 [4] Let $b \geq a+1$ and let G be a graph with the minimum degree δ. If $\alpha(G) \leq 4 b(\delta-a+1)) /(a+1)^{2}$, for a odd and $\alpha(G) \leq 4 b(\delta-a+1) / a(a+2)$, for a even.
then G has an $[a, b]$-factor.
Cai has shown that
Theorem 4 c Let G be a connected $K_{1, n}$-free graph and let f be a nonnegative integer-valued fonction on $V(G)$ such that $1 \leq n-1 \leq a \leq f(x) \leq b$ for every $x \in V(G)$.

If $f(V(G))$ is even, $\delta(G) \geq b+n-1$ and $\alpha(G) \leq \frac{4 a \cdot(\delta-b-n+1)}{(n-1)(b+1)^{2}}$, then G has an f factor.

Note that Cai conjectured that that the condition on the stability $\alpha(G) \leq$ $\frac{4 a .(\delta-b)}{(b+1)^{2}}$ is sufficient in connected graphs. We have the following counterexample.

Suppose b is an odd integer and a an integer strictly less than b.
Let G_{0} be a connected graph of minimum degree δ at least $(b+1)^{3}+b$. Let $p=\frac{4 a \cdot(\delta-b)}{(b+1)^{2}}$. In the graph G_{0}, we suppose there exists S be a cutset
of $k<b$ vertices, such that $G(S)$ is complete and C_{1}, \ldots, C_{p}, the connected components of $G-S$, form a family of complete subgraphs of order $\delta+1$, mutually independent. Furthermore $G\left(S \cup C_{1}\right)$ is complete, and, for each $i \geq 2$, exactly one edge joins S to C_{i}. So $\alpha\left(G_{0}\right)=p=\frac{4 a \cdot(\delta-b)}{(b+1)^{2}}$.

Let us consider the application f on X such that $f(x)=a$ if $x \in S$, and, $f(x)=b$ otherwise.

If a f factor exists we should have $\alpha=c(G-S) \leq a . k$, so $c(G-S)$ should be at most $a b$. This is not satified as $\alpha=\frac{4 a \cdot(\delta-b)}{(b+1)^{2}}>4 a(b+1)$.

One can see the surveys [8] or [5] for other results.

3 Main Results

We have established a new sufficient condition for a graph to have an f factor; this condition involves the stability number, the minimum degree of the graph.

Theorem 5 Let $b \geq 2$ be an integer and let $G=(X, E)$ be a connected graph, of minimum degree δ at least b. Let f be a non-negative integer valued function on X, such that for each $x \in X, a \leq f(x) \leq b$ and $f(X)$ is even. If $\alpha(G) \leq \frac{4 a .(\delta-b)}{(b+1)^{2}}$, and the odd-toughness of G is at least $1 / a$, then
G contains an f-factor.

Furthermore, we get this corollary.
Corollary 1 Let $b \geq 2$ be an integer and let $G=(X, E)$ be a graph, of minimum degree δ at least b and connectivity κ. Let f be a non-negative integer valued function on X, such that for each $x \in X, a \leq f(x) \leq b$ and $f(x)$ is even. If $\alpha(G) \leq \frac{4 a \cdot(\delta-b)}{(b+1)^{2}}$, then
G contains an f-factor.

Corollary 2 Let $b \geq 2$ be an integer and let $G=(X, E)$ be a graph, of minimum degree δ at least b and connectivity κ. Let f be a non-negative integer valued function on X, such that for each $x \in X, a \leq f(x) \leq b$ and $f(X)$ is even. If $\alpha(G) \leq \min \left(\frac{4 a .(\delta-b)}{(b+1)^{2}}, a \kappa\right)$, then
G contains an f-factor •

The condition $\alpha(G)<\frac{4 a \cdot(\delta-b)}{(b+1)^{2}}+1$ is necessary if $b>2 a$. Let $\alpha>\delta>b>r$ be four integers. Let us consider a graph G_{1} composed by the join of a complete graph $A=K_{\delta-r+1}$ and B, the disjoint union of α complete graphs of order r. Let f be a function such that
$f(x)=a$ if $x \in X(A), f(x)=b$ if $x \in X(B)$. If an f factor exists we get

$$
\alpha(G) \leq \frac{a .(\delta-r+1)}{r .(b+1-r)}
$$

For b odd and $r=(b+1) / 2$, we get $\alpha(G)<\frac{4 a \cdot(\delta-b)}{(b+1)^{2}}+\frac{2 a}{b+1}$.

4 Proof of Theorem 4

We set first some usefull lemmas.
Lemma $6 \delta(S, T)$ is even.
Proof Let \mathcal{I}_{1} (respectively \mathcal{I}_{2}) be the set of even (resp. odd) components of $G-(S \cup T)$. By definition,

$$
\begin{gather*}
f\left(\mathcal{I}_{1}\right) \equiv e\left(\mathcal{I}_{1}, T\right), \tag{1}\\
f\left(\mathcal{I}_{2}\right) \equiv h(S, T)+e\left(\mathcal{I}_{2},, T\right) \tag{2}
\end{gather*}
$$

so, by (1) and (2),
$f(X)=f(S)+f(T)+f\left(\mathcal{I}_{1}+f\left(\mathcal{I}_{2}\right) \equiv f(S)-f(T)+e(G-(S \cup T), T)+h(S, T)\right.$.
As $f(X)$ is even, the conclusion follows.

