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Abstract

The domination polynomial D(G, x) is the ordinary generating function for the
dominating sets of an undirected graph G = (V,E) with respect to their cardinality.
We consider in this paper representations of D(G, x) as a sum over subsets of the edge
and vertex set of G. One of our main results is a representation of D(G, x) as a sum
ranging over spanning bipartite subgraphs of G.

Let d(G) be the number of dominating sets of G. We call a graph G conformal if
all of its components are of even order. Let Con(G) be the set of all vertex-induced
conformal subgraphs of G and let k(G) be the number of components of G. We show
that

d(G) =
∑

H∈Con(G)

2k(H).

1 Introduction

Let G = (V,E) be an undirected graph. All graphs considered in this paper are assumed to
be finite and simple. The closed neighborhood NG [v] of a vertex v ∈ V is the set consisting
of v and all its neighbor vertices in G. For any subset W ⊆ V , we denote by NG [W ] the
closed neighborhood of W in G, that is

NG [W ] =
⋃

v∈W

NG [v] .

If the graph is clear from the context, then we write N [v] and N [W ] instead of NG [W ]
and NG [v], respectively. A dominating set of G is a vertex subset W ⊆ V such that
N [W ] = V . Let W ⊆ V be a given vertex subset of the graph G = (V,E). We denote by
∂(W ) the set of all edges of G that have exactly one of their end vertices in W , that is
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∂(W ) = {{u, v} ∈ E | u ∈ W,v ∈ V \W} .

The edges of ∂(W ) link vertices of W with vertices of V \W . Whether a given set W
is a dominating set of G depends neither on edges lying completely inside W nor on edges
that have no end vertex in W , which gives the following statement.

Proposition 1 Let G = (V,E) be a graph, W ⊆ V , and F ⊆ E. Then W is a dominating
set of (V, F ) if and only W is dominating in (V, F ∩ ∂(W )), i.e.

N(V,F ) [W ] = V ⇐⇒ N(V,F∩∂(W )) [W ] = V.

Definition 2 Let G = (V,E) be an undirected graph and dk(G) the number of dominating
sets of cardinality k in G for k = 0, ..., n = |V |. The domination polynomial of G is

D(G,x) =

n
∑

k=0

dk(G)xk.

We denote by d(G) the number of dominating sets of G. Consequently, we find d(G) =
D(G, 1).

The domination polynomial of a graph has been introduced by Arocha and Llano in [5].
More recently it has been investigated with respect to special graphs, zeros, and applications
in network reliability, see [1, 2, 3, 4, 7].

The domination polynomial can also be represented as a sum over vertex subsets of G,

D(G,x) =
∑

U⊆V
N [U ]=V

x|U |.

The domination polynomial is multiplicative with respect to components, see [5]. Let
G1, ..., Gk be the components of a given graph G, then

D(G,x) =
k
∏

i=1

D(Gi, x). (1)

2 Spanning Subgraphs

In this section, we provide a representation of the domination polynomial as a sum ranging
over all bipartite spanning subgraphs of a graph.

2.1 Connected Bipartite Graphs

Alternating sums of domination polynomials of spanning subgraphs of a given graph yield
a particularly simple result in case of connected bipartite graphs.
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Lemma 3 Let G = (V,E) be a connected bipartite graph with bipartition V = Y ∪ Z,
Y 6= ∅, Z 6= ∅. Then

∑

F⊆E

(−1)|F |D ((V, F ) , x) = (−1)|Y |x|Z| + (−1)|Z|x|Y |.

Proof. Let W be a dominating set of G; then we can distinguish three cases, namely

(a)W ∩ Y 6= ∅ and W ∩ Z 6= ∅,

(b)W = Y,

(c)W = Z.

