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Abstract

An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v, u, x, y) of vertices
such that both (v, u, x) and (u, x, y) are paths of length two. The 3-arc graph of a graph
G is defined to have vertices the arcs of G such that two arcs uv, xy are adjacent if and
only if (v, u, x, y) is a 3-arc of G. We prove that any connected 3-arc graph is hamiltonian,
and all iterative 3-arc graphs of any connected graph of minimum degree at least three are
hamiltonian. As a corollary we obtain that any vertex-transitive graph which is isomorphic
to the 3-arc graph of a connected arc-transitive graph of degree at least three must be
hamiltonian. This confirms the conjecture, for this family of vertex-transitive graphs, that
all vertex-transitive graphs with finitely many exceptions are hamiltonian. We also prove
that if a graph with at least four vertices is Hamilton-connected, then so are its iterative
3-arc graphs.

Key words: 3-Arc graph, Hamilton cycle, Hamiltonian graph, Hamilton-connected graph,
Vertex-transitive graph

1 Introduction

A path or cycle which contains every vertex of a graph is called a Hamilton path or Hamilton
cycle of the graph. A graph is hamiltonian if it contains a Hamilton cycle, and is Hamilton-
connected if any two vertices are connected by a Hamilton path. The hamiltonian problem, that
of determining when a graph is hamiltonian, is a classical problem in graph theory with a long
history. The reader is referred to [3], [4, Chapter 18], [8, Chapter 10] and [10] for results on
Hamiltonicity of graphs.

In this paper we present a large family of hamiltonian graphs. Such graphs are defined by
means of a graph operator, called the 3-arc graph construction, which bears some similarities
with the line graph operator. This construction was first introduced in [17, 24] in studying a fam-
ily of arc-transitive graphs whose automorphism group contains a subgroup acting imprimitively
on the vertex set. (A graph is arc-transitive if its automorphism group is transitive on the set
of oriented edges.) It was used in classifying or characterizing certain families of arc-transitive
graphs [9, 12, 17, 18, 23, 25].

All graphs in this paper are finite and undirected without loops. We use the term multigraph
when parallel edges are allowed. An arc of a graph G = (V (G), E(G)) is an ordered pair of
adjacent vertices, or equivalently an oriented edge. For adjacent vertices u, v of G, we use uv to
denote the arc from u to v, vu (6= uv) the arc from v to u, and {u, v} the edge between u and
v. A 3-arc of G is a 4-tuple of vertices (v, u, x, y), possibly with v = y, such that both (v, u, x)
and (u, x, y) are paths of G.

Notation: We follow [4] for graph-theoretic terminology and notation. The degree of a
vertex v in a graph G is denoted by d(v), and the minimum degree of G is denoted by δ(G).
The set of arcs of G with tail v is denoted by A(v), and the set of arcs of G is denoted by A(G).
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The general 3-arc construction [17, 24] involves a self-paired subset of the set of 3-arcs of a
graph. The following definition is obtained by choosing this subset to be the set of all 3-arcs of
the graph.

Definition 1 Let G be a graph. The 3-arc graph of G, denoted by X(G), is defined to have
vertex set A(G) such that two vertices corresponding to two arcs uv and xy are adjacent if and
only if (v, u, x, y) is a 3-arc of G.

It is clear that X(G) is an undirected graph with 2 |E(G)| vertices and
∑

{u,v}∈E(G)(d(u) −
1)(d(v)−1) edges. We can obtainX(G) from the line graph L(G) ofG by the following operations
[14]: split each vertex {u, v} of L(G) into two vertices, namely uv and vu; for any two vertices
{u, v}, {x, y} of L(G) that are distance two apart in L(G), say, u and x are adjacent in G, join uv
and xy by an edge. On the other hand, the quotient graph of X(G) with respect to the partition
P = {{uv, vu} : {u, v} ∈ E(G)} of A(G) is isomorphic to the graph obtained from the square of
L(G) by deleting the edges of L(G). The reader is referred to [14, 13, 2] respectively for results
on the diameter and connectivity, the independence, domination and chromatic numbers, and
the edge-connectivity and restricted edge-connectivity of 3-arc graphs.

The following is the first main result in this paper.

Theorem 1 Let G be a graph without isolated vertices. The 3-arc graph of G is hamiltonian if
and only if

(a) δ(G) ≥ 2;

(b) no two degree-two vertices of G are adjacent; and

(c) the subgraph obtained from G by deleting all degree-two vertices is connected.

We remark that Theorem 1 can not be obtained from known results on the hamiltonicity
of line graphs, though X(G) and L(G) are closely related as mentioned above. As a matter of
fact, even if L(G) is hamiltonian, X(G) is not necessarily hamiltonian, as witnessed by stars
K1,t with t ≥ 3.

We define the iterative 3-arc graphs of G by

X1(G) = X(G), Xi+1(G) = X(Xi(G)), i ≥ 1.

Theorem 1 together with [14, Theorem 2] implies the following result.

Theorem 2 (a) A 3-arc graph is hamiltonian if and only if it is connected.

(b) If G is a connected graph with δ(G) ≥ 3, then Xi(G) is hamiltonian for every integer
i ≥ 1.

We will prove Theorems 1 and 2 in Section 3. In Section 4 we will prove the following result.

Theorem 3 Let G be a 2-edge connected graph with δ(G) ≥ 3. If G contains a path of odd
length between any two distinct vertices, then its 3-arc graph is Hamilton-connected.

A basic strategy in the proof of Theorems 1 and 3 is to find an Eulerian tour or an open
Eulerian trail in a properly defined multigraph that produces the required Hamilton cycle or
path. This is similar to the observation [5] that an Eulerian tour of a graph produces a Hamilton
cycle of its line graph.

Theorem 3 implies the following result.

Theorem 4 If a graph G with at least four vertices is Hamilton-connected, then so are its
iterative 3-arc graphs Xi(G), i ≥ 1.
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Given vertex-disjoint graphs G and H, the join G ∨H of them is the graph with vertex set
V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {{u, v} : u ∈ V (G), v ∈ V (H)}. Theorem 3 implies
the following result.

Corollary 5 Let G and H be graphs such that max{δ(G), δ(H)} ≥ 2. Then X(G ∨ H) is
Hamilton-connected.

