
Unfolding Orthogonal Polyhedra with Quadratic Refinement:

The Delta-Unfolding Algorithm

Mirela Damian∗ Erik D. Demaine† Robin Flatland‡

Abstract

We show that every orthogonal polyhedron homeomorphic to a sphere can be unfolded
without overlap while using only polynomially many (orthogonal) cuts. By contrast, the best
previous such result used exponentially many cuts. More precisely, given an orthogonal poly-
hedron with n vertices, the algorithm cuts the polyhedron only where it is met by the grid
of coordinate planes passing through the vertices, together with Θ(n2) additional coordinate
planes between every two such grid planes.

1 Introduction

One of the major unsolved problems in geometric folding is whether every polyhedron (homeo-
morphic to a sphere) has an “unfolding” [?, ?]. In general, an unfolding consists of cutting along
the polyhedron’s surface such that what remains flattens into the plane without overlap. Convex
polyhedra have been known to unfold since at least the 1980s [?, Sec. 24.1.1].

A recent breakthrough for nonconvex polyhedra is the unfolding of any “orthogonal” polyhe-
dron (homeomorphic to a sphere) [?]. A polyhedron is orthogonal if all of its edges are parallel to a
coordinate axis, and thus all edges and faces meet at right angles. While very general, a disadvan-
tage of this unfolding algorithm is that the cutting is inefficient, making exponentially many cuts
in the worst case, resulting in an unfolding that is long and thin (“epsilon thin”).

In this paper, we show how to unfold any orthogonal polyhedron using only a polynomial
number of cuts.

Grid refinement. To more precisely quantify the cuts required by an unfolding, several models
of allowed cuts have been proposed. See [?, ?, ?] for surveys.

For convex polyhedra, the major unsolved goal is to just cut along the edges (which implies a
linear number of cuts) [?, ch. 22]. For nonconvex polyhedra, however, this goal is unattainable,
even when the polyhedron is “topologically convex” [?] or is orthogonal [?]. A simple example of
the latter is a small box on top of a larger box. More generally, deciding whether an orthogonal
polyhedron has an edge unfolding is strongly NP-complete [?].

For orthogonal polyhedra, it seems most natural to consider orthogonal cuts. The smallest
extension from edge unfolding seems to be grid unfolding (a concept implicit in [?]), where we slice
the polyhedron with all axis-aligned planes that pass through at least one polyhedron vertex, and
allow cutting along all slice lines. Even with these additional edges, few nontrivial subclasses of
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orthogonal polyhedra are known to have grid unfoldings: “orthotubes” [?], “orthostacks” composed
of orthogonally convex slabs [?], and “well-separated orthotrees” [?]. On the negative side, there
are four orthogonal polyhedra with no common grid unfolding [?].

The next extension beyond grid unfolding is grid refinement k, which additionally slices with k
planes in between every grid plane (as above), and allows cuts along any edges of the refined grid.
With constant grid refinement, a few more classes of orthogonal polyhedra have been successfully
unfolded: orthostacks [?], and Manhattan towers [?].

The breakthrough was the discovery that arbitrary orthogonal polyhedra (homeomorphic to
a sphere) unfold with finite grid refinement [?]. Unfortunately, the amount of grid refinement is
exponential in the worst case (though polynomial for “well-balanced” polyhedra). For this reason,
the unfolding algorithm was called epsilon-unfolding.

Our results. We show how to modify the epsilon-unfolding algorithm of [?] to reduce the re-
finement from worst-case exponential (2Θ(n)) to worst-case quadratic (Θ(n2)), while still unfolding
any orthogonal polyhedron (with n vertices) homeomorphic to a sphere. We call our algorithm the
delta-unfolding algorithm, to suggest that the resulting surface strips are still narrow but wider
than those produced by epsilon-unfolding.

Our central new technique in delta-unfolding is the concept of “heavy” and “light” nodes from
“heavy-path decomposition” [?]. Interestingly, heavy-path decomposition is a common technique
for balancing trees in the field of data structures, but not so well known in computational geometry.

Even with this technique in hand, however, delta-unfolding requires a careful modification
and engineering of the techniques used by epsilon-unfolding. Thus, Sections 2 and 3 start with
reviewing the main techniques of epsilon-unfolding; then Section 4 modifies those techniques; and
finally Section 5 puts these techniques together to obtain our main result.

2 Overview of Epsilon-Unfolding

We begin with a review the epsilon-unfolding algorithm [?], starting in this section with a high-level
overview, and then in Section 3 detailing those aspects of the algorithm that we modify to achieve
quadratic refinement.