We decompose the sum according to the above given cases:

∑

F⊆E

(−1)|F |D ((V, F ) , x) =
∑

F⊆E

∑

W⊆V
N(V,F )[W ]=V

(−1)|F |x|W |

=
∑

W⊆V

x|W |
∑

F⊆E
N(V,F )[W ]=V

(−1)|F |

=
∑

W⊆V
W∩Y 6=∅
W∩Z 6=∅

x|W |
∑

F⊆E
N(V,F )[W ]=V

(−1)|F | (a)

+ x|Y |
∑

F⊆E
N(V,F )[Y ]=V

(−1)|F | (b)

+ x|Z|
∑

F⊆E
N(V,F )[Z]=V

(−1)|F |. (c)

We show that the Sum (a) vanishes. According to Proposition 1, a set W is dominating
in (V, F ) if and only if W is a dominating set of (V, F ∩ ∂(W )). The evaluation of the Sum
(a) yields

∑

W⊆V
W∩Y 6=∅
W∩Z 6=∅

x|W |
∑

F⊆E
N(V,F )[W ]=V

(−1)|F | =
∑

W⊆V
W∩Y 6=∅
W∩Z 6=∅

x|W |
∑

F1⊆E∩∂(W )
F2⊆E\∂(W )

N(V,F1)
[W ]=V

(−1)|F1∪F2|

=
∑

W⊆V
W∩Y 6=∅
W∩Z 6=∅

x|W |
∑

F1⊆E∩∂(W )
N(V,F1)

[W ]=V

(−1)|F1|
∑

F2⊆E\∂(W )

(−1)|F2|.
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Now assume that E \ ∂(W ) = ∅. Let y ∈ Y ∩ W and z ∈ Z ∩ W . Then there does
not exist a path between y and z in G. This contradicts the assumed connectedness of G;
hence E \ ∂(W ) 6= ∅, which gives

∑

F2⊆E\∂(W )

(−1)|F2| = (1− 1)|E\∂(W )| = 0.

Now we turn to the Sum (b),
∑

F⊆E
N(V,F )[Y ]=V

(−1)|F |.

An edge subset F ⊆ E satisfies the property “Y is dominating in (V, F )” if and only if F
contains at least one edge from each vertex of Z. We denote the vertices of Z by v1, ..., vk .
For each i, i = 1, ..., k, let Ei be the set of edges of G that are incident to vi. We define

F = {A ⊆ E | ∀i = 1, ..., k : |Ei ∩A| ≥ 1} .

Now the Sum (b) can be expressed as follows,

∑

F⊆E
N(V,F )[Y ]=V

(−1)|F | =
∑

F∈F

(−1)|F |

=
∑

F1∪F2∪...∪Fk∈F
∀i=1,...,k:Fi⊆Ei

(−1)|F1∪F2∪...∪Fk|

=
∑

∀i=1,...,k:∅6=Fi⊆Ei

(−1)|F1|+|F2|+...+|Fk|

=
∑

F1⊆E1
F1 6=∅

(−1)|F1|
∑

F2⊆E2
F2 6=∅

(−1)|F2| · · ·
∑

Fk⊆Ek

Fk 6=∅

(−1)|Fk|

= (−1)k = (−1)|Z|,

which yields

x|Y |
∑

F⊆E
N(V,F )[Y ]=V

(−1)|F | = (−1)|Z|x|Y |.

In the same vein, we can prove that the sum (c) satisfies

x|Z|
∑

F⊆E
N(V,F )[Z]=V

(−1)|F | = (−1)|Y |x|Z|

and the statement follows.
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2.2 General Bipartite Graphs

Lemma 4 Let G = (V,E) be a bipartite graph with bipartition V = Y ∪ Z. Assume that
G consists of k+ l components such that the k components G1 = (V1, E1), ..., Gk = (Vk, Ek)
have nonempty edge sets and the remaining l components are isomorphic to K1. Then

∑

F⊆E

(−1)|F |D ((V, F ) , x) = xl
k
∏

i=1

[

(−1)|Y ∩Vi|x|Z∩Vi| + (−1)|Z∩Vi|x|Y ∩Vi|
]

.

Proof. For the one-vertex graph K1 = ({v} , ∅), we obtain

∑

F⊆∅

(−1)|F |D (({v} , F ) , x) = x.

By Equation (1), we obtain

∑

F⊆E

(−1)|F |D ((V, F ) , x) =
∑

F⊆E

(−1)|F |xl
k
∏

i=1

D ((Vi, F ∩ Ei) , x)

= xl
∑

F⊆E

k
∏

i=1

(−1)|F∩Ei|D ((Vi, F ∩ Ei) , x)

= xl
k
∏

i=1

∑

F⊆Ei

(−1)|F |D ((Vi, F ) , x)

= xl
k
∏

i=1

[

(−1)|Y ∩Vi|x|Z∩Vi| + (−1)|Z∩Vi|x|Y ∩Vi|
]

,

where the last equality is valid due to Lemma 3.
Observe that (−1)|Y |x|Z| + (−1)|Z|x|Y | 6= 0 for any bipartition V = Y ∪Z, which shows

together with Lemma 4 that

∑

F⊆E

(−1)|F |D ((V, F ) , x) 6= 0

for any bipartite graph G = (V,E). Moreover, we have the following statement.