In the case when G has a large order but small maximum degree, X(G) has a large order but
relatively small maximum degree. In this case the Hamiltonicity of X(G) may not be derived
from known sufficient conditions for Hamilton cycles such as the degree conditions in the classical
Dirac’s or Ore’s Theorem (see [3, 4, 8, 10]).

In spirit, Theorems 1 and 2 are parallel to the well-known conjecture of Thomassen [20]
which asserts that every 4-connected line graph is hamiltonian. This conjecture is still open;
see [6, 10, 11, 16, 22]. In contrast, Theorem 1 solves the hamiltonian problem for 3-arc graphs
completely.

A well-known conjecture due to Lovász, formulated by Thomassen [21], asserts that all
connected vertex-transitive graphs, with finitely many exceptions, are hamiltonian. Since the 3-
arc graph of an arc-transitive graph is vertex-transitive, Theorem 2 implies the following result,
which confirms this conjecture for a large family of vertex-transitive graphs. (The family of
arc-transitive graphs is large from a group-theoretic point of view [19].)

Corollary 6 If a vertex-transitive graph is isomorphic to the 3-arc graph of a connected arc-
transitive graph of degree at least three, then it is hamiltonian.

The Lovász conjecture has been confirmed for several families of vertex-transitive graphs
[15], including connected vertex-transitive graphs of order kp, where k ≤ 4, (except for the
Petersen graph and the Coxeter graph) of order pj, where j ≤ 4, and of order 2p2, where p is
prime, and some families of Cayley graphs. Tools from group theory were used in the proof of
almost all these results. Corollary 6 has a different flavour and its proof does not rely on group
theory.

There has also been considerable interest on Hamilton-connectedness of vertex-transitive
graphs. Theorem 4 implies that if a vertex-transitive graph (with at least four vertices) is
Hamilton-connected, then so are its iterative 3-arc graphs. For example, it is known that
every connected non-bipartite Cayley graph of degree at least three on a finite abelian group
[7] or a Hamiltonian group [1] is Hamilton-connected. (A finite non-abelian group in which
every subgroup is normal is called a Hamiltonian group.) From this and Theorem 4 we know
immediately that all iterative 3-arc graphs of such a Cayley graph are also Hamilton-connected.

2 Preliminaries

Let G∗ be a multigraph. A walk in G∗ of length l is a sequence v0, e1, v1, . . . , vl−1, el, vl, whose
terms are alternately vertices and edges of G∗ (not necessarily distinct), such that vi−1 and vi are
the end-vertices of ei, 1 ≤ i ≤ l. A walk is closed if its initial and terminal vertices are identical,
is a trail if all its edges are distinct, and is a path if all its vertices are distinct. Often we present
a trail by listing its sequence of vertices only, with the understanding that the edges used are
distinct. A trail that traverses every edge of G∗ is called an Eulerian trail of G∗, and a closed
Eulerian trail is called an Eulerian tour. A multigraph is Eulerian if it admits an Eulerian tour.
It is well known that a multigraph is Eulerian if and only if all its vertices have even degrees.

A 2-trail of G∗ is a trail of length two (and so is a path or cycle of length two). We call a
2-trail (u, x, v) with mid-vertex x a visit to x (if u = v, then (u, x, u) is thought as entering and
leaving x on parallel edges). When there is no need to make distinction between (u, x, v) and
(v, x, u), or the orientation of the visit is unknown, we write [u, x, v]. Two visits (u, x, v) and
(u′, x, v′) are called twin visits if {u, v} = {u′, v′} and the four edges involved are distinct. In
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particular, when u = v, two twin visits (u, x, u) and (u, x, u) use four parallel edges between u
and x.

Denote by E∗(x) the set of edges of G∗ incident with x ∈ V (G∗), and d∗(x) = |E∗(x)| the
degree of x in G∗. In the case when d∗(x) is even, a decomposition of E∗(x) into a set of visits to
x is called a visit-decomposition of E∗(x) (at x). In this definition the orientations of the visits
in the decomposition are not important in our subsequent discussion. So we may view each visit
(u, x, v) in such a visit-decomposition as a non-oriented path (if u 6= v) or cycle (if u = v) of
length two. As an example, if E∗(x) = {{x, y}, {x, y}, {x, z}, {x, z}}, where {x, y} and {x, y}
are viewed as distinct edges between x and y, then both {[y, x, y], [z, x, z]} and {[y, x, z], [y, x, z]}
are visit-decompositions of E∗(x).

Definition 2 Given a visit-decomposition J(x) of E∗(x), define H(x) to be the bipartite graph
with vertex bipartition {J(x), A(x)} such that p ∈ J(x) and xy ∈ A(x) are adjacent if and only
if y is not in p, where A(x) is the set of arcs of the underlying simple graph of G∗ with tail x.

We emphasize that H(x) relies on J(x). One can verify the following result by using Hall’s
marriage theorem.

Lemma 7 Suppose x is a vertex of G∗ such that d∗(x) ≥ 6 is even and either x is joined to every
neighbour of x by exactly two parallel edges, or x is joined to one of its neighbours by exactly
three parallel edges, another neighbour by a single edge, and each of the remaining neighbours by
exactly two parallel edges. Let J(x) be a visit-decomposition of E∗(x). Then the bipartite graph
H(x) with respect to J(x) has no perfect matchings if and only if d∗(x) = 6 and J(x) contains
two twin visits.

Proof We have |J(x)| = |A(x)| = d∗(x)/2 and δ(H(x)) ≥ (d∗(x)/2) − 2 ≥ 1. One can show
that, if d∗(x) ≥ 8, then the neighbourhood NH(x)(S) in H(x) of each S ⊆ J(x) has size at least
|S|. Thus, by Hall’s marriage theorem, H(x) has a perfect matching when d∗(x) ≥ 8.

Suppose H(x) has no perfect matchings, so that d∗(x) = 6 and |J(x)| = |A(x)| = 3. Then
there exists S ⊆ J(x) such that |NH(x)(S)| < |S|. This implies |S| = 2 and so |NH(x)(S)| ≤ 1.
Denote S = {(u, x, v), (y, x, z)}, where u, v, y, z ∈ N(x) (the neighbourhood of x in G∗). Then
NH(x)(S) = (A(x)−{xu, xv})∪(A(x)−{xy, xz}) = A(x)−({xu, xv}∩{xy, xz}). Since |N(x)| = 3
and |NH(x)(S)| ≤ 1, it follows that {u, v} = {y, z}, and therefore (u, x, v) and (y, x, z) are twin
visits.