Throughout this paper, P denotes a genus-zero orthogonal polyhedron whose edges are parallel
to the coordinate axes and whose surface is a 2-manifold. We take the z-axis to define the vertical
direction, the x-axis to determine left and right, and the y-axis to determine front and back. We
consistently take the viewpoint from y = −∞. The faces of P are distinguished by their outward
normal: forward is −y; rearward is +y; left is −x; right is +x; bottom is −z; top is +z.1

The epsilon-unfolding algorithm partitions P into slabs by slicing it with y-perpendicular planes
through each vertex. Let Y0, Y1, Y2, . . . be the slicing planes sorted by y coordinate. A slab s is
a connected component of P located between two consecutive planes Yi and Yi+1. Each slab is a
simple orthogonal polygon extruded in the y-direction. The cycle of {left, right, top, bottom} faces
surrounding s is called a band, and the band edges in Yi (and similarly in Yi+1) form a cycle called
a rim. A z-beam is a narrow vertical strip on a forward or rearward face of P connecting the rims
of two bands. The order in which the bands unfold is determined by an unfolding tree TU whose
nodes are bands, and whose arcs correspond to z-beams, each of which connects a parent band to
a child band in TU . The unfolding tree TU will be further described in Section 3.1 below.

1The ±y faces are given the awkward names “forward” and “rearward” to avoid confusion with other uses of
“front” and “back” introduced later.
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The unfolding of a band b is determined by a thin surface spiral, denoted ξ, that starts on
one of b’s rims, cycles around b while displacing toward the other rim, where it turns around and
returns to the point it started. As the spiral passes by a z-beam connecting b to one of its children,
it enters through the z-beam to the child’s rim, and then recursively visits the subtree rooted at
the child. Once the complete spiral is determined, it can be thickened in the ±y direction so that
it entirely covers all band faces. The thickened spiral is such that it can be laid flat in the plane
to form a monotonic staircase strip. The forward and rearward faces of P can then be laid flat
without overlap by attaching them in strips above and below the staircase.

3 Epsilon-Unfolding Extrusions

Almost all algorithmic issues in epsilon-unfolding are present in unfolding polyhedra that are z-
extrusions of simple orthogonal polygons in the xy plane. Therefore, we follow [?] in describing
the algorithm for this simple shape class, before extending the ideas to all orthogonal polyhedra.
All modifications needed for delta-unfolding are also present in unfolding orthogonal extrusions,
and so we describe them in terms of this simple shape class. We therefore review in detail the
epsilon-unfolding algorithm for orthogonal extrusions.

3.1 Unfolding Tree

Let P be a polyhedron that is the vertical extrusion of a simple orthogonal polygon, such as that
illustrated in Figure 1a. The algorithm begins by slicing P into slabs, which in this special case are
all blocks (cuboids), using y-perpendicular planes through each vertex. The dual graph is a tree,
TU , having a node for each band and an edge between each pair of adjacent bands. In this special
case, all z-beams are degenerate, i.e., of zero z-height. The root is selected arbitrarily from among
all bands with a rim of minimum y coordinate. For example, the polyhedron in Figure 1a is sliced
into nine blocks, with b1 as the root and its unfolding tree as shown in Figure 1b.

b1
b5

b7

b2b3

b4

b6

(a)

x
z

y

b8

b9
b1

b2

b3 b4

b6 b5 b8

b7 (b) b9

Figure 1: (a) Extrusion of an orthogonal polygon, partitioned by y perpendicular planes. (b)
Unfolding tree. Back children are represented by shaded nodes.

The rim of the root band with the smaller y coordinate is its front rim, and the other rim is
its back rim. For any other band, the rim adjacent to its parent in TU is its front rim, and its
other rim is its back rim. Children attached along the front rim of their parent are front children;
children attached along the back rim of their parent are back children. Note that “front” and “back”
modifiers for rims and children derive from the structure of TU , and are not related to the “forward”
and “rearward” ±y directions. For example, b9 is a front-child of b8, although it is attached to the
rearward face of b8, and the front rim of b5 lies on the rearward face of b5.
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3.2 Recursive Unfolding

The key to the epsilon-unfolding method is the existence of a thin, non-crossing spiral ξ that cycles
around each band at least once, and unfolds to a staircase when flattened into the plane. A staircase
is an orthogonal path in the plane whose turns alternate between 90◦ left and 90◦ right, and so
is a monotone path. The path that ξ follows is determined recursively. We review this spiral ξ,
starting with the base case.

3.2.1 Single Band Base Case

Figure 2a shows the path followed by ξ for a single band corresponding to a leaf of TU . It starts
at an entering point s on the top edge of the front rim and spirals in a clockwise direction around
the top, right, bottom, and left band faces toward the back rim. We call this spiral piece up to
the point it reaches the back rim the entering spiral. When it reaches the back rim, ξ crosses
the rearward face upward toward the top face. From there, it retraces the entering spiral in the
opposite (counterclockwise) direction toward an exiting point t lying next to s on the front rim.
When ξ is cut out, unfolded, and laid horizontally in the plane, it forms a monotonic staircase
strip, as shown in Figure 2b, because the turns alternate between left and right, 90◦ each. Observe
that the x, z-parallel segments of ξ, corresponding to the cycling clockwise and counterclockwise
around the band, form the stair “treads”; the y-parallel segments of ξ and the z-parallel strip from
the rearward face form the stair “risers.”

