Hamiltonicity of 3-arc graphs

Guangjun Xu and Sanming Zhou
Department of Mathematics and Statistics
The University of Melbourne
Parkville, VIC 3010, Australia
E-mail: $\{g x$, smzhou\} @ms.unimelb.edu.au

November 18, 2018

Abstract

An arc of a graph is an oriented edge and a 3 -arc is a 4 -tuple (v, u, x, y) of vertices such that both (v, u, x) and (u, x, y) are paths of length two. The 3 -arc graph of a graph G is defined to have vertices the arcs of G such that two arcs $u v, x y$ are adjacent if and only if (v, u, x, y) is a 3 -arc of G. We prove that any connected 3 -arc graph is hamiltonian, and all iterative 3 -arc graphs of any connected graph of minimum degree at least three are hamiltonian. As a corollary we obtain that any vertex-transitive graph which is isomorphic to the 3 -arc graph of a connected arc-transitive graph of degree at least three must be hamiltonian. This confirms the conjecture, for this family of vertex-transitive graphs, that all vertex-transitive graphs with finitely many exceptions are hamiltonian. We also prove that if a graph with at least four vertices is Hamilton-connected, then so are its iterative 3 -arc graphs.

Key words: 3-Arc graph, Hamilton cycle, Hamiltonian graph, Hamilton-connected graph, Vertex-transitive graph

1 Introduction

A path or cycle which contains every vertex of a graph is called a Hamilton path or Hamilton cycle of the graph. A graph is hamiltonian if it contains a Hamilton cycle, and is Hamiltonconnected if any two vertices are connected by a Hamilton path. The hamiltonian problem, that of determining when a graph is hamiltonian, is a classical problem in graph theory with a long history. The reader is referred to [3, 4, Chapter 18], [8, Chapter 10] and [10 for results on Hamiltonicity of graphs.

In this paper we present a large family of hamiltonian graphs. Such graphs are defined by means of a graph operator, called the 3 -arc graph construction, which bears some similarities with the line graph operator. This construction was first introduced in [17, 24 in studying a family of arc-transitive graphs whose automorphism group contains a subgroup acting imprimitively on the vertex set. (A graph is arc-transitive if its automorphism group is transitive on the set of oriented edges.) It was used in classifying or characterizing certain families of arc-transitive graphs 9, 12, 17, 18, 23, 25].

All graphs in this paper are finite and undirected without loops. We use the term multigraph when parallel edges are allowed. An arc of a graph $G=(V(G), E(G))$ is an ordered pair of adjacent vertices, or equivalently an oriented edge. For adjacent vertices u, v of G, we use $u v$ to denote the arc from u to $v, v u(\neq u v)$ the arc from v to u, and $\{u, v\}$ the edge between u and v. A 3-arc of G is a 4-tuple of vertices (v, u, x, y), possibly with $v=y$, such that both (v, u, x) and (u, x, y) are paths of G.

Notation: We follow 4 for graph-theoretic terminology and notation. The degree of a vertex v in a graph G is denoted by $d(v)$, and the minimum degree of G is denoted by $\delta(G)$. The set of arcs of G with tail v is denoted by $A(v)$, and the set of arcs of G is denoted by $A(G)$.

The general 3 -arc construction [17, 24] involves a self-paired subset of the set of 3 -arcs of a graph. The following definition is obtained by choosing this subset to be the set of all 3 -arcs of the graph.

Definition 1 Let G be a graph. The 3 -arc graph of G, denoted by $X(G)$, is defined to have vertex set $A(G)$ such that two vertices corresponding to two arcs $u v$ and $x y$ are adjacent if and only if (v, u, x, y) is a 3 -arc of G.

It is clear that $X(G)$ is an undirected graph with $2|E(G)|$ vertices and $\sum_{\{u, v\} \in E(G)}(d(u)-$ 1) $(d(v)-1)$ edges. We can obtain $X(G)$ from the line graph $L(G)$ of G by the following operations [14]: split each vertex $\{u, v\}$ of $L(G)$ into two vertices, namely $u v$ and $v u$; for any two vertices $\{u, v\},\{x, y\}$ of $L(G)$ that are distance two apart in $L(G)$, say, u and x are adjacent in G, join $u v$ and $x y$ by an edge. On the other hand, the quotient graph of $X(G)$ with respect to the partition $\mathcal{P}=\{\{u v, v u\}:\{u, v\} \in E(G)\}$ of $A(G)$ is isomorphic to the graph obtained from the square of $L(G)$ by deleting the edges of $L(G)$. The reader is referred to [14, 13, 2] respectively for results on the diameter and connectivity, the independence, domination and chromatic numbers, and the edge-connectivity and restricted edge-connectivity of 3 -arc graphs.

The following is the first main result in this paper.
Theorem 1 Let G be a graph without isolated vertices. The 3-arc graph of G is hamiltonian if and only if
(a) $\delta(G) \geq 2$;
(b) no two degree-two vertices of G are adjacent; and
(c) the subgraph obtained from G by deleting all degree-two vertices is connected.

We remark that Theorem $\mathbb{\square}$ can not be obtained from known results on the hamiltonicity of line graphs, though $X(G)$ and $L(G)$ are closely related as mentioned above. As a matter of fact, even if $L(G)$ is hamiltonian, $X(G)$ is not necessarily hamiltonian, as witnessed by stars $K_{1, t}$ with $t \geq 3$.

We define the iterative 3-arc graphs of G by

$$
X^{1}(G)=X(G), \quad X^{i+1}(G)=X\left(X^{i}(G)\right), \quad i \geq 1 .
$$

Theorem 1 together with [14, Theorem 2] implies the following result.
Theorem 2 (a) A 3-arc graph is hamiltonian if and only if it is connected.
(b) If G is a connected graph with $\delta(G) \geq 3$, then $X^{i}(G)$ is hamiltonian for every integer $i \geq 1$.

We will prove Theorems 1 and 2 in Section 3. In Section 4 we will prove the following result.
Theorem 3 Let G be a 2-edge connected graph with $\delta(G) \geq 3$. If G contains a path of odd length between any two distinct vertices, then its 3 -arc graph is Hamilton-connected.

A basic strategy in the proof of Theorems 1 and 3 is to find an Eulerian tour or an open Eulerian trail in a properly defined multigraph that produces the required Hamilton cycle or path. This is similar to the observation [5] that an Eulerian tour of a graph produces a Hamilton cycle of its line graph.

Theorem 3 implies the following result.
Theorem 4 If a graph G with at least four vertices is Hamilton-connected, then so are its iterative 3-arc graphs $X^{i}(G), i \geq 1$.

Given vertex-disjoint graphs G and H, the join $G \vee H$ of them is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup\{\{u, v\}: u \in V(G), v \in V(H)\}$. Theorem 3 implies the following result.

Corollary 5 Let G and H be graphs such that $\max \{\delta(G), \delta(H)\} \geq 2$. Then $X(G \vee H)$ is Hamilton-connected.

In the case when G has a large order but small maximum degree, $X(G)$ has a large order but relatively small maximum degree. In this case the Hamiltonicity of $X(G)$ may not be derived from known sufficient conditions for Hamilton cycles such as the degree conditions in the classical Dirac's or Ore's Theorem (see [3, 4, 8, 10]).

In spirit, Theorems 1 and 2 are parallel to the well-known conjecture of Thomassen [20] which asserts that every 4 -connected line graph is hamiltonian. This conjecture is still open; see [6, 10, 11, 16, 22]. In contrast, Theorem [1] solves the hamiltonian problem for 3-arc graphs completely.

A well-known conjecture due to Lovász, formulated by Thomassen [21, asserts that all connected vertex-transitive graphs, with finitely many exceptions, are hamiltonian. Since the 3 arc graph of an arc-transitive graph is vertex-transitive, Theorem 2 implies the following result, which confirms this conjecture for a large family of vertex-transitive graphs. (The family of arc-transitive graphs is large from a group-theoretic point of view [19].)

Corollary 6 If a vertex-transitive graph is isomorphic to the 3-arc graph of a connected arctransitive graph of degree at least three, then it is hamiltonian.

The Lovász conjecture has been confirmed for several families of vertex-transitive graphs [15], including connected vertex-transitive graphs of order $k p$, where $k \leq 4$, (except for the Petersen graph and the Coxeter graph) of order p^{j}, where $j \leq 4$, and of order $2 p^{2}$, where p is prime, and some families of Cayley graphs. Tools from group theory were used in the proof of almost all these results. Corollary 6 has a different flavour and its proof does not rely on group theory.