Conversely, if d∗(x) = 6 and J(x) contains twin visits, then H(x) consists of two paths of
length two and hence has no perfect matchings. ✷

Definition 3 Let C : v0, e1, v1, e2, v2, . . . , vl−2, el−1, vl−1, el, vl be an Eulerian trail of G∗, pos-
sibly with vl = v0. The visit (vi−1, vi, vi+1) to vi is said to be induced by C, 1 ≤ i ≤ l − 1. In
addition, if C is an Eulerian tour, then (vl−1, v0, v1) is also a visit to v0 induced by C.

Denote by C(x) the set of visits to x ∈ V (G∗) induced by C.
Define HC(x) to be the bipartite graph at x as defined in Definition 2 with respect to the

visit-decomposition C(x) of E∗(x). (We leave HC(v0) and HC(vl) undefined if C is an open
Eulerian trail.)

Note that a vertex may be visited several times by C because the vertices on C may be
repeated. Indeed, C(x) is a visit-decomposition of E∗(x) for all vertices x, except v0 and vl
when v0 6= vl.

Definition 4 Let C be an Eulerian tour of G∗ and J(x) a visit-decomposition of E∗(x). We
say that C is compatible with J(x), written C(x) ≺ J(x), if for every (a, x, b) ∈ J(x), either
(a, x, b) ∈ C(x) or (b, x, a) ∈ C(x).
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(a) (b)

x1

a

b

e1

x4

e4

x3

x2

x

e3

e2

C((x1, x, x2), (x3, x, x4))

R

Q

C

P P

x2

e2

x

x1

e1

e4
x4

e3

x3

Q

C1, C2 C1

Figure 1: (a) Bow-tie operation; (b) Concatenation operation.

Definition 5 Let C be a trail of G∗ with length at least four. Let (x1, x, x2), (x3, x, x4) ∈ C(x)
be distinct visits, so that C can be expressed as

C :

R
︷ ︸︸ ︷
a, . . . , x1, e1, x, e2,

P
︷ ︸︸ ︷
x2, . . . , x3, e3, x, e4,

Q
︷ ︸︸ ︷

x4, . . . , b,

possibly with a = b.
Define

C((x1, x, x2), (x3, x, x4)) :

R
︷ ︸︸ ︷
a, . . . , x1, e1, x, e

−1
3 ,

P−

︷ ︸︸ ︷
x3, . . . , x2, e

−1
2 , x, e4,

Q
︷ ︸︸ ︷

x4, . . . , b

where P− is the trail obtained from P by reversing its direction, and e−1
2 and e−1

3 are the same
edges as e2 and e3 but with reversed orientations, respectively. (See Figure 1 (a).)

We call C → C((x1, x, x2), (x3, x, x4)) the bow-tie operation on C with respect to (x1, x, x2)
and (x3, x, x4).

Definition 6 Let

C1 : x1, e1, x, e2,

P
︷ ︸︸ ︷
x2, . . . , x1; C2 : x3, e3, x, e4,

Q
︷ ︸︸ ︷
x4, . . . , x3 .

be edge-disjoint closed trails of G∗ with x as a common vertex. Define

C1 : x1, e1, x, e
−1
3 ,

Q−1

︷ ︸︸ ︷
x3, . . . , x4, e

−1
4 , x, e2,

P
︷ ︸︸ ︷
x2, . . . , x1 .

We call (C1, C2) → C1 the concatenation operation with respect to (C1, C2, (x1, x, x2), (x3, x, x4)).
(See Figure 1 (b).)

Remark 1 Some of x1, x2, x3, x4 or even all of them in Definitions 5 and 6 are allowed to be
the same vertex. Each of P,Q (and R in Definition 5) may visit some of x, x1, x2, x3, x4 several
times, and they may have common vertices.

In each operation above, the visits (x1, x, x2), (x3, x, x4) are replaced by (x1, x, x3), (x4, x, x2),
respectively. All other visits induced by C (in Definition 5) or C1 ∪ C2 (in Definition 6) are
retained or with orientation reversed.

In Definition 6, C1 is a closed trail which covers every edge covered by C1 and C2. In
particular, if C1 and C2 collectively cover all edges of G∗, then C1 is an Eulerian tour of G∗.

3 Proof of Theorems 1 and 2

Proof of Theorem 1 Denote by Si the set of vertices of G with degree i, for i ≥ 1.
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Suppose that G has no isolated vertices and X(G) is hamiltonian. We show that (a), (b)
and (c) hold. Note first that if G has a degree-one vertex, then the unique arc emanating
from it gives rise to an isolated vertex of X(G). Similarly, if x, y ∈ S2 are adjacent, say,
N(x) = {u, y}, N(y) = {x, v}, then the edge of X(G) between xu and yv is an isolated edge no
matter whether u 6= v or not. Since X(G) is assumed to be hamiltonian, it follows that G is
connected with δ(G) ≥ 2 and S2 is an independent set of G.

It remains to prove that G − S2 is connected. Suppose otherwise. Then we can choose a
minimal subset S of S2 such that G − S is disconnected. Note that S 6= ∅ as G is connected.
Let H be a component of G− S. The minimality of S implies that each vertex of S has exactly
one neighbour in V (H), and each vertex of S2 with both neighours in H (if such a vertex exists)
is contained in V (H). Denote by A1 the set of arcs of G with tails in S and heads outside of
V (H). Denote by A2 the set of arcs of G with tails in V (H) (and heads in V (H) or S). One
can verify that the subgraph of X(G) induced by A1 ∪ A2 is a connected component of X(G).
Since there are arcs of G not in A1 ∪A2, it follows that X(G) is disconnected, contradicting our
assumption. Hence G− S2 is connected.

Suppose that G satisfies (a), (b) and (c). We aim to prove that X(G) is hamiltonian. Note
that G is connected by (c). Let G∗ be the multigraph obtained from G by doubling each edge.
Then the degree d∗(v) = 2d(v) of each v ∈ V (G) in G∗ is even. Hence G∗ is Eulerian. We will
prove the existence of an Eulerian tour of G∗ such that the corresponding bipartite graph (see
Definition 3) at each vertex has a perfect matching. We will then exploit such an Eulerian tour
to construct a Hamilton cycle of X(G).