(a)

y

z

x

st

(b)s

t

st

(c)

y

x

Figure 2: (a) Rts block spiral, with mirror views of faces that cannot be seen directly. (b) Unfolded
spiral. (c) Abstract 2D representation.

Three-dimensional illustrations of ξ like that in Figure 2a are impractical for more complex
orthogonal shapes. To easily illustrate more complex unfoldings, we use the 2D representation
depicted in Figure 2c. Note that the 2D representation captures the direction of the entering spiral
and the relative position of s and t. The arc connecting the entrance to the exit symbolizes the
reversal of the unfolding direction using a rearward face strip.

Eight variations of the base case spiral are illustrated in Figure 3. They differ in the manner in
which ξ enters and exits the band b to be unfolded. The four variations labeled Lts, Lst, Rts, Rst

in the top row are used when the y-coordinate of b’s front rim is smaller than the y-coordinate of
its back rim. Rst is similar to Rts, but with s and t, and the clockwise/counterclockwise cycling
direction reversed; Lts and Lst are (respectively) mirrors of Rst and Rts in an x-perpendicular
plane. Note that the R and L labels indicate the spiral’s cycling direction when it enters the band:
R is clockwise, L is counterclockwise. The spiral exits the band cycling in the opposite direction.
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The four variations in the bottom row are labeled L+
ts, L

+
st, R

+
ts, R

+
st, and they are used when the y-

coordinate of b’s front rim is greater than the y-coordinate of its back rim. They are exact reflections
of Lts, Lst, Rts, and Rst, respectively, in a y-perpendicular plane. The mirror symmetries imply
that the 3D spiral corresponding to each 2D abstract representation can be easily derived from Rts

configuration, illustrated in Figure 2.

st tstsst

st tstsst

Lts Lst Rts Rst

Lts Lst Rts Rst
+ + + +

x

y

Figure 3: Abstract 2D representations of the eight path types visiting one slab.

3.2.2 Recursive Path

For a node b in TU that is not a leaf, we describe the path that the spiral ξ recursively follows when
visiting b. We assume that b has one of the eight configuration labels shown in Figure 3. As in
the base cases, the label identifies the relative order of points s and t on b’s front rim, the spiral’s
direction when entering b, and b’s rim of lower y coordinate. Without loss of generality, we assume
that b’s label is Rts; the other seven labels are equivalent by symmetry. The inductive assumption
is that, for any subtree shorter than the subtree of TU rooted at b, and for any configuration label
assigned to the root band of the shorter subtree, there is a (non-crossing) path ξ consistent with
that label that cycles around each band in the smaller subtree at least once, and unfolds in the
plane as a staircase strip.

After ξ enters b at point s, it visits each of b’s front children, starting with the front child, call
it b1, first encountered as it cycles clockwise along the front rim of b. (See Figure 4). For reasons
soon to be explained, child b1 is assigned the label R+

st with two points s1 and t1 identified on the
top edge of its front rim, with t1 right of s1. The spiral ξ enters b1 at point s1 and recursively
visits it (and the subtree it roots). By the inductive hypothesis, ξ exits b1 at point t1 cycling
counterclockwise. The label R+

st is assigned to b1 because ξ is cycling in the direction R (to the
right, or clockwise) on b just before it enters b1, and so it enters b1 with that same direction; the
+ superscript is necessary because the y-coordinate of the front rim of b1 is higher than that of its
back rim; and the ∗st ordering is necessary to prevent ξ from being trapped beneath the portion
of ξ between s and s1 upon returning to b, thus cutting itself off from reaching b’s other children
(because it cannot cross itself).

After recursively visiting b1, ξ cycles counterclockwise on b to the first unvisited child it passes
when on b’s top face. This child, call it b2, is assigned the label L+

ts with identified points t2 and
s2 on its front rim, consistent with its label, and it is recursively visited. In this nested manner, ξ
visits the children clockwise and counterclockwise from s from the inside out, alternately assigning
the labels R+

st and L+
ts. Figure 4 illustrates the path ξ takes when b has four front children. (To

keep the example simple, only one level of recursion is illustrated, with all children leaves of TU .)
After visiting the front children, ξ makes a complete cycle around b and then begins visiting the

back children. Assume for concreteness that after visiting the front children, ξ is cycling clockwise
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s

b

b1 b3

(R   )

(R   )st (R   )st

t1s1 t3s3t2 s2 t4 s4
t

st

+ + b4 (L   )ts
+b2 (L   )ts

+ x
y

Figure 4: Nested inside-out alternating path visits the front children. Dotted lines show ξ where it
cycles underneath on the bottom face.