There has also been considerable interest on Hamilton-connectedness of vertex-transitive graphs. Theorem 4 implies that if a vertex-transitive graph (with at least four vertices) is Hamilton-connected, then so are its iterative 3 -arc graphs. For example, it is known that every connected non-bipartite Cayley graph of degree at least three on a finite abelian group [7] or a Hamiltonian group [1] is Hamilton-connected. (A finite non-abelian group in which every subgroup is normal is called a Hamiltonian group.) From this and Theorem 4 we know immediately that all iterative 3 -arc graphs of such a Cayley graph are also Hamilton-connected.

2 Preliminaries

Let G^{*} be a multigraph. A walk in G^{*} of length l is a sequence $v_{0}, e_{1}, v_{1}, \ldots, v_{l-1}, e_{l}, v_{l}$, whose terms are alternately vertices and edges of G^{*} (not necessarily distinct), such that v_{i-1} and v_{i} are the end-vertices of $e_{i}, 1 \leq i \leq l$. A walk is closed if its initial and terminal vertices are identical, is a trail if all its edges are distinct, and is a path if all its vertices are distinct. Often we present a trail by listing its sequence of vertices only, with the understanding that the edges used are distinct. A trail that traverses every edge of G^{*} is called an Eulerian trail of G^{*}, and a closed Eulerian trail is called an Eulerian tour. A multigraph is Eulerian if it admits an Eulerian tour. It is well known that a multigraph is Eulerian if and only if all its vertices have even degrees.

A 2-trail of G^{*} is a trail of length two (and so is a path or cycle of length two). We call a 2-trail (u, x, v) with mid-vertex x a visit to x (if $u=v$, then (u, x, u) is thought as entering and leaving x on parallel edges). When there is no need to make distinction between (u, x, v) and (v, x, u), or the orientation of the visit is unknown, we write $[u, x, v]$. Two visits (u, x, v) and $\left(u^{\prime}, x, v^{\prime}\right)$ are called twin visits if $\{u, v\}=\left\{u^{\prime}, v^{\prime}\right\}$ and the four edges involved are distinct. In
particular, when $u=v$, two twin visits (u, x, u) and (u, x, u) use four parallel edges between u and x.

Denote by $E^{*}(x)$ the set of edges of G^{*} incident with $x \in V\left(G^{*}\right)$, and $d^{*}(x)=\left|E^{*}(x)\right|$ the degree of x in G^{*}. In the case when $d^{*}(x)$ is even, a decomposition of $E^{*}(x)$ into a set of visits to x is called a visit-decomposition of $E^{*}(x)$ (at $\left.x\right)$. In this definition the orientations of the visits in the decomposition are not important in our subsequent discussion. So we may view each visit (u, x, v) in such a visit-decomposition as a non-oriented path (if $u \neq v$) or cycle (if $u=v$) of length two. As an example, if $E^{*}(x)=\{\{x, y\},\{x, y\},\{x, z\},\{x, z\}\}$, where $\{x, y\}$ and $\{x, y\}$ are viewed as distinct edges between x and y, then both $\{[y, x, y],[z, x, z]\}$ and $\{[y, x, z],[y, x, z]\}$ are visit-decompositions of $E^{*}(x)$.

Definition 2 Given a visit-decomposition $J(x)$ of $E^{*}(x)$, define $H(x)$ to be the bipartite graph with vertex bipartition $\{J(x), A(x)\}$ such that $p \in J(x)$ and $x y \in A(x)$ are adjacent if and only if y is not in p, where $A(x)$ is the set of arcs of the underlying simple graph of G^{*} with tail x.

We emphasize that $H(x)$ relies on $J(x)$. One can verify the following result by using Hall's marriage theorem.

Lemma 7 Suppose x is a vertex of G^{*} such that $d^{*}(x) \geq 6$ is even and either x is joined to every neighbour of x by exactly two parallel edges, or x is joined to one of its neighbours by exactly three parallel edges, another neighbour by a single edge, and each of the remaining neighbours by exactly two parallel edges. Let $J(x)$ be a visit-decomposition of $E^{*}(x)$. Then the bipartite graph $H(x)$ with respect to $J(x)$ has no perfect matchings if and only if $d^{*}(x)=6$ and $J(x)$ contains two twin visits.

Proof We have $|J(x)|=|A(x)|=d^{*}(x) / 2$ and $\delta(H(x)) \geq\left(d^{*}(x) / 2\right)-2 \geq 1$. One can show that, if $d^{*}(x) \geq 8$, then the neighbourhood $N_{H(x)}(S)$ in $H(x)$ of each $S \subseteq J(x)$ has size at least $|S|$. Thus, by Hall's marriage theorem, $H(x)$ has a perfect matching when $d^{*}(x) \geq 8$.

Suppose $H(x)$ has no perfect matchings, so that $d^{*}(x)=6$ and $|J(x)|=|A(x)|=3$. Then there exists $S \subseteq J(x)$ such that $\left|N_{H(x)}(S)\right|<|S|$. This implies $|S|=2$ and so $\left|N_{H(x)}(S)\right| \leq 1$. Denote $S=\{(u, x, v),(y, x, z)\}$, where $u, v, y, z \in N(x)$ (the neighbourhood of x in G^{*}). Then $N_{H(x)}(S)=(A(x)-\{x u, x v\}) \cup(A(x)-\{x y, x z\})=A(x)-(\{x u, x v\} \cap\{x y, x z\})$. Since $|N(x)|=3$ and $\left|N_{H(x)}(S)\right| \leq 1$, it follows that $\{u, v\}=\{y, z\}$, and therefore (u, x, v) and (y, x, z) are twin visits.

Conversely, if $d^{*}(x)=6$ and $J(x)$ contains twin visits, then $H(x)$ consists of two paths of length two and hence has no perfect matchings.

Definition 3 Let $C: v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{l-2}, e_{l-1}, v_{l-1}, e_{l}, v_{l}$ be an Eulerian trail of G^{*}, possibly with $v_{l}=v_{0}$. The visit $\left(v_{i-1}, v_{i}, v_{i+1}\right)$ to v_{i} is said to be induced by $C, 1 \leq i \leq l-1$. In addition, if C is an Eulerian tour, then $\left(v_{l-1}, v_{0}, v_{1}\right)$ is also a visit to v_{0} induced by C.

Denote by $C(x)$ the set of visits to $x \in V\left(G^{*}\right)$ induced by C.
Define $H_{C}(x)$ to be the bipartite graph at x as defined in Definition 圆 with respect to the visit-decomposition $C(x)$ of $E^{*}(x)$. (We leave $H_{C}\left(v_{0}\right)$ and $H_{C}\left(v_{l}\right)$ undefined if C is an open Eulerian trail.)

Note that a vertex may be visited several times by C because the vertices on C may be repeated. Indeed, $C(x)$ is a visit-decomposition of $E^{*}(x)$ for all vertices x, except v_{0} and v_{l} when $v_{0} \neq v_{l}$.

Definition 4 Let C be an Eulerian tour of G^{*} and $J(x)$ a visit-decomposition of $E^{*}(x)$. We say that C is compatible with $J(x)$, written $C(x) \prec J(x)$, if for every $(a, x, b) \in J(x)$, either $(a, x, b) \in C(x)$ or $(b, x, a) \in C(x)$.

Figure 1: (a) Bow-tie operation; (b) Concatenation operation.

Definition 5 Let C be a trail of G^{*} with length at least four. Let $\left(x_{1}, x, x_{2}\right),\left(x_{3}, x, x_{4}\right) \in C(x)$ be distinct visits, so that C can be expressed as

$$
C: \overbrace{a, \ldots, x_{1}}^{R}, e_{1}, x, e_{2}, \overbrace{x_{2}, \ldots, x_{3}}^{P}, e_{3}, x, e_{4}, \overbrace{x_{4}, \ldots, b}^{Q}
$$

possibly with $a=b$.
Define

$$
C\left(\left(x_{1}, x, x_{2}\right),\left(x_{3}, x, x_{4}\right)\right): \overbrace{a, \ldots, x_{1}}^{R}, e_{1}, x, e_{3}^{-1}, \overbrace{x_{3}, \ldots, x_{2}}^{P-}, e_{2}^{-1}, x, e_{4}, \overbrace{x_{4}, \ldots, b}^{Q}
$$

where P^{-}is the trail obtained from P by reversing its direction, and e_{2}^{-1} and e_{3}^{-1} are the same edges as e_{2} and e_{3} but with reversed orientations, respectively. (See Figure $\mathbb{1}$ (a).)

We call $C \rightarrow C\left(\left(x_{1}, x, x_{2}\right),\left(x_{3}, x, x_{4}\right)\right)$ the bow-tie operation on C with respect to $\left(x_{1}, x, x_{2}\right)$ and $\left(x_{3}, x, x_{4}\right)$.

