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Abstract

Let F1, F2, . . . , Fk be graphs with the same vertex set V . A subset S ⊆ V is a
simultaneous dominating set if for every i, 1 ≤ i ≤ k, every vertex of Fi not in S is
adjacent to a vertex in S in Fi; that is, the set S is simultaneously a dominating set in
each graph Fi. The cardinality of a smallest such set is the simultaneous domination
number. We present general upper bounds on the simultaneous domination number.
We investigate bounds in special cases, including the cases when the factors, Fi, are
r-regular or the disjoint union of copies of Kr. Further we study the case when each
factor is a cycle.
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1 Introduction

Given a collection of graphs F1, . . . , Fk on the same vertex set V , we consider a set of vertices
which dominates all the graphs simultaneously. This was first explored by Brigham and
Dutton [3] who defined such a set as a factor dominating set and by Sampathkumar [13]
who used the name global dominating set. The natural question is what is the minimum
size of a simultaneous dominating set. This question has been studied in [2, 6, 7, 8] and [10,
Section 7.6] and elsewhere. In this paper we will use the term “simultaneous domination”
rather than “global domination” (see [2, 13]) or “factor domination” (see [3, 7, 8]).
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Foundation.
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A dominating set of G is a set S of vertices of G such that every vertex outside S is
adjacent to some vertex in S. The domination number γ(G) is the minimum cardinality of
a dominating set in G. For k ≥ 1, a k-dominating set of G is a set S of vertices of G such
that every vertex outside S is adjacent to at least k vertices in S. For a survey see [10, 11].

Following the notation in [7], we define a factoring to be a collection F1, F2, . . . , Fk of
(not necessarily edge-disjoint) graphs with common vertex set V (the union of whose edge
sets is not necessary the complete graph). The combined graph of the factoring, denoted by
G(F1, . . . , Fk), has vertex set V and edge set

⋃k
i=1 E(Fi). We call each Fi a factor of the

combined graph.

A subset S ⊆ V is a simultaneous dominating set, abbreviated SD-set, of G(F1, . . . , Fk)
if S is simultaneously a dominating set in each factor Fi for all 1 ≤ i ≤ k. We remark
that in the literature a SD-set is also termed a factor dominating set or a global dominating

set. The minimum cardinality of a SD-set in G(F1, . . . , Fk) is the simultaneous domination

number of G(F1, . . . , Fk), denoted by γsd(F1, F2, . . . , Fk). We remark that the notion of
simultaneous domination is closely related to the notion of colored domination studied, for
example, in [12] and elsewhere.

For k ≥ 2 and δ ≥ 1, let Gk,δ,n be the family of all combined graphs on n vertices consisting
of k factors each of which has minimum degree at least δ and define

γsd(k, δ, n) = max{γsd(G) | G ∈ Gk,δ,n}

For notational convenience, we simply write γsd(k, n) = γsd(k, 1, n).

1.1 Graph Theory Notation and Terminology

For notation and graph theory terminology, we in general follow [10]. Specifically, let G be
a graph with vertex set V (G) of order n = |V (G)| and edge set E(G) of size m = |E(G)|.
The open neighborhood of a vertex v ∈ V (G) is NG(v) = {u ∈ V (G) |uv ∈ E(G)} and the
closed neighborhood of v is NG[v] = NG(v)∪{v}. For a set S ⊆ V (G), its open neighborhood

is the set N(S) =
⋃

v∈S N(v) and its closed neighborhood is the set N [S] = N(S) ∪ S. The
degree of v is dG(v) = |NG(v)|. Let δ(G), ∆(G) and d(G) denote, respectively, the minimum
degree, the maximum degree and the average degree in G. If dG(v) = k for every vertex
v ∈ V , we say that G is a k-regular graph. If the graph G is clear from the context, we
simply write N(v), N [v], N(S), N [S] and d(v) rather than NG(v), NG[v], NG(S), NG[S]
and dG(v), respectively.

If G is a disjoint union of k copies of a graph F , we write G = kF . For a subset S ⊆ V ,
the subgraph induced by S is denoted by G[S]. If S ⊆ V , then by G − S we denote the
graph obtained from G by deleting the vertices in the set S (and all edges incident with
vertices in S). If S = {v}, then we also denote G− {v} simply by G− v. A component in
G is a maximal connected subgraph of G. If G is a disjoint union of k copies of a graph F ,
we write G = kF . A star -forests is a forest in which every component is a star.
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2 Known Results

Directly from the definition we obtain the following result first observed by Brigham and
Dutton [3].

Observation 1 ([3]) If G is the combined graph of k ≥ 2 factors, F1, F2, . . . , Fk, then

max
1≤i≤k

γ(Fi) ≤ γsd(G) ≤
k
∑

i=1

γ(Fi).