Theorem 5 Let G = (V,E) be a graph. Then

∑

F⊆E

(−1)|F |D ((V, F ) , x) 6= 0

if and only if G is bipartite.
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Proof. It remains to show that the sum vanishes for non-bipartite graphs. Using Proposi-
tion 1, we obtain

∑

F⊆E

(−1)|F |D ((V, F ) , x) =
∑

F⊆E

∑

W⊆V
N(V,F )[W ]=V

(−1)|F |x|W |

=
∑

W⊆V

x|W |
∑

F⊆E
N(V,F )[W ]=V

(−1)|F |

=
∑

W⊆V

x|W |
∑

F1⊆∂(W )
N(V,F1)

[W ]=V

(−1)|F1|
∑

F2⊆E\∂(W )

(−1)|F2|.

Since G is not a bipartite graph, the set F2 is nonempty, which yields

∑

F2⊆E\∂(W )

(−1)|F2| = 0

and hence the statement of the theorem.
There is also a “local version” for one direction of Theorem 5, which can be proved by

the same method.

Theorem 6 Let G = (V,E) be a graph and A ⊆ E an edge subset such that (V,A) contains
an odd cycle. Then

∑

F⊆A

(−1)|F |D (G− F, x) = 0.

2.3 Applications of Spanning Subgraph Expansions

Let G = (V,E) be a given graph. We define for any edge subset F of G,

h(F ) =
∑

A⊆F

(−1)|A|D ((V,A) , x) .

Möbius inversion yields

D ((V, F ) , x) =
∑

A⊆F

(−1)|A|h(A).

According to Lemma 3, Lemma 4, and Theorem 5, we define

h(F ) =











xl
k
∏

i=1

(−1)|Ei|
[

(−1)|Y ∩Vi|x|Z∩Vi| + (−1)|Z∩Vi|x|Y ∩Vi|
]

, if (V, F ) is bipartite,

0 otherwise.
(2)
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Here the notations are as in Lemma 4. We can now conclude that the domination polynomial
of a graph G = (V,E) is a sum of h-function values of spanning bipartite subgraphs, i.e.

D (G,x) =
∑

B⊆E
(V,B) is bipartite

h(B). (3)

The number of dominating sets of G = (V,E) is D(G, 1). In order to derive this number
from Equation (3), we define h1 by substituting x = 1 in h, that is

h1(F ) =

k
∏

i=1

(−1)|Ei|
[

(−1)|Y ∩Vi| + (−1)|Z∩Vi|
]

.

Observe that h1(∅) = 1 and h1(F ) ≡ 0 (mod 2) for F 6= ∅, which gives the following
statement.

Corollary 7 For any graph G, the number of dominating sets of G is odd.

For alternative proofs of this corollary, see [6].

Remark 8 In almost the same manner, by substituting x = −1 in h, we can prove that
D(G,−1) is odd. Moreover, from the Equations (2) and (3), we obtain

D(G,−1) = (−1)|V |
∑

F⊆E
(V,F ) is bipartite

(−1)|F |2c(F ),

where c(F ) denotes here the number of components of (V, F ) that have at least one edge.

3 Vertex Induced Subgraphs

Let G = (V,E) be a graph and W ⊆ V . We denote by G [W ] the vertex induced subgraph
of G:

G [W ] = (W, {{u, v} ∈ E | u ∈ W and v ∈ W}) .

Theorem 9 Any connected graph G = (V,E) satisfies

∑

W⊆V

(−1)|W |D (G [W ] , x) = 1 + (−x)|V | .
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Proof. By switching the order of summation, we have
∑

W⊆V

(−1)|W |D (G [W ] , x) =
∑

W⊆V

(−1)|W |
∑

T⊆W
NG[W ][T ]=W

x|T |

=
∑

T⊆V

x|T |
∑

W⊇T
NG[W ][T ]=W

(−1)|W |

=
∑

T⊆V

x|T |
∑

W :T⊆W⊆NG[W ][T ]

(−1)|W |

=
∑

T⊆V

x|T |
∑

W :T⊆W⊆NG[T ]

(−1)|W |

=
∑

T⊆V

(−x)|T |
∑

Y⊆NG[T ]\T

(−1)|Y |.