Definition 6 Let

$$
C_{1}: x_{1}, e_{1}, x, e_{2}, \overbrace{x_{2}, \ldots, x_{1}}^{P} ; \quad C_{2}: x_{3}, e_{3}, x, e_{4}, \overbrace{x_{4}, \ldots, x_{3}}^{Q} .
$$

be edge-disjoint closed trails of G^{*} with x as a common vertex. Define

$$
C^{1}: x_{1}, e_{1}, x, e_{3}^{-1}, \overbrace{x_{3}, \ldots, x_{4}}^{Q^{-1}}, e_{4}^{-1}, x, e_{2}, \overbrace{x_{2}, \ldots, x_{1}}^{P} .
$$

We call $\left(C_{1}, C_{2}\right) \rightarrow C^{1}$ the concatenation operation with respect to $\left(C_{1}, C_{2},\left(x_{1}, x, x_{2}\right),\left(x_{3}, x, x_{4}\right)\right)$. (See Figure $\mathbb{1}$ (b).)

Remark 1 Some of $x_{1}, x_{2}, x_{3}, x_{4}$ or even all of them in Definitions 5 and 6 are allowed to be the same vertex. Each of P, Q (and R in Definition(5) may visit some of $x, x_{1}, x_{2}, x_{3}, x_{4}$ several times, and they may have common vertices.

In each operation above, the visits $\left(x_{1}, x, x_{2}\right),\left(x_{3}, x, x_{4}\right)$ are replaced by $\left(x_{1}, x, x_{3}\right),\left(x_{4}, x, x_{2}\right)$, respectively. All other visits induced by C (in Definition (5) or $C_{1} \cup C_{2}$ (in Definition (6) are retained or with orientation reversed.

In Definition 6, C^{1} is a closed trail which covers every edge covered by C_{1} and C_{2}. In particular, if C_{1} and C_{2} collectively cover all edges of G^{*}, then C^{1} is an Eulerian tour of G^{*}.

3 Proof of Theorems 1 and 2

Proof of Theorem 1 Denote by S_{i} the set of vertices of G with degree i, for $i \geq 1$.

Suppose that G has no isolated vertices and $X(G)$ is hamiltonian. We show that (a), (b) and (c) hold. Note first that if G has a degree-one vertex, then the unique arc emanating from it gives rise to an isolated vertex of $X(G)$. Similarly, if $x, y \in S_{2}$ are adjacent, say, $N(x)=\{u, y\}, N(y)=\{x, v\}$, then the edge of $X(G)$ between $x u$ and $y v$ is an isolated edge no matter whether $u \neq v$ or not. Since $X(G)$ is assumed to be hamiltonian, it follows that G is connected with $\delta(G) \geq 2$ and S_{2} is an independent set of G.

It remains to prove that $G-S_{2}$ is connected. Suppose otherwise. Then we can choose a minimal subset S of S_{2} such that $G-S$ is disconnected. Note that $S \neq \emptyset$ as G is connected. Let H be a component of $G-S$. The minimality of S implies that each vertex of S has exactly one neighbour in $V(H)$, and each vertex of S_{2} with both neighours in H (if such a vertex exists) is contained in $V(H)$. Denote by A_{1} the set of arcs of G with tails in S and heads outside of $V(H)$. Denote by A_{2} the set of arcs of G with tails in $V(H)$ (and heads in $V(H)$ or S). One can verify that the subgraph of $X(G)$ induced by $A_{1} \cup A_{2}$ is a connected component of $X(G)$. Since there are arcs of G not in $A_{1} \cup A_{2}$, it follows that $X(G)$ is disconnected, contradicting our assumption. Hence $G-S_{2}$ is connected.

Suppose that G satisfies (a), (b) and (c). We aim to prove that $X(G)$ is hamiltonian. Note that G is connected by (c). Let G^{*} be the multigraph obtained from G by doubling each edge. Then the degree $d^{*}(v)=2 d(v)$ of each $v \in V(G)$ in G^{*} is even. Hence G^{*} is Eulerian. We will prove the existence of an Eulerian tour of G^{*} such that the corresponding bipartite graph (see Definition (3) at each vertex has a perfect matching. We will then exploit such an Eulerian tour to construct a Hamilton cycle of $X(G)$.

We claim first that there exists an Eulerian tour C of G^{*} such that

$$
\begin{equation*}
\text { if } v \in S_{2} \text { with } N(v)=\{u, w\} \text {, then } C(v) \prec\{(u, v, u),(w, v, w)\} \text {. } \tag{1}
\end{equation*}
$$

To construct such an Eulerian tour, we can start from any vertex and travel as far as possible without repeating any edge such that, whenever the tour reaches a vertex of S_{2}, it returns to the previous vertex immediately. Since $G-S_{2}$ is connected, an Eulerian tour C of G^{*} satisfying (1) can be constructed this way. Note that $G^{*}-S_{2}$ is Eulerian because it is connected and all its vertices have even degrees.

For an Eulerian tour C of G^{*} satisfying (1), let $Z(C)$ denote the set of vertices x such that $H_{C}(x)$ has no perfect matchings. Since for every $x \in S_{2}, H_{C}(x) \cong 2 K_{2}$ is a perfect matching, by Lemma 7 we have $Z(C) \subseteq S_{3}$.

Now we choose an Eulerian tour C of G^{*} satisfying (11) such that $|Z(C)|$ is minimum. We claim that $Z(C)=\emptyset$. Suppose otherwise. Then by Lemma $\mathbf{Z}^{2}, C(x)$ contains twin visits for each $x \in Z(C)$. Denote $N(x)=\left\{x_{1}, x_{2}, x_{3}\right\}$ for a fixed $x \in Z(C)$, and assume without loss of generality that $C(x)=\left\{\left(x_{1}, x, x_{2}\right),\left(x_{1}, x, x_{2}\right),\left(x_{3}, x, x_{3}\right)\right\}$. Denote $C^{\prime}=C\left(\left(x_{1}, x, x_{2}\right),\left(x_{3}, x, x_{3}\right)\right)$. Then C^{\prime} is an Eulerian tour of G^{*} and $C^{\prime}(x)=\left\{\left(x_{1}, x, x_{2}\right),\left(x_{1}, x, x_{3}\right),\left(x_{2}, x, x_{3}\right)\right\}$. One can see that $H_{C^{\prime}}(x)$ is a perfect matching of three edges, and $H_{C^{\prime}}(y)$ is isomorphic to $H_{C}(y)$ for each $y \neq x$. Thus $Z\left(C^{\prime}\right)$ is a proper subset of $Z(C)$, and moreover (1) is respected by C^{\prime} at every $v \in S_{2}$. Since this contradicts the choice of C, we conclude that $Z(C)=\emptyset$; that is, $H_{C}(v)$ has a perfect matching for each $v \in V(G)$.

Let C be a fixed Eulerian tour of G^{*} satisfying (1) such that $Z(C)=\emptyset$. Let us fix a perfect matching of $H_{C}(v)$ for each $v \in V(G)$. Every traverse of C to v corresponds to a visit to v, say, (u, v, w), and in the chosen perfect matching of $H_{C}(v),(u, v, w)$ is matched to an arc of $A(v)$ other than $v u$ and $v w$. Denote this arc by $\phi(u, v, w)$. Then for any two consecutive visits $(u, v, w),(v, w, x)$ induced by C (that is, (u, v, w, x) is a segment of $C), \phi(u, v, w)$ and $\phi(v, w, x)$ are adjacent in $X(G)$. Since C is an Eulerian tour of G^{*} and a perfect matching of each $H_{C}(v)$ is used, every arc of G is of the form $\phi(u, v, w)$ for some segment (u, v, w) of C. Therefore, if, say, $C=(u, v, w, x, y, \ldots, a, b, c, u)$, then the sequence

$$
\phi(u, v, w), \phi(v, w, x), \phi(w, x, y), \ldots, \phi(a, b, c), \phi(b, c, u), \phi(c, u, v), \phi(u, v, w)
$$

of arcs of G gives rise to a Hamilton cycle of $X(G)$.

We illustrate the proof above by the following example.