t

s t

b (L   )st b5 (R   )tsb8 (L   )ts b7 (R )ts

s
b (_   )ts

6 6 st7 7t s8 8 t s5 5

6

x
y

Figure 5: Nested outside-in alternating path visits the back children.

on b, as shown in Figure 5. It then travels clockwise to the back child farthest to the right along the
top face. (See child b5 in Figure 5). When it returns from recursively visiting this back child, it will
be cycling counterclockwise (by the inductive hypothesis). It is thus important that the child’s exit
point be to the left of its entering point so that ξ is not blocked from visiting other back children.
(See points s5 and t5 in Figure 5.) Thus this first back child is assigned the configuration Rts and
is recursively visited. The spiral then moves to the unvisited child farthest to the left (see child b6)
and visits it in a similar way, assigning it the label Lst. Thus the nesting of ξ’s alternating path is
outside-in for back children, with the labels Rts and Lst being alternately assigned.

The last back child visited, bk, however, is an exception when it comes to its label assignment,
for the following reason. When the spiral exits bk (see b8 in Figure 5), it will retrace its path (in
reverse direction) back to the front rim of b and then exit at point t. For band b, define its entering
spiral, ξe(b), to be the portion of ξ that begins at s and ends at the exiting point tk of bk (t8 in
Figure 5). Its exiting spiral, ξx(b), is the portion of ξ that begins at tk and ends at t on the front
rim of b. The exiting spiral ξx(b) simply parallels alongside the entering spiral ξe(b), retracing the
portion of ξe(b) from s to sk but in the opposite direction. Since b has a ∗ts label, the exiting spiral
must leave b with the entering spiral on its left, from the point of view of one walking on b along
the path taken by ξx(b). Thus bk must also be assigned the label ∗ts (consistent with b’s label), so
that from the beginning of the retrace and throughout, ξx(b) has the entering spiral to its left. We
call this a left retrace; when ξx(b) keeps the entering spiral on its right during a retrace, we call it
a right retrace. We note that if b has no back children, then the spiral reverses direction using a
strip from b’s rearward face, as in the base cases.
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3.3 Completing the Unfolding

We have focused on ξ’s recursive path because that is where the modifications for delta-unfolding
occur. But for completeness, we briefly summarize the remainder of the epsilon-unfolding algorithm
for extrusions, and refer the reader to [?] for additional details. To complete the unfolding of P ,
ξ is thicken in the +y and −y direction (as viewed in the 3D coordinate system of Figure 2a) so
that it completely covers each band. This results in a thicker unfolded staircase strip. Then the
forward and rearward faces of P are partitioned by imagining the band’s top rim edges illuminating
downward light rays in these faces. The illuminated pieces are then “hung” above and below
the thickened staircase, along the corresponding illuminating rim segments which lie along the
horizontal edges of the staircase.

3.4 Level of Refinement

In [?] it was shown that the unfolding technique discussed so far can make an exponential number
of cuts on the family of polyhedra depicted in Figure 6. Each polyhedron consists of n = 2k + 1,
k ≥ 1, blocks arranged as shown for k = 1 in Figure 6a, and for k = 2 in Figure 6b. For analysis
purposes, we formally define a visit to a band to begin when the spiral crosses its front rim to enter
the band (either the first time, or in a retrace) and end when it crosses the front rim to exit the
band. In Figure 6a, b3’s visit begins when ξ enters it at point s3 cycling counterclockwise. The
spiral visits back child b1 and then b2. The visit of b2 triggers a retrace which involves a second
visit of b1, and then back through b3 to exiting point t3, which completes b3’s visit. We can write

s

ts

5

33

ts 11 ts 22

ts 44
ts 33

ts 11 ts 22

t5

b3

b1 b2
b1 b2

b3

b4

b5

(b)(a)

x

y

Figure 6: Family of polyhedra requiring exponential refinement. Block b1 is visited two times in
(a), four times in (b), and in general 2bn/2c times for an n-block object.

this visit order using the string Q3 = (s3 (s1 t1) (s2 t2) (s1 t1) t3), where an open parenthesis
followed by a starting point marks the start of a visit and an exiting point followed by a closing
parenthesis marks the end. The subscript on Q is the number of blocks in the polyhedron. Observe
that block b1 is visited twice. For the five block polyhedron in Figure 6b, ξ starts at point s5 on
b5, recursively visits block b3 in the manner just described, then visits b4 which triggers a retrace
through b3. After revisiting b3, ξ returns to b5 and exits at point t5. The corresponding visit string
is Q5 = (s5 Q3 (s4 t4) Q3 t5). The number of visits to b1 doubles to 4. In general, an n block
polyhedron in this family gives rise to 2bn/2c visits to b1, resulting in an exponential number of cuts
on b1.
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4 Delta-Unfolding Extrusions

To achieve quadratic refinement, we modify the order in which children are visited based on the
heavy/light classification of nodes used in heavy-path decomposition [?]. In heavy-path decomposi-
tion, each tree node v is assigned a weight n(v), which is the number of descendants in its subtree,
including itself. An edge from parent p to child c is heavy if n(c) > 1

2n(p), and light otherwise. We
say a child c is heavy (light) if the edge between c and its parent is heavy (light). Observe that a
node can have at most one heavy child.