Since G is connected, the set NG [T ] \ T is empty if and only if T = ∅ or T = V . Hence we
obtain

∑

T⊆V

(−x)|T |
∑

Y⊆NG[T ]\T

(−1)|Y | = 1 + (−x)|V |.

Definition 10 Let G = (V,E) be a graph with n vertices. The type of G is an integer
partition λG = (λ1, ..., λk) ⊢ n that gives the sequence of orders of the components of G.
We write i ∈ λG in order to indicate that i is a part of λG. The number of parts of λG is
denoted by |λG|.

Observe that for all W ⊆ V the relation
∣

∣λG[W ]

∣

∣ ≤ α(G) is satisfied, where α(G)
denotes the independence number of G. Theorem 9 and Equation (1) immediately imply
the following statement.

Corollary 11 For any graph G = (V,E), we have

∑

W⊆V

(−1)|W |D (G [W ] , x) =
∏

i∈λG

(

1 + (−x)i
)

. (4)

The application of the Möbius inversion to Equation (4) yields

D(G,x) =
∑

W⊆V

(−1)|W |
∏

i∈λG[W ]

(

1 + (−x)i
)

=
∑

W⊆V

∏

i∈λG[W ]

(

xi + (−1)i
)

. (5)

Remark 12 If we substitute x = 1 (or x = −1) in Equation (5) then all the products are
equal to 0 (mod 2). There is only one exception, namely the empty product corresponding
to W = ∅, which is 1. This gives an alternative proof of Corollary 7.
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We call a graph G conformal if all of its components are of even order. Let Con(G)
be the set of all vertex-induced conformal subgraphs of G and let k(G) be the number of
components of G.

Theorem 13 The number of dominating sets of a graph G satisfies

d(G) =
∑

H∈Con(G)

2k(H).

Proof. The statement follows from Equation (5) by substituting x = 1. In this case any
component of odd order leads to a zero product, such that only conformal vertex-induced
subgraphs count. Observe that the null graph is conformal and has no components, which
produces the only odd term of the sum, namely 20 = 1.

Equation (5) offers a possibility to derive a decomposition for the domination polyno-
mial.

Theorem 14 Let G = (V,E) be a graph and v ∈ V . Then

D(G,x) = D(G− v, x) +
∑

{v}⊆W⊆V

G[W ] is connected

(

x|W | + (−1)|W |
)

D (G−N [W ], x) .

Proof. We start from Equation (5):

D(G,x) =
∑

W⊆V

∏

i∈λG[W ]

(

xi + (−1)i
)

=
∑

W⊆V \{v}

∏

i∈λG[W ]

(

xi + (−1)i
)

+
∑

{v}⊆W⊆V

∏

i∈λG[W ]

(

xi + (−1)i
)

= D(G− v, x)

+
∑

{v}⊆W⊆V

G[W ] is connected

(

x|W | + (−1)|W |
)

∑

T⊆V \N [W ]

∏

i∈λG[T ]

(

xi + (−1)i
)

= D(G− v, x) +
∑

{v}⊆W⊆V
G[W ] is connected

(

x|W | + (−1)|W |
)

D (G−N [W ], x) .

The following statement for the number of dominating sets of G is an immediate con-
sequence of Theorem 14.

Corollary 15 Let G = (V,E) be a graph and v ∈ V . Then the difference d(G)− d(G− v)
is even.
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Proof. When we substitute x = 1 in Theorem 14, then we obtain

d(G) = d(G − v) + 2
∑

{v}⊆W⊆V
G[W ] is connected

|W | is even

d (G−N [W ]) ,

which gives the desired result.

4 Inclusion–Exclusion

We obtain a different representation of the domination polynomial as a sum ranging over
vertex subsets by counting all vertex subsets of G = (V,E) that do not dominate the whole
vertex set V and applying inclusion-exclusion.

Theorem 16 ([7]) Let G = (V,E) be a graph. Then

D(G,x) =
∑

W⊆V

(−1)|W |(1 + x)|V \N [W ]|. (6)

Corollary 17 The domination polynomial of a graph G = (V,E) with n vertices satisfies

D(G,x) =
n
∑

k=0

xk
∑

W⊆V
|N [W ]|≤n−k

(−1)|W |

(

n− |N [W ]|

k

)

.