Example 1 Since the Petersen graph PG (see Figure (2) satisfies the conditions in Theorem 1, its 3-arc graph $X(P G)$ is hamiltonian. Let

$$
\begin{aligned}
C: & a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{1}, b_{1}, b_{4}, b_{2}, b_{5}, b_{3}, b_{1}, a_{1}, a_{2}, b_{2} \\
& \quad b_{5}, a_{5}, a_{4}, b_{4}, b_{2}, a_{2}, a_{3}, b_{3}, b_{1}, b_{4}, a_{4}, a_{3}, b_{3}, b_{5}, a_{5}, a_{1} .
\end{aligned}
$$

Then C is an Eulerian tour of the multigraph $P G^{*}$ obtained from $P G$ by doubling each edge. One can verify that at each a_{i} or $b_{i}, H_{C}\left(a_{i}\right)$ or $H_{C}\left(b_{i}\right)$ has a perfect matching. In $H_{C}\left(a_{2}\right)$ the 'vertex' $\left(a_{1}, a_{2}, a_{3}\right)$ is matched to the 'vertex' $a_{2} b_{2}$, and in $H_{C}\left(a_{3}\right),\left(a_{2}, a_{3}, a_{4}\right)$ is matched to $a_{3} b_{3}$, and so on. Continuing, one can verify that C gives rise to the following Hamilton cycle of $X(P G)$.

$$
\begin{aligned}
& a_{2} b_{2}, a_{3} b_{3}, a_{4} b_{4}, a_{5} b_{5}, a_{1} a_{2}, b_{1} b_{3}, b_{4} a_{4}, b_{2} a_{2}, b_{5} a_{5}, b_{3} a_{3}, b_{1} b_{4}, a_{1} a_{5}, a_{2} a_{3}, b_{2} b_{4}, b_{5} b_{3} \\
& \quad a_{5} a_{1}, a_{4} a_{3}, b_{4} b_{1}, b_{2} b_{5}, a_{2} a_{1}, a_{3} a_{4}, b_{3} b_{5}, b_{1} a_{1}, b_{4} b_{2}, a_{4} a_{5}, a_{3} a_{2}, b_{3} b_{1}, b_{5} b_{2}, a_{5} a_{4}, a_{1} b_{1}, a_{2} b_{2}
\end{aligned}
$$

Figure 2: An Eulerian tour of $P G^{*}$ which produces a Hamilton cycle of the 3 -arc graph of the Petersen graph $P G$.

Proof of Theorem 2 (a) Let G be a graph. Define \hat{G} to be the graph obtained from G by replacing each degree-two vertex v by a pair of nonadjacent vertices each joining to exactly one neighbour of v in G. In [14, Theorem 2] it is proved that, if $\delta(G) \geq 2$, then $X(G)$ is connected if and only if \hat{G} is connected. One can verify that $\delta(G) \geq 2$ and \hat{G} is connected if and only if (a), (b) and (c) in Theorem 1 hold. Thus, by Theorem 1, if $X(G)$ is connected, then it is hamiltonian. The converse of this statement is obvious.
(b) If G is connected with $\delta(G) \geq 3$, then $\hat{G}=G$ and so $X(G)$ is connected by [14, Theorem 2]. Hence, by (a), $X(G)$ is hamiltonian. Since $\delta(G) \geq 3$, we have $\delta(X(G)) \geq 3$. Thus, by applying (a) to $X(G)$, we see that $X^{2}(G)$ is hamiltonian. Continuing, by induction we can prove that $X^{i}(G)$ is hamiltonian for every $i \geq 1$.

4 Proof of Theorems 3 and 4

Let us first introduce an operation that will be used in the proof of Theorem 3, Let G^{*} be an Eulerian multigraph and C an Eulerian tour of G^{*}. Let $\left(z_{1}, x, z_{2}\right)$ be a visit of C to x. Write

$$
C: z_{1}, e_{1}, x, e_{2}, \overbrace{z_{2}, \ldots, z_{1}}^{T},
$$

where e_{1} is the oriented edge from z_{1} to x, e_{2} the oriented edge from x to z_{2}, and T the segment of C from z_{2} to z_{1} covering all edges of G^{*} except e_{1} and e_{2}. Add two new vertices t, t^{\prime} to G^{*} and
join them to x by edges $e_{t}, e_{t^{\prime}}$, respectively, with orientation towards x. Denote the resultant multigraph by $G_{C}^{*}\left(z_{1}, x, z_{2}\right)$. Set

$$
W=W_{C}\left(z_{1}, x, z_{2}\right): t, e_{t}, x, e_{2}, \overbrace{z_{2}, \ldots, z_{1}}^{T}, e_{1}, x, e_{t^{\prime}}^{-1}, t^{\prime} .
$$

Since C is an Eulerian tour of G^{*}, W is an open Eulerian trail of $G_{C}^{*}\left(z_{1}, x, z_{2}\right)$. Denote by $W(x)$ the set of visits to x induced by W. As the first and last visits induced by $W,\left(t, e_{t}, x, e_{2}, z_{2}\right)$ and $\left(z_{1}, e_{1}, x, e_{t^{\prime}}^{-1}, t^{\prime}\right)$ are members of $W(x)$. Note that $x t, x t^{\prime} \notin A(x)$.

Definition 7 Define $K_{C}\left(z_{1}, x, z_{2}\right)$ to be the bipartite graph with bipartition $\{W(x), A(x)\}$ such that an arc in $A(x)$ is adjacent to a visit $p \in W(x)$ if and only if its head does not appear in p. Denote by $L_{C}\left(z_{1}, x, z_{2}\right)$ the graph obtained from $K_{C}\left(z_{1}, x, z_{2}\right)$ by deleting the vertices $\left(t, e_{t}, x, e_{2}, z_{2}\right),\left(z_{1}, e_{1}, x, e_{t^{\prime}}^{-1}, t^{\prime}\right), x z_{1}$ and $x z_{2}$.

To prove Theorem 3, we need to prove that, for any two distinct arcs $x y$, $u v$ of G, there exists a Hamilton path of $X(G)$ between $x y$ and $u v$. We will prove the existence of such a path by constructing a specific Eulerian trail in a certain auxiliary multigraph G^{*}. We treat the cases $x=u$ and $x \neq u$ separately in the next two lemmas.

Lemma 8 Under the condition of Theorem 3, for any distinct arcs $x y, x v \in A(G)$ with the same tail, there exists a Hamilton path of $X(G)$ between $x y$ and $x v$.

Proof By our assumption there exists a path in G of odd length connecting y and v. Let

$$
P: y=x_{0}, x_{1}, x_{2}, \ldots, x_{l-1}, x_{l}=v
$$

be a path in G between y and v with minimum possible odd length $l \geq 1$. Denote $E_{0}(P)=$ $\left\{\left\{x_{j}, x_{j+1}\right\} \mid j=0,2, \ldots, l-1\right\}$ and $E_{1}(P)=\left\{\left\{x_{j}, x_{j+1}\right\} \mid j=1,3, \ldots, l-2\right\}$.

Case 1. $x \notin V(P)$. In this case let G^{*} be obtained from G by doubling each edge of $E(G)-(E(P) \cup\{\{x, y\},\{x, v\}\})$ and tripling each edge of $E_{0}(P)$.

Case 2. $x \in V(P)$. In this case we have $l \geq 3$ and $x=x_{j}$ for some $1 \leq j \leq l-1$. If $2 \leq j \leq$ $l-2$, then since l is odd, one of the two paths $y, x_{1}, \ldots, x_{j-1}, x, v$ and $y, x, x_{j+1}, \ldots, x_{l-1}, v$ would be a path of odd length connecting y and v that is shorter than P, contradicting the choice of P. Therefore, either $x=x_{1}$ or $x=x_{l-1}$. Assume without loss of generality that $x=x_{1}$. Define G^{*} to be the multigraph obtained from G by doubling each edge of $E(G)-[(E(P)-\{\{x, y\}\}) \cup$ $\{\{x, v\}\}]$ and tripling each edge of $E_{0}(P)-\{\{x, y\}\}$.

In each case above, $d^{*}(x)=2 d(x)-2$ and $d^{*}(z)=2 d(z)$ for every $z \neq x$, and hence G^{*} is Eulerian.

Set $a=y$ in Case 1 and $a=x_{2}$ in Case 2. By extending the 2-path a, x, v to an Eulerian tour, we see that there are Eulerian tours of G^{*} which pass through (a, x, v). Choose C to be an Eulerian tour of G^{*} with $(a, x, v) \in C(x)$ such that $|Z(C)|$ is minimum, where $Z(C)$ is the set of vertices $w \neq x$ of G^{*} such that $H_{C}(w)$ has no perfect matching.

Claim 1. $Z(C)=\emptyset$; that is, $H_{C}(w)$ has a perfect matching for every $w \neq x$.
Proof of Claim 1. We prove this by way of contradiction. Suppose $H_{C}(w)$ has no perfect matching for some $w \neq x$. By Lemma $7 d^{*}(w)=6$ and $C(w)$ contains twin visits. Since $w \neq x$, we have $d(w)=3$ by the construction of G^{*}. Denote $N(w)=\left\{w_{1}, w_{2}, w_{3}\right\}$. In the case when each of w_{1}, w_{2} and w_{3} is joined to w by two parallel edges, we apply the bow-tie operation at w with respect to one of the twin visits and the third visit of $C(w)$. Similar to the proof of Theorem [1, for the resultant Eulerian tour C^{\prime} of $G^{*}, H_{C^{\prime}}(w)$ has a perfect matching, and the visit-decomposition at any other vertex is unchanged. Thus $(a, x, v) \in C^{\prime}(x)$ and $Z\left(C^{\prime}\right)$ is a proper subset of $Z(C)$, contradicting the choice of C.