If a node b in TU has a heavy child, then we modify the path of the entering spiral ξe(b) so
that it visits the heavy child last, to prevent the need for revisiting the heavy child; we will show
that this strategy quadratically bounds the number of visits ξ makes to each child. For example,
consider the polyhedron in Figure 6b, and observe that b3 is a heavy child. With epsilon-unfolding,
ξe(b) visited child b3 before b4. The visit to b4 triggered a complete retrace of the subtree rooted
at b3, thus leading to the visit string Q5 = (s5 Q3 (s4 t4) Q3 t5), and a total of four visits to
b1. But if we reverse the visit order so that ξe(b) visits b3 after b4, then the visit string becomes
Q′5 = (s5 (s4 t4) Q3 (s4 t4) t5), and no block is visited more than twice.

Since any front or back child could be heavy, we focus first on the challenge of finding a route
for the entering spiral so that it visits any specified child last. If we can achieve this, then we can
organize the visits to minimize retracing. We then formally present the algorithm and analyze the
resulting level of refinement.

4.1 Front Child Visited Last

We start with the case when we desire to visit a front child, call it b`, last. The idea is to visit
all the front children excluding b`, and all the back children in exactly the manner described in
Section 3.2.2, as if b` were not present. Figure 7 shows the entering spiral ξe(b) visiting all but
b`. (Note that the complete cycle that ξe(b) makes between visiting the front and back children is
not fully depicted in the 2D representation.) After visiting the last back child (b9 in the figure), ξ
retraces its path in reverse. It is during this retrace step that child b` is visited. We explain the
modifications necessary to accomplish this for a parent block b with a label of type R∗ or L∗; labels
of type R+

∗ and L+
∗ are handled symmetrically.

Observe first that since ξe(b) alternately visits all the front children except for b` and then makes
a complete cycle around b, some contiguous section of it, call it f , runs alongside the top edge of
b`’s front rim. Specifically, f is the section of ξe(b) hit by y-parallel rays shot from b`’s top front
rim edge toward the back rim of b. See Figure 7 where f is marked. Note that since ξe(b) is cycling
toward the back rim of b, f represents the first time ξe(b) passes by b`’s top edge. All subsequent
passes are behind f .

During the retrace step, ξ needs to run in front of f , so that it has unobstructed access to b`. If
the entering spiral is cycling clockwise in section f , then the retracing spiral (which runs alongside
f in the opposite direction) needs to right-retrace, because that will keep the entering spiral to its
right and position it in front of f . (Recall that clockwise is to the right and counterclockwise is to
the left.) To trigger a right-retrace, we assign the last visited back child the label ∗st. If the entering
spiral is cycling counterclockwise in section f , then the retracing spiral needs to left-retrace, thus
keeping the entering spiral on its left. To trigger a left-retrace, we assign the last back child the
label ∗ts. So instead of matching the ∗st or ∗ts label of the last visited back child to that of b (as in
epsilon-unfolding), we instead assign it so that the retracing spiral passes alongside b`. When the
retracing spiral reaches section f , it suspends the retrace, enters b` at point s`, and visits it. We
call the portion of ξ from the exiting point of the last visited back child to s` the return spiral and
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b1b2 b4b3(L   )ts (R   )st (R   )st (L   )ts

t1s1t2 s2 t4 s4t3s3

b8 ( L   )st

s t8 8

b5 ( R   )ts

t s5 5

b (R   )ts

b6 ( L   )st

s t6 6 t s7 7

b7 ( R   )tsb9 ( R   )st

s t9 9

t

lb

f

x

y + + + +

Figure 7: Entering spiral visits front and back children, with the exception of front child b`, which
gets visited last (see Figure 8).