Lemma $7 T$ is non-emptyset.
Proof
If $T=\emptyset$ and $S=\emptyset$, then $\delta(S, T)=-h=0$ as G is connected and $f(X)$ is even. If $T=\emptyset$ and S is not empty, then $h(S, T)$ is the number of components of $G-S$ such that $f(C)$ is odd.

Either S is not a cutset, then $h(S, T) \leq 1 \leq a|S|$; or S is a cutset, as G is $1 / a$-tough, $h \leq a|S|$.

As $a|S| \leq f(S)$, then $\delta(S, T)=f(S)-h(S, T) \geq f(S)-a|S| \geq 0$.

Proposition 1 If $\alpha(G) \leq \frac{4 a \cdot(\delta-b)}{(b+1)^{2}}$, then

$$
|S|>\delta-b
$$

Proof
The proof is by contradiction. As $\delta(S, T)<0$ and $a \leq f(x) \leq b$ for each x, then

$$
(\delta-|S|)|T|+a|S|-b|T|-h<0,
$$

so

$$
(\delta-|S|-b)|T|<h-a|S|
$$

If $|S|=\delta-b$, we get $|S|<\frac{h}{a}<\frac{\alpha(G)}{a}<\frac{4(\delta-b)}{9}$. This a contradiction.
Now we assume $|S|<\delta-b$, and we get

$$
|T|<\frac{h-a|S|}{(\delta-|S|-b)}
$$

If $h<a|S|$, then $|T|=0$. As $h<\alpha$, then

$$
|T|<\frac{4 a}{(b+1)^{2}} \cdot \frac{\left((\delta-|b|)-(b+1)^{2}|S|\right)}{(\delta-|b|-|S|)}
$$

We get

$$
\begin{gathered}
|T|<\frac{4 a}{(b+1)^{2}} \cdot\left(1-\frac{\left((b+1)^{2} / 4-1\right) \cdot|S|}{(\delta-|b|-|S|)}\right) \\
T<\frac{4 a}{(b+1)^{2}} .
\end{gathered}
$$

As $b \geq a, T<\frac{4 a}{(b+1)^{2}} \leq 1$, so $|T|=0$. This is in contradiction with Lemma 5.

End of the proof of the theorem

Let h_{2} be the number of components of $G-(S \cup T)$ not adjacent to T. As $\delta(S, T)<0$, we have

$$
\begin{equation*}
2\left|E_{T}\right|+|T|+a|S|-(b+1)|T|-h_{2} \leq 0, \tag{1}
\end{equation*}
$$

As α_{T} the stability number of T is at least $\frac{|T|^{2}}{2\left|E_{T}\right|+|T|}$, and $\alpha_{T} \leq \alpha(G)-h_{2}$, we get, using (1),

$$
\alpha(G)-h_{2} \geq \frac{|T|^{2}}{(b+1)|T|-a|S|+h_{2}}
$$

Let us set $|T|=r .|S|$. Then

$$
\begin{aligned}
\alpha(G)-h_{2} & \geq \frac{r^{2} \cdot|S|^{2}}{(b+1) r|S|-a|S|+h_{2}} \\
\alpha(G)-h_{2} & \geq \frac{r^{2} \cdot|S|}{(b+1) r-a+h_{2} /|S|}
\end{aligned}
$$

The minimum of the bound as a function of r is for $r=\frac{2\left(a-h_{2} /|S|\right)}{b+1}$. It follows that

$$
\alpha(G)-h_{2} \geq \frac{4 a \cdot|S|}{(b+1)^{2}}-\frac{4 h_{2}}{(b+1)^{2}}
$$

As by hypothesis $\alpha(G) \leq \frac{4 a(\delta-b)}{(b+1)^{2}}$, and $|S| \geq(\delta-b)$, we get

$$
h_{2} \leq \frac{4 h_{2}}{(b+1)^{2}} .
$$

So $h_{2}=0$. As $\delta \geq b$, then $\delta(S, T) \geq 0$. This is a contradiction with the definition of the cuple S, T.

This ends the proof of the theorem $4 \bullet$

References

[1] Cai,J. and Liu,G. Stability Number and f-factor in $K_{1, n}$-free graphs, Ars Combinatoria 80 (2008).
[2] Katerinis,P., Toughness and the existence of factors, Discrete Maths. 80 (1990), 81-92.
[3] Katerinis,P. and Tsikopoulos,N. , Minimum degree and f-factors in graphs, New Zealand J.Math. 29 (2000),33-40.
[4] Kouider, M., and Z. Lonc, Stability Number and [a,b]-factors in graphs, Journal of Graoh Theory 46 (4) (2004), 254-264.
[5] Kouider, M., and P. D. Vestergaard, Connected factors in graphs, A survey, Graphs and Combinatorics 21 (2005), 1-26.
[6] Lovász, L., Subgraphs with prescribed valencies, J Combin Theory 9 (1970), 391-416.
[7] Nishimura, T., Independence number, connectivity, and r-factors, J Graph Theory 13(1) (1989), 63-69.
[8] Plummer, M. D., Graph factors and factorization, A survey, Discrete Mathematics 307 (7-8) (2007), 791-821.
[9] Tutte, W. T., Graph factors, Combinatorica 1 (1981), 70-97.
[10] West, D. B., Introduction to Graph Theory, Prentice-Hall, Inc. 1996.