Proof. Using Equation (6), we obtain

D(G,x) =
∑

W⊆V

(−1)|W |(1 + x)|V \N [W ]|

=
∑

W⊆V

(−1)|W |

|V−N [W ]|
∑

k=0

(

n− |N [W ]|

k

)

xk

=
n
∑

k=0

xk
∑

W⊆V

(−1)|W |

(

n− |N [W ]|

k

)

=

n
∑

k=0

xk
∑

W⊆V
|N [W ]|≤n−k

(−1)|W |

(

n− |N [W ]|

k

)

.

Remark 18 An interesting consequence of Corollary 17 is the characterization of the dom-
ination number γ(G) of a graph G = (V,E) as the smallest nonnegative integer k such that
the sum

∑

W⊆V
|N [W ]|≤n−k

(−1)|W |

(

n− |N [W ]|

k

)

does not vanish.
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We call a vertex subset W ⊆ V of a graph G = (V,E) essential in G if W contains the
closed neighborhood N [v] of at least one vertex v ∈ V . We denote by Ess(G) the family of
all essential sets of G.

Theorem 19 Let G = (V,E) be a graph with nonempty vertex set. Then the domination
polynomial of G satisfies

D(G,x) = (−1)|V |
∑

U∈Ess(G)

(−1)|U |
[

(1 + x)|{u∈U |N [u]⊆U}| − 1
]

.

Proof. According to Equation (6), we have

D(G,x) =
∑

W⊆V

(−1)|W |(1 + x)|V \N [W ]|

=
∑

U⊆V

(−1)|V |−|U |(1 + x)|V \N [V \U ]|

=
∑

U⊆V

(−1)|V |−|U |(1 + x)|{u∈U |N [u]⊆U}|.

In order to see the last equality, we verify

N [V \ U ] =
⋃

v∈V \U

N [v]

= (V \ U) ∪ {u ∈ U | N [u] ∩ (V \ U) 6= ∅}

= (V \ U) ∪ {u ∈ U | N [u] * U}

and consequently,

V \N [V \ U ] = V \ [(V \ U) ∪ {u ∈ U | N [u] * U}]

= U \ {u ∈ U | N [u] * U}

= {u ∈ U | N [u] ⊆ U} .

All polynomials of the form (1 + x)|{u∈U |N [u]⊆U}| have the constant term 1. As V 6= ∅,
the constant term in

∑

U⊆V

(−1)|V |−|U |(1 + x)|{u∈U |N [u]⊆U}|

vanishes, which gives

D(G,x) =
∑

U⊆V

(−1)|V |−|U |
[

(1 + x)|{u∈U |N [u]⊆U}| − 1
]

.

If U is a non-essential set of G then we have {u ∈ U | N [u] ⊆ U} = ∅ and hence (1 +
x)|{u∈U |N [u]⊆U}| = 1. Consequently, all non-vanishing terms correspond to essential sets,
yielding the statement of the theorem.

Another interesting consequence of Theorem 16 is the following relation betweenD(G,x)
and D

(

G, 1
x

)

.
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Theorem 20 Let G = (V,E) be a graph. Then

D(G,x) = (1 + x)|V |
∑

W⊆V

(

−x

1 + x

)|W |

D

(

G [W ] ,
1

x

)

.

Proof. We consider the right-hand side of the equation from the theorem. Substituting
D

(

G [W ] , 1
x

)

according to the definition of the domination polynomial yields

(1 + x)|V |
∑

W⊆V

(

−x

1 + x

)|W |
∑

T⊆W
NG[W ][T ]=W

x−|T |

= (1 + x)|V |
∑

W⊆V

(

−x

1 + x

)|W |
∑

T :T⊆W⊆NG[T ]

x−|T |.

Switching the order of summation gives

(1 + x)|V |
∑

T⊆V

x−|T |
∑

W :T⊆W⊆NG[T ]

(

−x

1 + x

)|W |

.

Now we define U = W \ T and substitute W = U ∪ T , yielding

(1 + x)|V |
∑

T⊆V

x−|T |
∑

U⊆NG[T ]\T

(

−x

1 + x

)|U |+|T |

= (1 + x)|V |
∑

T⊆V

(

−1

1 + x

)|T |
∑

U⊆NG[T ]\T

(

−x

1 + x

)|U |

,

which simplifies via the binomial theorem to

(1 + x)|V |
∑

T⊆V

(

−1

1 + x

)|T |(

1−
x

1 + x

)|NG[T ]|−|T |

= (1 + x)|V |
∑

T⊆V

(−1)|T | (1 + x)−|NG[T ]| .