s

b2 (L   )ts b1 (R   )st b3 (R   )st b4 (L   )ts

t1s1t2 s2 t4 s4t3s3

l

b8 ( L   )st

s t8 8

b5 ( R   )ts

t s5 5

b (R   )ts

b6 ( L   )st

s t6 6 t s7 7

b7 ( R   )tsb9 ( R   )st

s t9 9

t l l

b

ts

(R   )st

x

y + ++++

Figure 8: Entering and return spirals. The return spiral passes by b` so that b` can be visited.
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label it ξr(b). See Figure 8 which shows ξr(b) in red extending from t9 to s`.
Upon exiting b` at point t`, the spiral retraces its path in the reverse direction, bringing it to the

exit point t on b. Specifically, it follows the entire path from s to s` in reverse. This second retrace
is b’s exiting spiral, ξx(b). (In Figure 8, ξx(b) is not illustrated, but it begins at t` and follows the
red and then the black path to t, keeping them to its left.) The label ∗st or ∗ts assigned to b` must
be consistent with b’s label in the following way. If b has the label ∗ts, a left retrace starting from
t` is needed so that the spiral exits at t on the correct side of s consistent with b’s ∗ts label. Thus,
b` is assigned the label ∗st, the opposite of b’s label. If, however, b has the label ∗st, a right retrace
is needed, and so b` is assigned the label ∗ts.

Because the label assigned to the last back child visited depends on the direction of ξe(b) in the
f -section of the path, we show here that determining that direction is straightforward. We discuss
the case in which ξe(b) enters b cycling clockwise; the case when it is cycling counterclockwise is
symmetric. We also assume that there are at least two front children (not including b`) and they
are labeled b1, b2, b3, . . ., in the order in which they are visited along the alternating path (as in
Figure 7). Observe that, if b` is located between s and b1 (as viewed from above), then ξe(b) first
passes by b`’s top edge cycling clockwise, and the same is true if it is located between bi and bi+2,
for i odd (i ∈ {1, 3, 5, . . .}). Thus in these cases, f is traversed clockwise. If b` is located between
s and b2 or between bi and bi+2, for i ∈ {2, 4, 6, . . .}, then ξe(b) first passes by the top edge of b`
cycling counterclockwise. Thus in these cases f is traversed counterclockwise. If the top edge of b`
is to the right of the last odd numbered child or to the left of the last even numbered child, then
ξe(b) first passes over b` during its complete cycle around b. During this cycle, ξe(b) is heading
clockwise if the last visited child was even and counterclockwise if the last visited child was odd.
Cases when there are fewer than two front children are easily handled: if b` is the only front child,
or if it is located between s and b1, then then f is traversed clockwise; otherwise, f is traversed
counterclockwise.

4.2 Back Child Visited Last

In this section we discuss the situation in which we desire to visit a particular back child b` last.
In this case, ξe(b) visits the front children as described in Section 3.2.2. It then visits the back
children as described in Section 3.2.2 but with an altered visiting order. We consider the case when
b has a L∗ or R∗ type configuration label and the entering spiral ξe(b) is cycling counterclockwise
after visiting the front children; the other cases are symmetric.

Let m ≥ 0 be the number of back children of b not including b`, and let b1, b2, . . . bj be
the front children, for j ≥ 0. Consider the back children of b in the cyclic clockwise order in
which their top edges occur around b’s back rim. When m is odd, we label the m back children
(bj+1, bj+3, . . . , bm−2, bm, b`, bm−1, . . . , bj+4, bj+2), according to their positions relative to b` in this
cyclic ordering. When m is even, the labeling is (bj+1, bj+3, . . . , bm−1, b`, bm, . . . , bj+4, bj+2), as de-
picted in Figure 9. The spiral ξe(b) visits the back children from the outside-in, following the visit
order bj+1, bj+2, . . . , bm−1, bm, b`. It is always possible to visit bj+1 first, with a full cycle of the
spiral around b (if necessary) to get the spiral to the top edge of bj+1. This is illustrated in Figure 9
for five back children (and no front children).

The assignment of L∗ and R∗ labels to the back children of b is the same as described in
Section 3.2.2. Specifically, the labels for the children alternate between Lst and Rts with respect
to the visiting order. The spiral ξe(b) is cycling counterclockwise (to the left) when it reaches bj+1,
which matches bj+1’s L∗ label. The recursive unfolding of bj+1 reverses the direction of the spiral,
so that it enters bj+2 cycling clockwise (to the right), thus matching bj+2’s R∗ label, and similarly
for the other back children. The alternating ∗st, ∗ts labels of the children ensures an outside-in
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Figure 9: Labels and path followed by spiral when visiting back children, when the last child to be
visited is back child b`; dashed lines depict spiral pieces on the bottom of the parent block.

nesting of ξ, which enables it to reach each back child. As in Section 3.2.2, the one exception to the
alternating labels is the last visited child b`, whose ∗st or ∗ts label needs to match that of its parent
b. After visiting b`, the exiting spiral follows the entering spiral in reverse to t as in Section 3.2.2,
thus completing the visit of b.