That the lower bound of Observation 1 is sharp, may be seen by taking the k factors,
F1, F2, . . . , Fk, to be equal. To see that the upper bound of Observation 1 is sharp, let k ≥ 2
and let F1, F2, . . . , Fk be factors with vertex V , where |V | = n > k, defined as follows. Let
V = {v1, v2, . . . , vn} and let Fi be a star K1,n−1 centered at the vertex vi, 1 ≤ i ≤ k. Then,
{v1, v2, . . . , vk} is a minimum SD-set of the combined graph G(F1, F2, . . . , Fk), implying
that

γsd(F1, F2, . . . , Fk) =

k
∑

i=1

γ(Fi) = k.

Brigham and Dutton [3] were also the first to observe the following bound.

Observation 2 ([3]) γsd(k, δ, n) ≤ n− δ.

The following bounds on γsd(k, n) are established in [7, 8].

Theorem 3 The following holds.

(a) ([8]) For k = 2, γsd(k, n) ≤ 2n/3, and this is sharp.

(b) ([7]) For k ≥ 3, γsd(k, n) ≤ (2k − 3)n/(2k − 2), and this is sharp for all k.

Values of γsd(k, n) in Theorem 3 for small k are shown in Table 1.

Caro and Yuster [6] considered a combined graph consisting of k factors F1, F2, . . . , Fk.
In the language of the current paper, they were interested in finding a minimum subset D
of vertices with the property that the subgraph induced by D is a connected r-dominating
set in each of the factors Fi, 1 ≤ i ≤ k, where r ≤ δ = min{ δ(Fi) | i = 1, 2, . . . , k }. As a
special consequence of their main result, we have the following asymptotic result.

Theorem 4 ([6]) Let F1, F2, . . . , Fk be factors on n vertices and let δ = min{ δ(Fi) | i =
1, 2, . . . , k }. If δ > 1 and ln ln δ > k, then

γsd(F1, F2, . . . , Fk) ≤

(

(ln δ)(1 + oδ(1))

δ

)

n.
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Dankelmann and Laskar [8] established the following upper bound on the simultaneous
domination number of k factors, depending on the smallest minimum degree of the factors.

Theorem 5 Let F1, F2, . . . , Fk be factors on n vertices. Let δ = min{ δ(Fi) | i = 1, 2, . . . , k }.
If δ ≥ 2 and k ≤ eδ+1/(δ + 1), then

γsd(F1, F2, . . . , Fk) ≤

(

ln(δ + 1) + ln k + 1

δ + 1

)

n.

We close this section with a construction showing that the upper bound in Theorem 3(a),
which was originally demonstrated by star -forests, can be realized by trees. Let F1 and F2

be factors on n = 3k vertices constructed as follows. Let F1 be obtained from the path
u1u2 . . . uk by adding for each i, 1 ≤ i ≤ k, two new vertices vi and zi and joining ui to vi
and zi. Further let F2 be obtained from the path z1z2 . . . zk by adding for each i, 1 ≤ i ≤ k,
for each i, 1 ≤ i ≤ k, add two new vertices ui and vi and joining zi to ui and vi. We note
that both factors F1 and F2 are trees.

Let D be a SD-set of the combined graph G(F1, F2). On the one hand, if u1 ∈ D, then in
order to dominate the vertex v1 in F2, we have that at least one of v1 and z1 belong to D.
On the other hand, if u1 /∈ D, then in order to dominate the vertices v1 and z1 in F2, both v1
and z1 belong to D. In both cases, |D ∩ {u1, v1, z1}| ≥ 2. Analogously, |D ∩ {ui, vi, zi}| ≥ 2
for all i, 1 ≤ i ≤ k, implying that |D| ≥ 2k = 2n/3. Since D was an arbitrary SD-set of
G(F1, F2), we have that γsd(F1, F2) ≥ 2n/3. Conversely the set

⋃k
i=1{ui, vi} is a SD-set

of G(F1, F2), and so γsd(F1, F2) ≤ 2n/3. Consequently, γsd(F1, F2) = 2n/3 in this case.
Further, γ(F1) = γ(F1) = n/3. Hence we have the following statement.

Observation 6 For n ≡ 0 (mod 3), there exist factors F1 and F2 on n vertices, both of

which are trees, such that γsd(F1, F2) = 2n/3 = γ(F1) + γ(F2).