It remains to consider the case where exactly one vertex of $N(w)$ is joined to w by one, two or three (parallel) edges, respectively. Without loss of generality we may assume that there is one
edge between w_{3} and w, two parallel edges between w_{1} and w, and three parallel edges between w_{2} and w. Then $C(w)=\left\{\left[w_{1}, w, w_{2}\right],\left[w_{1}, w, w_{2}\right],\left[w_{3}, w, w_{2}\right]\right\}$. Reversing the orientation of C when necessary, we may assume $\left(w_{1}, w, w_{2}\right) \in C(w)$. Denote by e_{1}, e_{3} the oriented parallel edges from w_{1} to w, by e_{2}, e_{4}, e_{6} the oriented parallel edges from w to w_{2}, and by e_{5} the oriented edge from w to w_{3}.

Case (a): $C(w)=\left\{\left(w_{1}, w, w_{2}\right),\left(w_{1}, w, w_{2}\right),\left[w_{3}, w, w_{2}\right]\right\}$. We may assume

$$
C: w_{1}, e_{1}, w, e_{2}, w_{2}, f, \ldots, g, w_{1}, e_{3}, w, e_{4}, w_{2}, h, \ldots, k, w_{1}
$$

Let

$$
C^{\prime}: w_{1}, e_{1}, w, e_{3}^{-1}, w_{1}, g^{-1}, \ldots, f^{-1}, w_{2}, e_{2}^{-1}, w, e_{4}, w_{2}, h, \ldots, k, w_{1}
$$

Then C^{\prime} is an Eulerian tour of G^{*} and $C^{\prime}(w)=\left\{\left(w_{1}, w, w_{1}\right),\left(w_{2}, w, w_{2}\right),\left[w_{3}, w, w_{2}\right]\right\}$. Moreover, $H_{C^{\prime}}(w)$ has a perfect matching which matches $\left(w_{1}, w, w_{1}\right),\left(w_{2}, w, w_{2}\right),\left[w_{3}, w, w_{2}\right]$ to $w w_{2}, w w_{3}$, $w w_{1}$ respectively.

Case (b): $C(w)=\left\{\left(w_{1}, w, w_{2}\right),\left(w_{2}, w, w_{1}\right),\left[w_{3}, w, w_{2}\right]\right\}$. We may assume

$$
C: w_{1}, e_{1}, w, e_{2}, w_{2}, f, \ldots, g, w_{2}, e_{4}^{-1}, w, e_{3}^{-1}, w_{1}, h, \ldots, k, w_{1}
$$

Denote

$$
C_{1}: w_{1}, e_{1}, w, e_{3}^{-1}, w_{1}, h, \ldots, k, w_{1} ; \quad C_{2}: w_{2}, e_{4}^{-1}, w, e_{2}, w_{2}, f, \ldots, g, w_{2}
$$

Note that each of C_{1} and C_{2} is a closed trail, and $\left[w_{3}, w, w_{2}\right]$ is a segment of exactly one of C_{1} and C_{2}.

In the case when $\left(w_{3}, w, w_{2}\right) \in C(w)$ and it is in C_{2}, we first rewrite C_{2} to highlight the position of $\left(w_{3}, w, w_{2}\right)$ in C_{2} :

$$
C_{2}^{\prime}: w_{3}, e_{5}^{-1}, w, e_{6}, w_{2}, \ldots, w_{3}
$$

Applying the concatenation operation to $\left(C_{1}, C_{2}^{\prime},\left(w_{1}, w, w_{1}\right),\left(w_{3}, w, w_{2}\right)\right)$ yields:

$$
C^{\prime}: w_{1}, e_{1}, w, e_{5}, w_{3}, \ldots, w_{2}, e_{6}^{-1}, w, e_{3}^{-1}, w_{1}, h, \ldots, k, w_{1}
$$

We have $C^{\prime}(w)=\left\{\left(w_{1}, w, w_{3}\right),\left(w_{2}, w, w_{1}\right),\left[w_{2}, w, w_{2}\right]\right\}$. Hence $H_{C^{\prime}}(w)$ has a perfect matching which matches $\left(w_{1}, w, w_{3}\right),\left(w_{2}, w, w_{1}\right),\left[w_{2}, w, w_{2}\right]$ to $w w_{2}, w w_{3}, w w_{1}$ respectively.

In the case when $\left(w_{3}, w, w_{2}\right) \in C(w)$ and it is in C_{1}, we first rewrite C_{1} to highlight the position of $\left[w_{3}, w, w_{2}\right]$ in C_{1} :

$$
C_{1}^{\prime}: w_{3}, e_{5}^{-1}, w, e_{6}, w_{2}, \ldots, w_{3}
$$

Applying the concatenation operation to $\left(C_{2}, C_{1}^{\prime},\left(w_{2}, w, w_{2}\right),\left(w_{3}, w, w_{2}\right)\right)$ yields:

$$
C^{\prime}: w_{2}, e_{4}^{-1}, w, e_{5}, w_{3}, \ldots, w_{2}, e_{6}^{-1}, w, e_{2}, w_{2}, f, \ldots, g, w_{2}
$$

Since $C^{\prime}(w)=\left\{\left(w_{2}, w, w_{3}\right),\left(w_{2}, w, w_{2}\right),\left[w_{1}, w, w_{1}\right]\right\}, H_{C^{\prime}}(w)$ has a perfect matching which matches $\left(w_{2}, w, w_{3}\right),\left(w_{2}, w, w_{2}\right),\left[w_{1}, w, w_{1}\right]$ to $w w_{1}, w w_{3}, w w_{2}$ respectively.

The remaining case when $\left(w_{2}, w, w_{3}\right) \in C(w)$ can be dealt with similarly.
In all possibilities above we obtain a new Eulerian tour C^{\prime} of G^{*} such that $H_{C^{\prime}}(w)$ has a perfect matching whilst the visit-decomposition at any other vertex is unchanged. Thus $(a, x, v) \in C^{\prime}(x)$ and $Z\left(C^{\prime}\right)$ is a proper subset of $Z(C)$, contradicting the choice of C. This completes the proof of Claim 1.

Claim 2. There exists an Eulerian tour C^{*} of G^{*} together with a visit $\left(u_{1}, x, u_{2}\right) \in C^{*}(x)$ such that (i) $H_{C^{*}}(z)$ has a perfect matching for every $z \neq x$, and (ii) the bipartite graph $K_{C^{*}}\left(u_{1}, x, u_{2}\right)$ (as defined in Definition 7) has a perfect matching under which the first and last visits induced by $W_{C^{*}}\left(u_{1}, x, u_{2}\right)$ are matched to $x y$ and $x v$ resepctively.

Note that, for $z \neq x, H_{C^{*}}(z)=H_{W}(z)$, where $W=W_{C^{*}}\left(u_{1}, x, u_{2}\right)$.
Proof of Claim 2. We will prove the existence of C^{*} and $\left(u_{1}, x, u_{2}\right) \in C^{*}(x)$ based on C as in Claim 1.

Case (a): G^{*} was constructed in Case 1. Then $(a, x, v)=(y, x, v) \in C(x)$ and all edges of G incident with x except $\{x, y\}$ and $\{x, v\}$ were doubled.

In the case when $d(x)=3$, let z_{1} be the neighbour of x in G other than y and v. One can see that $K_{C}\left(z_{1}, x, z_{1}\right)$ has a perfect matching which matches $\left(t, x, z_{1}\right),(y, x, v),\left(z_{1}, x, t^{\prime}\right)$ to $x y$, $x z_{1}, x v$, respectively.