We claim first that there exists an Eulerian tour C of G∗ such that

if v ∈ S2 with N(v) = {u,w}, then C(v) ≺ {(u, v, u), (w, v,w)}. (1)

To construct such an Eulerian tour, we can start from any vertex and travel as far as possible
without repeating any edge such that, whenever the tour reaches a vertex of S2, it returns to
the previous vertex immediately. Since G−S2 is connected, an Eulerian tour C of G∗ satisfying
(1) can be constructed this way. Note that G∗ − S2 is Eulerian because it is connected and all
its vertices have even degrees.

For an Eulerian tour C of G∗ satisfying (1), let Z(C) denote the set of vertices x such that
HC(x) has no perfect matchings. Since for every x ∈ S2, HC(x) ∼= 2K2 is a perfect matching,
by Lemma 7 we have Z(C) ⊆ S3.

Now we choose an Eulerian tour C of G∗ satisfying (1) such that |Z(C)| is minimum. We
claim that Z(C) = ∅. Suppose otherwise. Then by Lemma 7, C(x) contains twin visits for each
x ∈ Z(C). Denote N(x) = {x1, x2, x3} for a fixed x ∈ Z(C), and assume without loss of gen-
erality that C(x) = {(x1, x, x2), (x1, x, x2), (x3, x, x3)}. Denote C ′ = C((x1, x, x2), (x3, x, x3)).
Then C ′ is an Eulerian tour of G∗ and C ′(x) = {(x1, x, x2), (x1, x, x3), (x2, x, x3)}. One can see
that HC′(x) is a perfect matching of three edges, and HC′(y) is isomorphic to HC(y) for each
y 6= x. Thus Z(C ′) is a proper subset of Z(C), and moreover (1) is respected by C ′ at every
v ∈ S2. Since this contradicts the choice of C, we conclude that Z(C) = ∅; that is, HC(v) has a
perfect matching for each v ∈ V (G).

Let C be a fixed Eulerian tour of G∗ satisfying (1) such that Z(C) = ∅. Let us fix a perfect
matching of HC(v) for each v ∈ V (G). Every traverse of C to v corresponds to a visit to v,
say, (u, v, w), and in the chosen perfect matching of HC(v), (u, v, w) is matched to an arc of
A(v) other than vu and vw. Denote this arc by φ(u, v, w). Then for any two consecutive visits
(u, v, w), (v,w, x) induced by C (that is, (u, v, w, x) is a segment of C), φ(u, v, w) and φ(v,w, x)
are adjacent in X(G). Since C is an Eulerian tour of G∗ and a perfect matching of each HC(v)
is used, every arc of G is of the form φ(u, v, w) for some segment (u, v, w) of C. Therefore, if,
say, C = (u, v, w, x, y, . . . , a, b, c, u), then the sequence

φ(u, v, w), φ(v,w, x), φ(w, x, y), . . . , φ(a, b, c), φ(b, c, u), φ(c, u, v), φ(u, v, w)

of arcs of G gives rise to a Hamilton cycle of X(G). ✷
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We illustrate the proof above by the following example.

Example 1 Since the Petersen graph PG (see Figure 2) satisfies the conditions in Theorem 1,
its 3-arc graph X(PG) is hamiltonian. Let

C : a1, a2, a3, a4, a5, a1, b1, b4, b2, b5, b3, b1, a1, a2, b2,
b5, a5, a4, b4, b2, a2, a3, b3, b1, b4, a4, a3, b3, b5, a5, a1.

Then C is an Eulerian tour of the multigraph PG∗ obtained from PG by doubling each edge.
One can verify that at each ai or bi, HC(ai) or HC(bi) has a perfect matching. In HC(a2) the
‘vertex’ (a1, a2, a3) is matched to the ‘vertex’ a2b2, and in HC(a3), (a2, a3, a4) is matched to
a3b3, and so on. Continuing, one can verify that C gives rise to the following Hamilton cycle of
X(PG):

a2b2, a3b3, a4b4, a5b5, a1a2, b1b3, b4a4, b2a2, b5a5, b3a3, b1b4, a1a5, a2a3, b2b4, b5b3,
a5a1, a4a3, b4b1, b2b5, a2a1, a3a4, b3b5, b1a1, b4b2, a4a5, a3a2, b3b1, b5b2, a5a4, a1b1, a2b2.

a1 a2

a5 a3

a4

b4

b1
b

bb
3

2

5

start

Figure 2: An Eulerian tour of PG∗ which produces a Hamilton cycle of the 3-arc graph of the
Petersen graph PG.

Proof of Theorem 2 (a) Let G be a graph. Define Ĝ to be the graph obtained from G by
replacing each degree-two vertex v by a pair of nonadjacent vertices each joining to exactly one
neighbour of v in G. In [14, Theorem 2] it is proved that, if δ(G) ≥ 2, then X(G) is connected
if and only if Ĝ is connected. One can verify that δ(G) ≥ 2 and Ĝ is connected if and only
if (a), (b) and (c) in Theorem 1 hold. Thus, by Theorem 1, if X(G) is connected, then it is
hamiltonian. The converse of this statement is obvious.

(b) If G is connected with δ(G) ≥ 3, then Ĝ = G and so X(G) is connected by [14, Theorem
2]. Hence, by (a), X(G) is hamiltonian. Since δ(G) ≥ 3, we have δ(X(G)) ≥ 3. Thus, by
applying (a) to X(G), we see that X2(G) is hamiltonian. Continuing, by induction we can
prove that Xi(G) is hamiltonian for every i ≥ 1. ✷

4 Proof of Theorems 3 and 4

Let us first introduce an operation that will be used in the proof of Theorem 3. Let G∗ be an
Eulerian multigraph and C an Eulerian tour of G∗. Let (z1, x, z2) be a visit of C to x. Write

C : z1, e1, x, e2,

T
︷ ︸︸ ︷
z2, . . . , z1,

where e1 is the oriented edge from z1 to x, e2 the oriented edge from x to z2, and T the segment
of C from z2 to z1 covering all edges of G∗ except e1 and e2. Add two new vertices t, t′ to G∗ and
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join them to x by edges et, et′ , respectively, with orientation towards x. Denote the resultant
multigraph by G∗

C(z1, x, z2). Set

W = WC(z1, x, z2) : t, et, x, e2,

T
︷ ︸︸ ︷
z2, . . . , z1, e1, x, e

−1
t′ , t′.