The statement follows now by Theorem 16.
The following statement can be shown by substituting x = 1 in Theorem 20.

Corollary 21 Let G = (V,E) be a graph. The numbers of dominating sets of vertex-
induced proper subgraphs of G satisfy

∑

W⊂V

(−1)|W |d(G[W ])

2|W |
= 0.
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5 Conclusions and Open Problems

The domination polynomial of a graph can be expressed as a sum of quite simple polynomi-
als of vertex-induced or spanning subgraphs. In case of spanning subgraphs, we can show
that the domination polynomial depends only on bipartite spanning subgraphs.

There remain interesting open problems for further research in this field. The first one
concerns the number of dominating sets of a graph given by Theorem 13.

Problem 22 The simple formula

d(G) =
∑

H∈Con(G)

2k(H)

suggests that there is a bijection between subsets of components of conformal graphs and
dominating sets of G. Is there a bijective proof for Theorem 13? What is the best way to
enumerate the set Con(G)?

In Corollary 11, we showed that the type of a subgraph yields the essential information
for a representation of D(G,x) as a sum over vertex-induced subgraphs. Here it seems
interesting to investigate whether we need all vertex-induced subgraphs in order to derive
the domination polynomial.

Problem 23 Components of G [W ] that have odd order lead to cancellation of terms of the
sum in Equation (5),

D(G,x) =
∑

W⊆V

∏

i∈λG[W ]

(

xi + (−1)i
)

.

Is there a way to identify those cancelling terms?

Problem 24 In Theorem 19, we showed that the restriction to essential sets is sufficient
in order to compute the domination polynomial of a graph. Can we reduce the number of
terms needed to derive D(G,x) further?

Further topics of interest for future research include the investigation of special graph
classes with respect to the given representations of the domination polynomial and the
application of these representations to special graph classes. Since bipartite graphs play
an important role for the representation of the domination polynomial, we conjecture that
also matchings have a close relation to dominating sets. However, until now all attempts
to find a sum representation of D(G,x) based on matchings of G failed.

References

[1] Saieed Akbari, Saeid Alikhani, Mohammad Reza Oboudi and Yee-Hock Peng: On the
zeros of domination polynomial of a graph, in Brualdi, Richard A. (ed.) et al., Combi-
natorics and graphs. Selected papers based on the presentations at the 20th anniversary
conference of IPM on combinatorics, Tehran, Iran, May 15–21, 2009, Contemporary
Mathematics 531, 109-115 (2010).

13



[2] Saeid Alikhani and Yee-Hock Peng: Dominating sets and domination polynomials of
paths, International Journal of Mathematics and Mathematical Sciences, Hindawi, Vol-
ume 2009 (2009), Article ID 542040, 10 pages, doi:10.1155/2009/542040.

[3] Saeid Alikhani and Yee-Hock Peng: Dominating sets and domination polynomials of
certain graphs II, Opuscula Mathematica, Vol. 30 (2010), No. 1, 37-51.

[4] Saieed Akbari, Saeid Alikhani, Yee-hock Peng: Characterization of graphs using domi-
nation polynomials, European Journal of Combinatorics, 31 (2010) 7, 1714-1724.

[5] Jorge Luis Arocha and Bernardo Llano: Meanvalue for the matching and dominating
polynomial, Discuss. Math. Graph Theory, 20 (2000), pp. 57–69.

[6] Andries E. Brouwer: The number of dominating sets of a finite graph is odd, preprint,
http://www.win.tue.nl/˜aeb/preprints/domin2.pdf.

[7] Klaus Dohmen and Peter Tittmann: Domination reliability, The Electronic Journal of
Combinatorics 19 (2012), #P15.

14

http://www.win.tue.nl/~aeb/preprints/domin2.pdf

	1 Introduction
	2 Spanning Subgraphs
	2.1 Connected Bipartite Graphs
	2.2 General Bipartite Graphs
	2.3 Applications of Spanning Subgraph Expansions

	3 Vertex Induced Subgraphs
	4 Inclusion–Exclusion
	5 Conclusions and Open Problems