In the case when $d(x)=4$, let z_{1} and z_{2} be the neighbours of x in G other than y and v. Since $(y, x, v) \in C(x)$, without loss of generality we may assume $C(x) \prec\left\{\left(z_{1}, x, z_{1}\right),\left(z_{2}, x, z_{2}\right),(y, x, v)\right\}$ or $\left\{\left(z_{1}, x, z_{2}\right),\left[z_{1}, x, z_{2}\right],(y, x, v)\right\}$. If $C(x) \prec\left\{\left(z_{1}, x, z_{1}\right),\left(z_{2}, x, z_{2}\right),(y, x, v)\right\}$, then $K_{C}(y, x, v)$ has a perfect matching which matches $(t, x, v),\left(z_{1}, x, z_{1}\right),\left(z_{2}, x, z_{2}\right),\left(y, x, t^{\prime}\right)$ to $x y, x z_{2}, x z_{1}$, $x v$, respectively. In the case when $C(x) \prec\left\{\left(z_{1}, x, z_{2}\right),\left[z_{1}, x, z_{2}\right],(y, x, v)\right\}$, by applying the bowtie operation at x with respect to $\left(\left(z_{1}, x, z_{2}\right),(y, x, v)\right)$ we obtain a new Eulerian tour $C^{\prime}=$ $C\left(\left(z_{1}, x, z_{2}\right),(y, x, v)\right)$ for which $C^{\prime}(x)=\left\{\left[z_{1}, x, z_{2}\right],\left(z_{j}, x, y\right),\left(z_{j^{\prime}}, x, v\right)\right\}$, where $\left\{j, j^{\prime}\right\}=\{1,2\}$. Without loss of generality we may assume $C^{\prime}(x)=\left\{\left(z_{1}, x, z_{2}\right),\left(z_{j}, x, y\right),\left(z_{j^{\prime}}, x, v\right)\right\}$. One can see that $K_{C^{\prime}}\left(z_{1}, x, z_{2}\right)$ contains a perfect matching which matches $\left(t, x, z_{2}\right),\left(z_{j}, x, y\right),\left(z_{j^{\prime}}, x, v\right)$, $\left(z_{1}, x, t^{\prime}\right)$ to $x y, x z_{j^{\prime}}, x z_{j}, x v$, respectively.

Assume $d(x) \geq 5$. If $L_{C}(y, x, v)$ has a perfect matching, then adding the edges $\{(t, x, v), x y\}$, $\left\{\left(y, x, t^{\prime}\right), x v\right\}$ to it yields a perfect matching of $K_{C}(y, x, v)$ which matches the first and last visits of $W_{C}(y, x, v)$ to $x y, x v$, respectively. Suppose that $L_{C}(y, x, v)$ has no perfect matchings. Similar to Lemma 7, by using Hall's marriage theorem we can prove that $d(x)=5$ and $C(x)$ contains twin visits, say, $\left[z_{1}, x, z_{2}\right]$; that is, $C(x) \prec\left\{\left[z_{1}, x, z_{2}\right],\left[z_{1}, x, z_{2}\right],\left[z_{3}, x, z_{3}\right],(y, x, v)\right\}$. Without loss of generality we may assume $\left(z_{1}, x, z_{2}\right) \in C(x)$. It is not hard to see that $K_{C}\left(z_{1}, x, z_{2}\right)$ has a perfect matching which matches $\left(t, x, z_{2}\right),\left(z_{1}, x, z_{2}\right),\left[z_{3}, x, z_{3}\right],(y, x, v),\left(z_{1}, x, t^{\prime}\right)$ to $x y, x z_{3}$, $x z_{2}, x z_{1}, x v$, respectively.

Case (b): G^{*} was constructed in Case 2. Then $\left(x_{2}, x, v\right) \in C(x)$ and all edges of G incident with x except $\left\{x, x_{2}\right\}$ and $\{x, v\}$ were doubled.

In the case when $d(x)=3$, we have $C(x) \prec\left\{\left(x_{2}, x, v\right),(y, x, y)\right\}$ and $K_{C}\left(x_{2}, x, v\right)$ has a perfect matching which matches $(t, x, v),(y, x, y),\left(x_{2}, x, t^{\prime}\right)$ to $x y, x x_{2}, x v$, respectively.

In the case when $d(x)=4$, we have $C(x) \prec\left\{\left(x_{2}, x, v\right),\left[z_{1}, x, y\right],\left[z_{1}, x, y\right]\right\}$ or $C(x) \prec$ $\left\{\left(x_{2}, x, v\right)\left(z_{1}, x, z_{1}\right),(y, x, y)\right\}$, where z_{1} is the neighbour of x other than y, v, x_{2}. If $C(x) \prec$ $\left\{\left(x_{2}, x, v\right),\left[z_{1}, x, y\right],\left[z_{1}, x, y\right]\right\}$, let $\left(z_{1}, x, y\right) \in C(x)$, say. Then $K_{C}\left(y, x, z_{1}\right)$ has a perfect matching, namely $\left(t, x, z_{1}\right),\left(x_{2}, x, v\right),\left[z_{1}, x, y\right],\left(y, x, t^{\prime}\right)$ are matched to $x y, x z_{1}, x x_{2}, x v$, respectively. If $C(x) \prec\left\{\left(x_{2}, x, v\right)\left(z_{1}, x, z_{1}\right),(y, x, y)\right\}$, then $K_{C}\left(z_{1}, x, z_{1}\right)$ has a perfect matching which matches $\left(t, x, z_{1}\right),\left(x_{2}, x, v\right),(y, x, y),\left(z_{1}, x, t^{\prime}\right)$ to $x y, x z_{1}, x x_{2}, x v$, respectively.

Assume $d(x) \geq 5$ hereafter. In the case when $L_{C}\left(x_{2}, x, v\right)$ has a perfect matching, say, M, let $x y$ be matched to $\left(w_{1}, x, w_{2}\right)$ by M, where $w_{1}, w_{2} \in N(x)-\left\{x_{2}, v, y\right\}$. Deleting $\left\{\left(w_{1}, x, w_{2}\right), x y\right\}$ from M and then adding $\left\{\left(w_{1}, x, w_{2}\right), x x_{2}\right\},\{(t, x, v), x y\}$ and $\left\{\left(x_{2}, x, t^{\prime}\right), x v\right\}$ yields a perfect matching of $K_{C}\left(x_{2}, x, v\right)$ satisfying (ii) in Claim 2.

Suppose $L_{C}\left(x_{2}, x, v\right)$ has no perfect matchings. Similar to Lemma 7, we can prove that $d(x)=5$ and $C(x)$ contains twin visits. Denote by $z_{1}, z_{2} \neq y, v, x_{2}$ the other two neighbours of x. Let $\left(w_{1}, x, w_{2}\right)$ be one of the twin visits in $C(x)$, where $w_{1}, w_{2} \in\left\{y, z_{1}, z_{2}\right\}$ are distinct, and let w_{3} denote the unique vertex in $\left\{y, z_{1}, z_{2}\right\}-\left\{w_{1}, w_{2}\right\}$. Then $C(x) \prec$ $\left\{\left(x_{2}, x, v\right),\left(w_{1}, x, w_{2}\right),\left[w_{1}, x, w_{2}\right],\left(w_{3}, x, w_{3}\right)\right\}$. Since w_{1} and w_{2} are distinct, one of them, say, w_{2}, is not equal to y. Thus $K_{C}\left(w_{1}, x, w_{2}\right)$ has a perfect matching which matches $\left(t, x, w_{2}\right)$, $\left(x_{2}, x, v\right),\left[w_{1}, x, w_{2}\right],\left(w_{3}, x, w_{3}\right),\left(w_{1}, x, t^{\prime}\right)$ to $x y, x w_{2}, x w_{3}, x x_{2}, x v$, respectively.

Since $H_{C}(z)$ has a perfect matching for every $z \neq x$, one can see that in all possibilities above, condition (i) in Claim 2 is satisfied by the underlying Eulerian tour (which is C or C^{\prime}). This proves Claim 2.

Choose an Eulerian tour $C^{*}: w_{l}, x, w_{1}, w_{2}, w_{3}, \ldots, w_{l}$ of G^{*} together with a visit $\left(w_{l}, x, w_{1}\right) \in$ $C^{*}(x)$ satisfying the conditions of Claim 2. Then $W=W_{C^{*}}\left(w_{l}, x, w_{1}\right): t, x, w_{1}, w_{2}, w_{3}, \ldots, w_{l-1}, w_{l}, x, t^{\prime}$.

Denote by $\phi\left(t, x, w_{1}\right)\left(\phi\left(w_{l}, x, t^{\prime}\right)\right.$, respectively) the arc of G with tail x that is matched to $\left(t, x, w_{1}\right)\left(\left(w_{l}, x, t^{\prime}\right)\right.$, respectively) by a perfect matching of $K_{C^{*}}\left(w_{l}, x, w_{1}\right)$ satisfying (ii) in Claim 2. Let $\phi\left(x, w_{1}, w_{2}\right)$ denote the arc matched to $\left(x, w_{1}, w_{2}\right)$ in a perfect matching of $H_{C^{*}}\left(w_{1}\right)$ $\left(=H_{W}\left(w_{1}\right)\right)$, and let $\phi\left(w_{1}, w_{2}, w_{3}\right), \ldots, \phi\left(w_{l-1}, w_{l}, x\right)$ be interpreted similarly. Conditions (i) and (ii) in Claim 2 ensure that

$$
x y=\phi\left(t, x, w_{1}\right), \phi\left(x, w_{1}, w_{2}\right), \phi\left(w_{1}, w_{2}, w_{3}\right), \ldots, \phi\left(w_{l-1}, w_{l}, x\right), \phi\left(w_{l}, x, t^{\prime}\right)=x v
$$

is a Hamilton path of $X(G)$ connecting $x y$ and $x v$.