Since C is an Eulerian tour of G∗, W is an open Eulerian trail of G∗
C(z1, x, z2). Denote by W (x)

the set of visits to x induced by W . As the first and last visits induced by W , (t, et, x, e2, z2)
and (z1, e1, x, e

−1
t′ , t′) are members of W (x). Note that xt, xt′ /∈ A(x).

Definition 7 Define KC(z1, x, z2) to be the bipartite graph with bipartition {W (x), A(x)} such
that an arc in A(x) is adjacent to a visit p ∈ W (x) if and only if its head does not appear
in p. Denote by LC(z1, x, z2) the graph obtained from KC(z1, x, z2) by deleting the vertices
(t, et, x, e2, z2), (z1, e1, x, e

−1
t′ , t′), xz1 and xz2.

To prove Theorem 3, we need to prove that, for any two distinct arcs xy, uv of G, there
exists a Hamilton path of X(G) between xy and uv. We will prove the existence of such a path
by constructing a specific Eulerian trail in a certain auxiliary multigraph G∗. We treat the cases
x = u and x 6= u separately in the next two lemmas.

Lemma 8 Under the condition of Theorem 3, for any distinct arcs xy, xv ∈ A(G) with the
same tail, there exists a Hamilton path of X(G) between xy and xv.

Proof By our assumption there exists a path in G of odd length connecting y and v. Let

P : y = x0, x1, x2, . . . , xl−1, xl = v

be a path in G between y and v with minimum possible odd length l ≥ 1. Denote E0(P ) =
{{xj , xj+1} | j = 0, 2, . . . , l − 1} and E1(P ) = {{xj , xj+1} | j = 1, 3, . . . , l − 2}.

Case 1. x 6∈ V (P ). In this case let G∗ be obtained from G by doubling each edge of
E(G) − (E(P ) ∪ {{x, y}, {x, v}}) and tripling each edge of E0(P ).

Case 2. x ∈ V (P ). In this case we have l ≥ 3 and x = xj for some 1 ≤ j ≤ l− 1. If 2 ≤ j ≤
l−2, then since l is odd, one of the two paths y, x1, . . . , xj−1, x, v and y, x, xj+1, . . . , xl−1, v would
be a path of odd length connecting y and v that is shorter than P , contradicting the choice of
P . Therefore, either x = x1 or x = xl−1. Assume without loss of generality that x = x1. Define
G∗ to be the multigraph obtained from G by doubling each edge of E(G)− [(E(P )−{{x, y}})∪
{{x, v}}] and tripling each edge of E0(P )− {{x, y}}.

In each case above, d∗(x) = 2d(x) − 2 and d∗(z) = 2d(z) for every z 6= x, and hence G∗ is
Eulerian.

Set a = y in Case 1 and a = x2 in Case 2. By extending the 2-path a, x, v to an Eulerian
tour, we see that there are Eulerian tours of G∗ which pass through (a, x, v). Choose C to be
an Eulerian tour of G∗ with (a, x, v) ∈ C(x) such that |Z(C)| is minimum, where Z(C) is the
set of vertices w 6= x of G∗ such that HC(w) has no perfect matching.

Claim 1. Z(C) = ∅; that is, HC(w) has a perfect matching for every w 6= x.

Proof of Claim 1. We prove this by way of contradiction. Suppose HC(w) has no perfect
matching for some w 6= x. By Lemma 7, d∗(w) = 6 and C(w) contains twin visits. Since w 6= x,
we have d(w) = 3 by the construction of G∗. Denote N(w) = {w1, w2, w3}. In the case when
each of w1, w2 and w3 is joined to w by two parallel edges, we apply the bow-tie operation at
w with respect to one of the twin visits and the third visit of C(w). Similar to the proof of
Theorem 1, for the resultant Eulerian tour C ′ of G∗, HC′(w) has a perfect matching, and the
visit-decomposition at any other vertex is unchanged. Thus (a, x, v) ∈ C ′(x) and Z(C ′) is a
proper subset of Z(C), contradicting the choice of C.

It remains to consider the case where exactly one vertex of N(w) is joined to w by one, two or
three (parallel) edges, respectively. Without loss of generality we may assume that there is one
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edge between w3 and w, two parallel edges between w1 and w, and three parallel edges between
w2 and w. Then C(w) = {[w1, w,w2], [w1, w,w2], [w3, w,w2]}. Reversing the orientation of C
when necessary, we may assume (w1, w,w2) ∈ C(w). Denote by e1, e3 the oriented parallel edges
from w1 to w, by e2, e4, e6 the oriented parallel edges from w to w2, and by e5 the oriented edge
from w to w3.

Case (a): C(w) = {(w1, w,w2), (w1, w,w2), [w3, w,w2]}. We may assume

C : w1, e1, w, e2, w2, f, . . . , g, w1, e3, w, e4, w2, h, . . . , k, w1.

Let
C ′ : w1, e1, w, e

−1
3 , w1, g

−1, . . . , f−1, w2, e
−1
2 , w, e4, w2, h, . . . , k, w1.

Then C ′ is an Eulerian tour of G∗ and C ′(w) = {(w1, w,w1), (w2, w,w2), [w3, w, w2]}. Moreover,
HC′(w) has a perfect matching which matches (w1, w,w1), (w2, w,w2), [w3, w,w2] to ww2, ww3,
ww1 respectively.

Case (b): C(w) = {(w1, w,w2), (w2, w,w1), [w3, w,w2]}. We may assume

C : w1, e1, w, e2, w2, f, . . . , g, w2, e
−1
4 , w, e−1

3 , w1, h, . . . , k, w1.

Denote

C1 : w1, e1, w, e
−1
3 , w1, h, . . . , k, w1; C2 : w2, e

−1
4 , w, e2, w2, f, . . . , g, w2.

Note that each of C1 and C2 is a closed trail, and [w3, w,w2] is a segment of exactly one of C1

and C2.
In the case when (w3, w,w2) ∈ C(w) and it is in C2, we first rewrite C2 to highlight the

position of (w3, w,w2) in C2:

C ′
2 : w3, e

−1
5 , w, e6, w2, . . . , w3.