4.3 The Delta-Unfolding Algorithm for Extrusions

What we call the delta-unfolding algorithm is a modified version of the epsilon-unfolding algorithm,
which requires that at each node b in TU with a heavy child, the spiral ξ visits the heavy child last.
Specifically, if the heavy child is a front child, then ξ follows the path described in Section 4.1; if
the heavy child is a back child, then ξ follows the path described in Section 4.2. If b has no heavy
child, then its children are visited in the epsilon-unfolding order (Section 3.2.2). All remaining
steps of the delta-unfolding algorithm for extrusions—the thickening of ξ, the unfolding of ξ as a
staircase in the plane, and the partitioning and hanging of the frontward and rearward faces from
the flattened staircase—are the same as for epsilon-unfolding.

4.4 Refinement Analysis

We now turn to analyzing the refinement for extrusions. The path taken by ξ on a band is composed
of a series of axis-parallel segments. We determine an asymptotic upper bound on the number of
such segments on any band face, because this is an asymptotic upper bound on the total number
of cuts on a grid face in the unfolding. We compute this by bounding the number of segments on
any top face, as the number of segments on all four faces of a band is asymptotically bounded by
the number of segments on its top face.

Define the first visit of ξ to a band b to begin when ξ first enters b at point s, includes the
recursive visiting of b’s children, and ends when it exits b at point t. Band b and the bands in its
subtree may be revisited by ξ many times during subsequent retracings, but each of these retracings
merely follows the path traced during the first visit to b. Let R(n(b)) be an asymptotic upper bound
on the number of segments that ξ’s first visit to b induces on a top face of any band in the unfolding
subtree rooted at b. Then a bound on the number of segments on any top face in b’s subtree induced
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by ξ (in its entirety) is R(n(b)) multiplied by the total number of times ξ visits b. We now establish
three properties of ξ’s first visit to b:

(i) ξ induces at most O(n(b)) segments on b’s top face;

(ii) the light children of b are each visited at most four times; and

(iii) if b has a heavy child, the heavy child is visited only once.

For (i), the worst case occurs when b has O(n(b)) children and a heavy front child b`. In this
case, the alternating paths of b’s entering spiral ξe(b) that have it visit each front child (excluding
b`) may induce O(n(b)) segments on b’s top face, and similarly for the alternating paths to each
back child. Then b’s return spiral ξr(b) retraces these alternating paths up to the point that it
reaches b`, which at most doubles the number of segments. After visiting b`, the exiting spiral ξx(b)
retraces the path ξr(b) and then the path ξe(b) in reverse back to point t on b, which again at most
doubles the number of segments on b. Thus the total number of segments is O(n(b)).

For (ii), the maximum visits to light children occur when b has a heavy front child. In this case,
ξe(b) visits each light child once. Then ξr(b) visits each light child at most once on its way to the
heavy front child. After visiting the heavy front child, ξx(b) retraces ξr(b) and then retraces ξe(b)
to the entering point of b, thus visiting each light child at most twice more. Therefore, each light
child is visited at most four times.

For (iii), if b has a heavy front child, then the path traversed by ξ (detailed in Section 4.1)
immediately establishes that the heavy front child is visited only once. Similarly, if b has a heavy
back child, the path detailed in Section 4.2 establishes that the heavy back child is visited exactly
once.

Properties (i), (ii) and (iii) established above imply that R(n(b)) is determined by the larger of
three quantities:

(a) the number of segments on b’s top face induced during ξ’s first visit to b;

(b) 4 maxi=1...k R(n(bi)), where b1, b2, . . . bk are b’s light children;

(c) R(n(b`)), where b` is b’s heavy child, if it has one.

A multiplier of four is necessary in case (b) because light children may be visited up to four times
during b’s first visit; no multiplier is necessary for the heavy child (c) because it is visited only
once. For the base case, R(1) = c, for some constant c > 1, because the first visit of ξ to a leaf
node band (as described in Section 3.2.1) induces a constant number of segments. And in general,

R(n(b)) = max

{
O(n(b)), 4 max

i=1...k
R(n(bi)), R(n(b`))

}
≤ max

{
O(n(b), 4 max

i=1...k
R
(

1
2n(b)

)
, R(n(b)− 1)

}
= max

{
O(n(b), 4R

(
1
2n(b)

)
, R(n(b)− 1)

}
noting that the light children’s subtrees contain at most 1

2n(b) nodes, and the heavy child’s subtree
contains at most n(b)−1 nodes. It is straightforward to verify by induction that R(n(b)) = O(n(b)2).
Applying this to the root r of TU with n = n(r) nodes and noting that ξ visits r only once in the
delta-unfolding algorithm, yields a maximum of O(n2) parallel segments on any top face.

This also bounds the number of cuts on any grid face in the unfolding. Specifically, in the
thickening step ξ expands in the +y and −y direction so as to cover the entire band, but this does
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not asymptotically increase its number of edges. After the thickening, disjoint sections of ξ run
along the entirety of both band rims. In the partitioning step, the disjoint sections along the top
rim edges induce the division of the frontward and rearward faces into strips; i.e., each disjoint
section delimits the vertical strip beneath it. Because O(n2) bounds the number of disjoint sections
along the top edge, it also bounds the number of strips a frontward/rearward face is partitioned
into.