Lemma 9 Under the condition of Theorem 圂, for distinct $x y, u v \in A(G)$ with $x \neq u$, there exists a Hamilton path of $X(G)$ between xy and uv.

Proof We have five possibilities to consider: $x=v$ and $y=u ; x, y, u, v$ are pairwise distinct; $x=v$ and $y \neq u ; y=v$ and $x \neq u ; y=u$ and $x \neq v$. The following treatment covers all of them.

By our assumption there exists a path of odd length connecting x and u in G. Let

$$
\begin{equation*}
P: x=x_{0}, x_{1}, x_{2}, \ldots, x_{l-1}, x_{l}=u \tag{2}
\end{equation*}
$$

be such a path with shortest (odd) length $l \geq 1$. (It may happen that $y=x_{1}$ and $/$ or $v=x_{l-1}$.) Define G^{*} to be the multigraph obtained from G by doubling each edge of G outside of P and tripling each edge $\left\{x_{j}, x_{j+1}\right\}$ for $j=1,3, \ldots, l-2$. Then $d^{*}(x)=2 d(x)-1, d^{*}(u)=2 d(u)-1$ and $d^{*}(z)=2 d(z)$ for $z \neq x, u$.

Let $G_{x, u}^{*}\left(t, t^{\prime}\right)$ be the multigraph obtained from G^{*} by adding two new vertices t, t^{\prime} and joining them to x, u respectively by a single edge. Then all vertices of $G_{x, u}^{*}\left(t, t^{\prime}\right)$ except t and t^{\prime} have even degrees in $G_{x, u}^{*}\left(t, t^{\prime}\right)$. Hence $G_{x, u}^{*}\left(t, t^{\prime}\right)$ has Eulerian trails connecting t and t^{\prime}.

Since $\delta(G) \geq 3$, we can choose x^{\prime} to be a neighbour of x other than y and x_{1}, and u^{\prime} a neighbour of u other than v and x_{l-1}. In addition, if $d(x)=d(u)=3, y=x_{1}$ and $v=x_{l-1}$, say, $N(x)=\left\{y, x^{\prime}, z\right\}$ and $N(u)=\left\{v, u^{\prime}, w\right\}$, then we can choose x^{\prime} and u^{\prime} in such a way that the edges $\{x, z\}$ and $\{u, w\}$ do not form an edge cut of G. In fact, if $\{\{x, z\},\{u, w\}\}$ is an edge cut of G in this case, then since G is assumed to be 2-edge connected, $G-\{\{x, z\},\{u, w\}\}$ has two connected components, say, G_{0} and G_{1} with $z, w \in V\left(G_{0}\right)$ and P in G_{1}. Since x^{\prime} is in G_{1} and removal of $\left\{x, x^{\prime}\right\}$ does not disconnect G, one can see that $\left\{\left\{x, x^{\prime}\right\},\{u, w\}\right\}$ is not an edge-cut of G. Thus interchanging the roles of x^{\prime} and z produces the desired x^{\prime} and u^{\prime}. (In general, at most one of x^{\prime} and u^{\prime} lies on P since P is a path between x and u with minimum odd length.)

With x^{\prime} and u^{\prime} as above, let

$$
W^{\prime}: t, x, x^{\prime}, \overbrace{x, x_{1}, x_{2}, \ldots, x_{l-1}, u}^{P}, u^{\prime}, u, t^{\prime},
$$

where P is the path given in (2). Then W^{\prime} is a trail of $G_{x, u}^{*}\left(t, t^{\prime}\right)$. Let W be an Eulerian trail of $G_{x, u}^{*}\left(t, t^{\prime}\right)$ obtained by extending W^{\prime} to cover all edges of $G_{x, u}^{*}\left(t, t^{\prime}\right)$ while maintaining $\left(t, x, x^{\prime}\right)$ and $\left(u^{\prime}, u, t^{\prime}\right)$ as its first and last visits respectively. Such a trail W exists because removing the four edges in $\left(t, x, x^{\prime}\right)$ and $\left(u^{\prime}, u, t^{\prime}\right)$ from $G_{x, u}^{*}\left(t, t^{\prime}\right)$ results in a connected multigraph with x^{\prime} and u^{\prime} as the only odd-degree vertices. In addition, if $d(x)=3$ and $y=x_{1}$, say, $N(x)=\left\{y, x^{\prime}, z\right\}$, since $\{\{x, z\},\{u, w\}\}$ is not an edge cut of G by our choices of x^{\prime} and u^{\prime}, we can choose W in such a way that $\left(x^{\prime}, x, x_{1}\right)$ is a visit induced by W; similarly, we can choose W such that $\left(u^{\prime}, u, x_{l-1}\right)$ is a visit induced by W, if $d(u)=3$ and $v=x_{l-1}$, say, $N(u)=\left\{v, u^{\prime}, w\right\}$. (Such a W can be constructed as follows: extend W^{\prime} to an Eulerian trail of the multigraph obtained by deleting the parallel edges between x and z and/or that between u and w, and then insert the visits (z, x, z) and/or (w, u, w) to this trail.) In this way we obtain an Eulerian trail W of $G_{x, u}^{*}\left(t, t^{\prime}\right)$ such that
(A) ($\left.t, x, x^{\prime}\right)$ and $\left(u^{\prime}, u, t^{\prime}\right)$ are its first and last visits, respectively; and
(B) if $d(x)=3$ and $y=x_{1}$, say, $N(x)=\left\{y, x^{\prime}, z\right\}$, then $\left(x^{\prime}, x, x_{1}\right) \in W(x)$; and, if $d(u)=3$ and $v=x_{l-1}$, say, $N(u)=\left\{v, u^{\prime}, w\right\}$, then $\left(u^{\prime}, u, x_{l-1}\right) \in W(x)$.

Similar to Claim 1, one can show that there exists an Eulerian trail of $G_{x, u}^{*}\left(t, t^{\prime}\right)$, denoted by W hereafter, satisfying (A), (B) and
(C) $H_{W}(z)$ has a perfect matching for every $z \in V(G)-\{x, u\}$.

Note that $|W(z)|=|A(z)|=d(z)$ for every $z \in V(G)$.
Claim 3. There exists an Eulerian trail W^{*} of $G_{x, u}^{*}\left(t, t^{\prime}\right)$ such that (i) $\left(t, x, x^{\prime}\right)$ and ($u^{\prime}, u, t^{\prime}$) are its first and last visits, respectively; (ii) $H_{W^{*}}(x)$ has a perfect matching under which $\left(t, x, x^{\prime}\right)$ is matched to $x y$; (iii) $H_{W^{*}}(u)$ has a perfect matching under which $\left(u^{\prime}, u, t^{\prime}\right)$ is matched to $u v$; and (iv) $H_{W^{*}}(z)$ has a perfect matching for every $z \in V(G)-\{x, u\}$.

Proof of Claim 3. Let $p=\left(t, x, x^{\prime}\right)$ denote the first visit of W, and let $L_{W}(x)=H_{W}(x)-$ $\{p, x y\}$ be the subgraph of $H_{W}(x)$ obtained by deleting vertices p and $x y$. For $S \subseteq W(x)-\{p\}$, denote by $N_{L_{W}(x)}(S)$ the neighbourhood of S in $L_{W}(x)$.

Case (a): $y \neq x_{1}$. If $d(x) \geq 5$, then $\left|N_{L_{W}(x)}(S)\right| \geq|S|$ for any S, and so $L_{W}(x)$ contains a perfect matching by Hall's marriage theorem.

Suppose $d(x)=4$. Then $\left|N_{L_{W}(x)}(S)\right| \geq|S|$ for every S with $|S|=1$ or 3 . Suppose $|S|=2$ and $S=\left\{(a, x, b),\left(a^{\prime}, x, b^{\prime}\right)\right\}$. Then $N_{L_{W}(x)}(S)=[(A(x)-\{x y\})-\{x a, x b\}] \cup[(A(x)-\{x y\})-$ $\left.\left\{x a^{\prime}, x b^{\prime}\right\}\right]=[(A(x)-\{x y\})]-\left(\left\{x a^{\prime}, x b^{\prime}\right\} \cap\{x a, x b\}\right)$. Thus, if $\left|\left\{x a^{\prime}, x b^{\prime}\right\} \cap\{x a, x b\}\right| \leq 1$, then $\left|N_{L_{W}(x)}(S)\right| \geq|S|$. If $\left|\left\{x a^{\prime}, x b^{\prime}\right\} \cap\{x a, x b\}\right|=2$, then $\{a, b\}=\left\{a^{\prime}, b^{\prime}\right\}$ and $\left\{x^{\prime}, x_{1}\right\} \cap\{a, b\}=\emptyset$, which implies $y \in\{a, b\}$ and $\left|N_{L_{W}(x)}(S)\right|=\mid\left(A(x)-\{x a, x b\} \mid=2\right.$. Hence $L_{W}(x)$ contains a perfect matching by Hall's theorem.