Applying the concatenation operation to (C1, C
′
2, (w1, w,w1), (w3, w,w2)) yields:

C ′ : w1, e1, w, e5, w3, . . . , w2, e
−1
6 , w, e−1

3 , w1, h, . . . , k, w1.

We have C ′(w) = {(w1, w,w3), (w2, w,w1), [w2, w,w2]}. Hence HC′(w) has a perfect matching
which matches (w1, w,w3), (w2, w,w1), [w2, w,w2] to ww2, ww3, ww1 respectively.

In the case when (w3, w,w2) ∈ C(w) and it is in C1, we first rewrite C1 to highlight the
position of [w3, w,w2] in C1:

C ′
1 : w3, e

−1
5 , w, e6, w2, . . . , w3.

Applying the concatenation operation to (C2, C
′
1, (w2, w,w2), (w3, w,w2)) yields:

C ′ : w2, e
−1
4 , w, e5, w3, . . . , w2, e

−1
6 , w, e2, w2, f, . . . , g, w2.

Since C ′(w) = {(w2, w,w3), (w2, w,w2), [w1, w,w1]}, HC′(w) has a perfect matching which matches
(w2, w,w3), (w2, w,w2), [w1, w,w1] to ww1, ww3, ww2 respectively.

The remaining case when (w2, w,w3) ∈ C(w) can be dealt with similarly.
In all possibilities above we obtain a new Eulerian tour C ′ of G∗ such that HC′(w) has

a perfect matching whilst the visit-decomposition at any other vertex is unchanged. Thus
(a, x, v) ∈ C ′(x) and Z(C ′) is a proper subset of Z(C), contradicting the choice of C. This
completes the proof of Claim 1.

Claim 2. There exists an Eulerian tour C∗ of G∗ together with a visit (u1, x, u2) ∈ C∗(x)
such that (i) HC∗(z) has a perfect matching for every z 6= x, and (ii) the bipartite graph
KC∗(u1, x, u2) (as defined in Definition 7) has a perfect matching under which the first and last
visits induced by WC∗(u1, x, u2) are matched to xy and xv resepctively.
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Note that, for z 6= x, HC∗(z) = HW (z), where W = WC∗(u1, x, u2).

Proof of Claim 2. We will prove the existence of C∗ and (u1, x, u2) ∈ C∗(x) based on C as
in Claim 1.

Case (a): G∗ was constructed in Case 1. Then (a, x, v) = (y, x, v) ∈ C(x) and all edges of G
incident with x except {x, y} and {x, v} were doubled.

In the case when d(x) = 3, let z1 be the neighbour of x in G other than y and v. One can
see that KC(z1, x, z1) has a perfect matching which matches (t, x, z1), (y, x, v), (z1, x, t

′) to xy,
xz1, xv, respectively.

In the case when d(x) = 4, let z1 and z2 be the neighbours of x in G other than y and v. Since
(y, x, v) ∈ C(x), without loss of generality we may assume C(x) ≺ {(z1, x, z1), (z2, x, z2), (y, x, v)}
or {(z1, x, z2), [z1, x, z2], (y, x, v)}. If C(x) ≺ {(z1, x, z1), (z2, x, z2), (y, x, v)}, then KC(y, x, v)
has a perfect matching which matches (t, x, v), (z1, x, z1), (z2, x, z2), (y, x, t

′) to xy, xz2, xz1,
xv, respectively. In the case when C(x) ≺ {(z1, x, z2), [z1, x, z2], (y, x, v)}, by applying the bow-
tie operation at x with respect to ((z1, x, z2), (y, x, v)) we obtain a new Eulerian tour C ′ =
C((z1, x, z2), (y, x, v)) for which C ′(x) = {[z1, x, z2], (zj , x, y), (zj′ , x, v)}, where {j, j′} = {1, 2}.
Without loss of generality we may assume C ′(x) = {(z1, x, z2), (zj , x, y), (zj′ , x, v)}. One can
see that KC′(z1, x, z2) contains a perfect matching which matches (t, x, z2), (zj , x, y), (zj′ , x, v),
(z1, x, t

′) to xy, xzj′ , xzj, xv, respectively.
Assume d(x) ≥ 5. If LC(y, x, v) has a perfect matching, then adding the edges {(t, x, v), xy},

{(y, x, t′), xv} to it yields a perfect matching of KC(y, x, v) which matches the first and last visits
of WC(y, x, v) to xy, xv, respectively. Suppose that LC(y, x, v) has no perfect matchings. Similar
to Lemma 7, by using Hall’s marriage theorem we can prove that d(x) = 5 and C(x) contains
twin visits, say, [z1, x, z2]; that is, C(x) ≺ {[z1, x, z2], [z1, x, z2], [z3, x, z3], (y, x, v)}. Without loss
of generality we may assume (z1, x, z2) ∈ C(x). It is not hard to see that KC(z1, x, z2) has
a perfect matching which matches (t, x, z2), (z1, x, z2), [z3, x, z3], (y, x, v), (z1, x, t

′) to xy, xz3,
xz2, xz1, xv, respectively.

Case (b): G∗ was constructed in Case 2. Then (x2, x, v) ∈ C(x) and all edges of G incident
with x except {x, x2} and {x, v} were doubled.

In the case when d(x) = 3, we have C(x) ≺ {(x2, x, v), (y, x, y)} and KC(x2, x, v) has a
perfect matching which matches (t, x, v), (y, x, y), (x2 , x, t

′) to xy, xx2, xv, respectively.
In the case when d(x) = 4, we have C(x) ≺ {(x2, x, v), [z1, x, y], [z1, x, y]} or C(x) ≺

{(x2, x, v)(z1, x, z1), (y, x, y)}, where z1 is the neighbour of x other than y, v, x2. If C(x) ≺
{(x2, x, v), [z1, x, y], [z1, x, y]}, let (z1, x, y) ∈ C(x), say. Then KC(y, x, z1) has a perfect match-
ing, namely (t, x, z1), (x2, x, v), [z1, x, y], (y, x, t

′) are matched to xy, xz1, xx2, xv, respectively. If
C(x) ≺ {(x2, x, v)(z1, x, z1), (y, x, y)}, then KC(z1, x, z1) has a perfect matching which matches
(t, x, z1), (x2, x, v), (y, x, y), (z1 , x, t

′) to xy, xz1, xx2, xv, respectively.
Assume d(x) ≥ 5 hereafter. In the case when LC(x2, x, v) has a perfect matching, say, M , let

xy be matched to (w1, x, w2) by M , where w1, w2 ∈ N(x)−{x2, v, y}. Deleting {(w1, x, w2), xy}
from M and then adding {(w1, x, w2), xx2}, {(t, x, v), xy} and {(x2, x, t

′), xv} yields a perfect
matching of KC(x2, x, v) satisfying (ii) in Claim 2.