4.4.1 A worst case refinement example.

A simple example establishes that the bound O(n2) is tight: a polyhedron with n = 2h+1 − 1
blocks, whose unfolding tree TU is a perfect binary tree of height h (i.e., each internal node has two
children, and all leaves are at the same level). There are no heavy nodes in TU , and the number of
cuts in a visit of the root is given by the recurrence relation

R(n) = 4R((n− 1)/2) = 4hR(1) = (n+ 1)2R(1)/4 ,

because
4h = 4log2(n+1)−1 = 2log2(n+1)2/4 = (n+ 1)2/4 .

And since R(1) = c, for some constant c, it follows that R(n) = O(n2), establishing our claim.

5 Delta-Unfolding of Genus-Zero Orthogonal Polyhedra

The delta-unfolding algorithm and its refinement analysis generalizes to all genus-zero orthogonal
polyhedra in the same way the epsilon-unfolding algorithm does, so we summarize the idea here
and refer the reader to [?] for details. Instead of partitioning P into blocks, the general algorithm
partitions P into slabs as defined in Section 2. It then creates an unfolding tree, TU , where each
node corresponds to a band surrounding a slab. Each parent-child arc in TU corresponds to a
z-beam, which is a vertical strip from a frontward or rearward face connecting the parent’s rim to
the child’s rim. For a parent band b, its front (back) children are those whose z-beams connect to
b’s front (back) rim.

The spiral ξ enters and exits b at points s and t located at the intersection between b’s front rim
and the z-beam connecting b to its parent. Observe that there is a natural cyclic ordering of b’s
front (back) children that is determined by their z-beam connections around b’s front (back) rim.
Using this cyclic ordering, it is straightforward to generalize the paths that ξ follows to reach the
front and back children, described in Sections 4.1 and 4.2. See for example Figure 10 that shows a
band with its faces flattened in the plane (the lighter color marks top/bottom faces, and the darker
color marks right/left faces). Also depicted are the z-beam connections (flattened into the plane)
and the path ξe(b) follows to visit the children, assuming b` is a heavy child. Observe that the
path is the same as in Figure 7, except that it extends across multiple band faces. When ξ visits
a child, it moves from b to the connecting z-beam and travels vertically (in 3D) along the z-beam
to reach the child; when it exits the child it travels along the z-beam back to b. In the unfolded
staircase, the portion of ξ on the z-beam corresponds to a vertical riser. Thickening ξ is done as in
the case of extrusions. The partitioning of the forwards and rearwards faces is also done as in the
case of extrusions, but in addition to shooting illuminating rays down from top rim edges, bottom
rim edges that are not hit by these rays must themselves shoot rays upward to illuminate portions
of faces not illuminated by the top edges. The face pieces resulting from this partitioning method
are hung from the staircase as described in Section 3.3.
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Figure 10: Band b of a slab, cut and laid flat with top/bottom faces light gray and right/left faces
dark gray. z-beam connections to b’s parent, children b1 . . . b9, and child b` are marked along the
front and back rim. The path that ξe(b) follows when b` is heavy is depicted.

The O(n2) upper bound on the level of grid refinement for extrusions also applies to general
orthogonal polyhedra by the following argument. In the case of extrusions, for any block b with
children, ξ makes turns only on b’s top face, because all access to the children is from the top face;
it makes no turns on the other three faces of b. Therefore, we analyze the number of segments (each
corresponding to a turn) on the top face. For a band b of an arbitrary orthogonal polyhedra, ξ
visits b’s children in the same manner as for an extrusion, except that the turns made to access the
children are made on whatever top or bottom face has the connecting z-beam, as in Figure 10. In
particular, for a band b with a given number of front and back children, the same number of turns are
made, whether b surrounds a block of an extrusion or a slab of a arbitrary orthogonal polyhedron.
In terms of maximum refinement, the worst case occurs when all the turns are concentrated on
a single face, which is exactly the situation handled by our upper bound analysis in the case of
extrusions.

6 Conclusion

We present modifications to the epsilon-unfolding algorithm from [?] that reduce the level of grid
refinement necessary to grid-unfold any genus-zero orthogonal polyhedron from exponential to
quadratic. The next natural step is to seek a refined grid edge-unfolding of all genus-zero orthogonal
polyhedra that requires subquadratic refinement of the grid faces, to date only achieved for highly
restricted classes of orthogonal polyhedra [?, ?, ?]. It is unlikely that the technique used in this
paper could be extended to produce such an unfolding, due to the backtracking nature of our
recursive unfolding algorithm. However, our preliminary investigations embolden us to conjecture
that a constant refinement of the vertex grid suffices to grid-unfold all orthogonal polyhedra.
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and helpful suggestions.
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