Suppose $d(x)=3$. Then $W(x)=\left\{p,\left(x^{\prime}, x, y\right),\left(y, x, x_{1}\right)\right\}$ or $W(x)=\left\{p,\left(x^{\prime}, x, x_{1}\right),(y, x, y)\right\}$. In the former case $L_{W}(x)$ clearly has a perfect matching. In the latter case, apply the bow-tie operation to W with respect to $\left(x^{\prime}, x, x_{1}\right)$ and (y, x, y) to obtain a new Eulerian trail W_{0} such that $L_{W_{0}}(x)$ has a perfect matching.

Case (b): $y=x_{1}$. Similar to Case (a), if $d(x) \geq 5$, then $L_{W}(x)$ has a perfect matching. If $d(x)=4$, let $N(x)=\left\{x^{\prime}, x_{1}, z_{1}, z_{2}\right\}$. Then $\left|N_{L_{W}(x)}(S)\right| \geq|S|$ unless $S=\left\{\left(z_{1}, x, z_{2}\right),\left[z_{1}, x, z_{2}\right]\right\}$. In this exceptional case, $W(x)=\left\{p,\left(x^{\prime}, x, x_{1}\right),\left(z_{1}, x, z_{2}\right),\left[z_{1}, x, z_{2}\right]\right\}$, and we apply the bow-tie operation to W with respect to $\left(x^{\prime}, x, x_{1}\right)$ and $\left(z_{1}, x, z_{2}\right)$ to obtain a new Eulerian trail W_{0}. One can show that $L_{W_{0}}(x)$ has a perfect matching.

If $d(x)=3$, let $N(x)=\left\{x^{\prime}, x_{1}, z\right\}$. By (B), $\left(x^{\prime}, x, x_{1}\right)$ is a visit to x induced by W. Hence $W(x)=\left\{p,\left(x^{\prime}, x, x_{1}\right),(z, x, z)\right\}$ and $L_{W}(x)$ has a perfect matching.

So far we have proved that there exists an Eulerian trail W_{1} of $G_{x, u}^{*}\left(t, t^{\prime}\right)$ (which is either W or W_{0}) satisfying (A) such that $L_{W_{1}}(x)$ has a perfect matching. This matching together with the edge between $\left(t, x, x^{\prime}\right)$ and $x y$ is a perfect matching of $H_{W_{1}}(x)$. Moreover, since W satisfies (C), from the proof above one can see that W_{1} satisfies (C) as well. If $H_{W_{1}}(u)$ has a perfect matching which matches $\left(u^{\prime}, u, t^{\prime}\right)$ to $u v$, then set $W^{*}=W_{1}$ and we are done. Otherwise, beginning with W_{1} and using similar arguments as above, we can construct an Eulerian trail W^{*} of $G_{x, u}^{*}\left(t, t^{\prime}\right)$ satisfying all requirements in Claim 3. This completes the proof of Claim 3.

Similar to the proof of Lemma 8 , we can show that the Eulerian trail W^{*} in Claim 3 produces a Hamilton path in $X(G)$ connecting $x y$ and $u v$.

Proof of Theorem 3 This follows from Lemmas 8 and 9 immediately.
In the proof of Theorem 4 we will use the following lemma which may be known in the literature. We give its proof since we are unable to allocate a reference.

Lemma 10 In any Hamilton-connected graph with at least four vertices, there exists a path of odd length connecting any two distinct vertices.

Proof Let G be such a graph. Then for any distinct $u, v \in V(G)$ there exists a Hamilton path $P: u=x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}=v$, where $n=|V(G)|-1$. It suffices to consider the case when n is even. Denote $A=\left\{x_{0}, x_{2}, \ldots, x_{n}\right\}$ and $B=\left\{x_{1}, x_{3}, \ldots, x_{n-1}\right\}$. Since $\{A, B\}$ is a partition of $V(G)$ and any bipartite graph other than K_{2} is not Hamilton-connected, there exist adjacent vertices x_{i}, x_{j} both in A or B, where $j \geq i+2$. Thus $x_{0}, x_{1}, \ldots, x_{i-1}, x_{i}, x_{j}, x_{j+1}, \ldots, x_{n}$ is a path of odd length between u and v.

Proof of Theorem 4 It can be verified that any Hamilton-connected graph with at least four vertices is 2 -edge connected and has minimum degree at least three. Hence Theorem 3 and Lemma 10 together imply that the 3 -arc graph of such a graph is Hamilton-connected (with more than four vertices). Applying this iteratively, we obtain Theorem [4,

Acknowledgements

Guangjun Xu was supported by the MIFRS and SFS scholarships of the University of Melbourne. Sanming Zhou was supported by a Future Fellowship (FT110100629) of the Australian Research Council.

References

[1] B. Alspach, Y. S. Qin, Hamilton-connected Cayley graphs on Hamiltonian groups, Europ. J. Combin. 22 (2001), 777-787.
[2] C. Balbuena, L. P. Montejano, P. García-Vázquez, On the connectivity and restricted edgeconnectivity of 3-arc graphs, In Proceedings of the 3rd International Workshop on Optimal Networks Topologies, (IWONT 2010), Barcelona, Spain, 9-11 June, 2010, pp. 79-90, Barcelona, Spain, 2011. Iniciativa Digital Politècnica.
[3] J. A. Bondy, Basic graph theory - paths and cycles, in: Handbook of Combinatorics,Vol. I, pp. 5-110, Elsevier, Amsterdam, 1995
[4] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, New York, 2008.
[5] G. Chartrand, On Hamiltonian line-graphs, Trans. Amer. Math. Soc. 134 (1968), 559-566.
[6] Z-H. Chen, H-J. Lai, L. Xiong, H. Yan and M. Zhan, Hamilton-connected indices of graphs, Discrete Math. 309 (2009), 4819-4827.
[7] C. C. Chen and N. Quimpo, On strongly Hamiltonian abelian group graphs, in: Combinatorial Mathematics VIII, K. L. McAvaney (ed), Lecture Notes in Mathematics, 884, Springer, Berlin, 1981, pp. 23-34.
[8] R. Diestel, Graph Theory, Springer, New York, 4th edition, 2010.
[9] A. Gardiner, C. E. Praeger and S. Zhou, Cross-ratio graphs, J. London Math. Soc. (2) 64 (2001), 257-272.
[10] R. J. Gould, Advances on the Hamiltonian problem ?a survey, Graphs and Combinatorics 19 (2003), 7-52.
[11] Z. Hu, F. Tian and B. Wei, Hamilton connectivity of line graphs and claw-free graphs, J. Graph Theory 50 (2005), 130-141.
[12] M. A. Iranmanesh, C. E. Praeger and S. Zhou, Finite symmetric graphs with two-arc transitive quotients, J. Combin. Theory (Ser. B) 94 (2005), 79-99.
[13] M. Knor, G. Xu and S. Zhou, A study of 3-arc graphs, Discrete Appl. Math. 159 (2011), 344-353.
[14] M. Knor and S. Zhou, Diameter and connectivity of 3-arc graphs, Discrete Math. 310 (2010), 37-42.
[15] K. Kutnar and D. Marušič, Hamilton cycles and paths in vertex-transitive graphs - current directions, Discrete Math. 309 (2009), 5491-5500.
[16] D. Li, H-J. Lai and M. Zhan, Eulerian subgraphs and Hamilton-connected line graphs, Discrete Appl. Math. 145 (2005), 422-428.
[17] C. H. Li, C. E. Praeger and S. Zhou, A class of finite symmetric graphs with 2-arc transitive quotients, Math. Proc. Cambridge Phil. Soc. 129 (2000), 19-34.
[18] Z. Lu and S. Zhou, Finite symmetric graphs with 2-arc transitive quotients (II), J. Graph Theory, 56 (2007), 167-193.
[19] C. E. Praeger, Finite symmetric graphs, in: Topics in Algebraic Graph Theory, Cambridge University Press, Cambridge, 2004, pp.179-202.
[20] C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986), 309-324.
[21] C. Thomassen, Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface, Trans. Amer. Math. Soc. 323 (1991), 605-635.
[22] M. Zhan, Hamiltonicity of 6-connected line graphs, Discrete Appl. Math. 158 (2010), 19711975.
[23] S. Zhou, Constructing a class of symmetric graphs, European J. Combin. 23 (2002), 741760.
[24] S. Zhou, Imprimitive symmetric graphs, 3-arc graphs and 1-designs, Discrete Math. 244 (2002), 521-537.
[25] S. Zhou, Almost covers of 2-arc transitive graphs, Combinatorica 24 (2004), 731-745. [Erratum: 27 (2007), 745-746.]