Suppose LC(x2, x, v) has no perfect matchings. Similar to Lemma 7, we can prove that
d(x) = 5 and C(x) contains twin visits. Denote by z1, z2 6= y, v, x2 the other two neigh-
bours of x. Let (w1, x, w2) be one of the twin visits in C(x), where w1, w2 ∈ {y, z1, z2}
are distinct, and let w3 denote the unique vertex in {y, z1, z2} − {w1, w2}. Then C(x) ≺
{(x2, x, v), (w1, x, w2), [w1, x, w2], (w3, x, w3)}. Since w1 and w2 are distinct, one of them, say,
w2, is not equal to y. Thus KC(w1, x, w2) has a perfect matching which matches (t, x, w2),
(x2, x, v), [w1, x, w2], (w3, x, w3), (w1, x, t

′) to xy, xw2, xw3, xx2, xv, respectively.
Since HC(z) has a perfect matching for every z 6= x, one can see that in all possibilities

above, condition (i) in Claim 2 is satisfied by the underlying Eulerian tour (which is C or C ′).
This proves Claim 2.

Choose an Eulerian tour C∗ : wl, x, w1, w2, w3, . . . , wl of G
∗ together with a visit (wl, x, w1) ∈

C∗(x) satisfying the conditions of Claim 2. ThenW = WC∗(wl, x, w1) : t, x, w1, w2, w3, . . . , wl−1, wl, x, t
′.
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Denote by φ(t, x, w1) (φ(wl, x, t
′), respectively) the arc of G with tail x that is matched to

(t, x, w1) ((wl, x, t
′), respectively) by a perfect matching of KC∗(wl, x, w1) satisfying (ii) in Claim

2. Let φ(x,w1, w2) denote the arc matched to (x,w1, w2) in a perfect matching of HC∗(w1)
(= HW (w1)), and let φ(w1, w2, w3), . . ., φ(wl−1, wl, x) be interpreted similarly. Conditions (i)
and (ii) in Claim 2 ensure that

xy = φ(t, x, w1), φ(x,w1, w2), φ(w1, w2, w3), . . . , φ(wl−1, wl, x), φ(wl, x, t
′) = xv

is a Hamilton path of X(G) connecting xy and xv. ✷

Lemma 9 Under the condition of Theorem 3, for distinct xy, uv ∈ A(G) with x 6= u, there
exists a Hamilton path of X(G) between xy and uv.

Proof We have five possibilities to consider: x = v and y = u; x, y, u, v are pairwise distinct;
x = v and y 6= u; y = v and x 6= u; y = u and x 6= v. The following treatment covers all of
them.

By our assumption there exists a path of odd length connecting x and u in G. Let

P : x = x0, x1, x2, . . . , xl−1, xl = u (2)

be such a path with shortest (odd) length l ≥ 1. (It may happen that y = x1 and/or v = xl−1.)
Define G∗ to be the multigraph obtained from G by doubling each edge of G outside of P and
tripling each edge {xj , xj+1} for j = 1, 3, . . . , l − 2. Then d∗(x) = 2d(x) − 1, d∗(u) = 2d(u) − 1
and d∗(z) = 2d(z) for z 6= x, u.

Let G∗
x,u(t, t

′) be the multigraph obtained from G∗ by adding two new vertices t, t′ and
joining them to x, u respectively by a single edge. Then all vertices of G∗

x,u(t, t
′) except t and t′

have even degrees in G∗
x,u(t, t

′). Hence G∗
x,u(t, t

′) has Eulerian trails connecting t and t′.
Since δ(G) ≥ 3, we can choose x′ to be a neighbour of x other than y and x1, and u′ a

neighbour of u other than v and xl−1. In addition, if d(x) = d(u) = 3, y = x1 and v = xl−1, say,
N(x) = {y, x′, z} and N(u) = {v, u′, w}, then we can choose x′ and u′ in such a way that the
edges {x, z} and {u,w} do not form an edge cut of G. In fact, if {{x, z}, {u,w}} is an edge cut
of G in this case, then since G is assumed to be 2-edge connected, G− {{x, z}, {u,w}} has two
connected components, say, G0 and G1 with z, w ∈ V (G0) and P in G1. Since x′ is in G1 and
removal of {x, x′} does not disconnect G, one can see that {{x, x′}, {u,w}} is not an edge-cut
of G. Thus interchanging the roles of x′ and z produces the desired x′ and u′. (In general, at
most one of x′ and u′ lies on P since P is a path between x and u with minimum odd length.)

With x′ and u′ as above, let

W ′ : t, x, x′,

P
︷ ︸︸ ︷
x, x1, x2, . . . , xl−1, u, u

′, u, t′,

where P is the path given in (2). Then W ′ is a trail of G∗
x,u(t, t

′). Let W be an Eulerian trail of
G∗

x,u(t, t
′) obtained by extending W ′ to cover all edges of G∗

x,u(t, t
′) while maintaining (t, x, x′)

and (u′, u, t′) as its first and last visits respectively. Such a trail W exists because removing the
four edges in (t, x, x′) and (u′, u, t′) from G∗

x,u(t, t
′) results in a connected multigraph with x′ and

u′ as the only odd-degree vertices. In addition, if d(x) = 3 and y = x1, say, N(x) = {y, x′, z},
since {{x, z}, {u,w}} is not an edge cut of G by our choices of x′ and u′, we can choose W
in such a way that (x′, x, x1) is a visit induced by W ; similarly, we can choose W such that
(u′, u, xl−1) is a visit induced by W , if d(u) = 3 and v = xl−1, say, N(u) = {v, u′, w}. (Such
a W can be constructed as follows: extend W ′ to an Eulerian trail of the multigraph obtained
by deleting the parallel edges between x and z and/or that between u and w, and then insert
the visits (z, x, z) and/or (w, u,w) to this trail.) In this way we obtain an Eulerian trail W of
G∗

x,u(t, t
′) such that

(A) (t, x, x′) and (u′, u, t′) are its first and last visits, respectively; and
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(B) if d(x) = 3 and y = x1, say, N(x) = {y, x′, z}, then (x′, x, x1) ∈ W (x); and, if d(u) = 3
and v = xl−1, say, N(u) = {v, u′, w}, then (u′, u, xl−1) ∈ W (x).

Similar to Claim 1, one can show that there exists an Eulerian trail of G∗
x,u(t, t

′), denoted
by W hereafter, satisfying (A), (B) and

(C) HW (z) has a perfect matching for every z ∈ V (G) − {x, u}.

Note that |W (z)| = |A(z)| = d(z) for every z ∈ V (G).

Claim 3. There exists an Eulerian trail W ∗ of G∗
x,u(t, t

′) such that (i) (t, x, x′) and (u′, u, t′)
are its first and last visits, respectively; (ii) HW ∗(x) has a perfect matching under which (t, x, x′)
is matched to xy; (iii) HW ∗(u) has a perfect matching under which (u′, u, t′) is matched to uv;
and (iv) HW ∗(z) has a perfect matching for every z ∈ V (G)− {x, u}.

Proof of Claim 3. Let p = (t, x, x′) denote the first visit of W , and let LW (x) = HW (x) −
{p, xy} be the subgraph of HW (x) obtained by deleting vertices p and xy. For S ⊆ W (x)−{p},
denote by NLW (x)(S) the neighbourhood of S in LW (x).

Case (a): y 6= x1. If d(x) ≥ 5, then |NLW (x)(S)| ≥ |S| for any S, and so LW (x) contains a
perfect matching by Hall’s marriage theorem.

Suppose d(x) = 4. Then |NLW (x)(S)| ≥ |S| for every S with |S| = 1 or 3. Suppose |S| = 2
and S = {(a, x, b), (a′, x, b′)}. Then NLW (x)(S) = [(A(x)− {xy})− {xa, xb}] ∪ [(A(x)− {xy})−
{xa′, xb′}] = [(A(x) − {xy})] − ({xa′, xb′} ∩ {xa, xb}). Thus, if |{xa′, xb′} ∩ {xa, xb}| ≤ 1, then
|NLW (x)(S)| ≥ |S|. If |{xa′, xb′} ∩ {xa, xb}| = 2, then {a, b} = {a′, b′} and {x′, x1} ∩ {a, b} = ∅,
which implies y ∈ {a, b} and |NLW (x)(S)| = |(A(x) − {xa, xb}| = 2. Hence LW (x) contains a
perfect matching by Hall’s theorem.

Suppose d(x) = 3. Then W (x) = {p, (x′, x, y), (y, x, x1)} or W (x) = {p, (x′, x, x1), (y, x, y)}.
In the former case LW (x) clearly has a perfect matching. In the latter case, apply the bow-tie
operation to W with respect to (x′, x, x1) and (y, x, y) to obtain a new Eulerian trail W0 such
that LW0

(x) has a perfect matching.

Case (b): y = x1. Similar to Case (a), if d(x) ≥ 5, then LW (x) has a perfect matching. If
d(x) = 4, let N(x) = {x′, x1, z1, z2}. Then |NLW (x)(S)| ≥ |S| unless S = {(z1, x, z2), [z1, x, z2]}.
In this exceptional case, W (x) = {p, (x′, x, x1), (z1, x, z2), [z1, x, z2]}, and we apply the bow-tie
operation to W with respect to (x′, x, x1) and (z1, x, z2) to obtain a new Eulerian trail W0. One
can show that LW0

(x) has a perfect matching.
If d(x) = 3, let N(x) = {x′, x1, z}. By (B), (x′, x, x1) is a visit to x induced by W . Hence

W (x) = {p, (x′, x, x1), (z, x, z)} and LW (x) has a perfect matching.
So far we have proved that there exists an Eulerian trail W1 of G∗

x,u(t, t
′) (which is either W

or W0) satisfying (A) such that LW1
(x) has a perfect matching. This matching together with the

edge between (t, x, x′) and xy is a perfect matching of HW1
(x). Moreover, since W satisfies (C),

from the proof above one can see that W1 satisfies (C) as well. If HW1
(u) has a perfect matching

which matches (u′, u, t′) to uv, then set W ∗ = W1 and we are done. Otherwise, beginning with
W1 and using similar arguments as above, we can construct an Eulerian trail W ∗ of G∗

x,u(t, t
′)

satisfying all requirements in Claim 3. This completes the proof of Claim 3.
Similar to the proof of Lemma 8, we can show that the Eulerian trail W ∗ in Claim 3 produces

a Hamilton path in X(G) connecting xy and uv. ✷

Proof of Theorem 3 This follows from Lemmas 8 and 9 immediately. ✷

In the proof of Theorem 4 we will use the following lemma which may be known in the
literature. We give its proof since we are unable to allocate a reference.

Lemma 10 In any Hamilton-connected graph with at least four vertices, there exists a path of
odd length connecting any two distinct vertices.

12



Proof Let G be such a graph. Then for any distinct u, v ∈ V (G) there exists a Hamilton path
P : u = x0, x1, x2, . . . , xn−1, xn = v, where n = |V (G)| − 1. It suffices to consider the case when
n is even. Denote A = {x0, x2, . . . , xn} and B = {x1, x3, . . . , xn−1}. Since {A,B} is a partition
of V (G) and any bipartite graph other than K2 is not Hamilton-connected, there exist adjacent
vertices xi, xj both in A or B, where j ≥ i + 2. Thus x0, x1, . . . , xi−1, xi, xj , xj+1, . . . , xn is a
path of odd length between u and v. ✷

Proof of Theorem 4 It can be verified that any Hamilton-connected graph with at least
four vertices is 2-edge connected and has minimum degree at least three. Hence Theorem 3 and
Lemma 10 together imply that the 3-arc graph of such a graph is Hamilton-connected (with
more than four vertices). Applying this iteratively, we obtain Theorem 4. ✷
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