3 Outline of Paper

In this paper we continue the study of simultaneous domination in graphs. In Section 4 we
provide general upper bounds on the simultaneous domination number of a combined graph
in terms of the generalized vertex cover and independence numbers. Using a hypergraph
and probabilistic approach we provide an improvement on the bound of Theorem 5. In
Section 5 we provide general upper bounds on the simultaneous domination number of a
combined graph when each factor consists of vertex disjoint union of copies of a clique. We
close in Section 6 by studying the case when each factor is a cycle or a disjoint union of
cycles.
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4 General Upper Bounds

A vertex and an edge are said to cover each other in a graph G if they are incident in G.
A vertex cover in G is a set of vertices that covers all the edges of G. We remark that a
cover is also called a transversal or hitting set in the literature. Thus a vertex cover T has
a nonempty intersection with every edge of G. The vertex covering number τ(G) of G is
the minimum cardinality of a vertex cover in G. A vertex cover of size τ(G) is called a
τ(G)-cover. More generally for t ≥ 0 a t-vertex cover in G is a set of vertices S such that
the maximum degree in the graph G[V \ S] induced by the vertices outside S is at most t.
The t-vertex covering number τt(G) of G is the minimum cardinality of a t-vertex cover in
G. A vertex cover of size τt(G) is called a τt(G)-cover. In particular, we note that a 0-vertex
cover is simply a vertex cover and that τ(G) = τ0(G).

The independence number α(G) of G is the maximum cardinality of an independent set
of vertices of G. More generally, for k ≥ 0 a k-independent set in G is a set of vertices S
such that the maximum degree in the graph G[S] induced by the vertices of S is at most k.
The k-independence number αk(G) of G is the maximum cardinality of a k-independent set
of vertices of G. In particular, we note that a 0-independent set is simply an independent
set and that α(G) = α0(G).

Since the complement of a t-vertex cover is a t-independent set and conversely, we have
the following observation.

Observation 7 For a graph G of order n and an integer t ≥ 0, we have αt(G)+τt(G) = n.

We recall the following well-known Caro-Wei lower bound on the independence number
in terms of the degree sequence of the graph.

Theorem 8 ([4, 14]) For every graph G of order n,

α(G) ≥
∑

v∈V (G)

1

1 + dG(v)
≥

n

d(G) + 1
.

We will also need the following recent result by Caro and Hansberg [5] who established
the following lower bound on the k-independence number of a graph.

Theorem 9 ([5]) For k ≥ 0 if G is a graph of order n with average degree d, then

αk(G) ≥

(

k + 1

⌈ d ⌉+ k + 1

)

n.
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We begin by establishing the following upper bound on the simultaneous domination
number of a combined graph in terms of the t-vertex cover number and also in terms of the
sum of the average degrees from each factor.

Theorem 10 Let F1, F2, . . . , Fk be factors on n vertices such that δ(Fi) ≥ δ ≥ 1. Let

G = G(F1, . . . , Fk) be the combined graph of the factoring F1, F2, . . . , Fk, and let d(G) = d
and d(Fi) = di for i = 1, 2, . . . , k. Then the following holds.

(a) γsd(F1, F2, . . . , Fk) ≤ τδ−1(G) = n− αδ−1(G).

(b) γsd(F1, F2, . . . , Fk) ≤

(

⌈ d ⌉

⌈ d ⌉+ δ

)

n.

(c) If F1, F2, . . . , Fk are regular factors on n vertices each of degree δ, then

γsd(F1, F2, . . . , Fk) ≤

(

k

k + 1

)

n.

Proof. Let G = G(F1, . . . , Fk) denote the combined graph of the factoring F1, F2, . . . , Fk

and let G have vertex set V . By definition of the average degree, we have

d =
2m(G)

n
≤ 2

k
∑

i=1

m(Fi)

n
=

k
∑

i=1

2m(Fi)

n
=

k
∑

i=1

di.

(a) Let S be a τδ−1(G)-cover. Hence the graph ∆(G[V \ S]) ≤ δ − 1 and |S| = τδ−1(G).
Let F be an arbitrary factor of G, and so F = Fi for some i ∈ {1, 2, . . . , k}. Since δ(F ) ≥ δ
and since every vertex in V \ S is adjacent to at most δ − 1 other vertices in V \ S, the
set S is a dominating set of F . This is true for each of the k factors in G(F1, . . . , Fk).
Therefore, S is a SD-set of G, and so γsd(G) ≤ |S| = τδ−1(G). By Observation 7, recall
that τδ−1(G) = n− αδ−1(G).

(b) Since δ ≥ 1, we note that αδ−1(G) ≥ α0(G) = α(G), implying by Observation 7 and
Theorem 9 that

τδ−1(G) = n− αδ−1(G) ≤ n−

(

δ

⌈ d ⌉+ δ

)

n =

(

⌈ d ⌉

⌈ d ⌉+ δ

)

n.

The desired result now follows from Part (a).

(c) Let F1, F2, . . . , Fk be regular factors of degree δ. Then, di = δ for 1 ≤ i ≤ k, and so
d ≤

∑k
i=1 di = kδ. Therefore by Part (b) above, we have

γsd(F1, F2, . . . , Fk) ≤

(

⌈ d ⌉

⌈ d ⌉+ δ

)

n ≤

(

kδ

(k + 1)δ

)

n =

(

k

k + 1

)

n.

This establishes Part (c), and completes the proof of Theorem 10. ✷

6



We next use a hypergraph and probabilistic approach to improve upon a bound already
obtained using this approach in [7]. Let H be a hypergraph. A k-edge in H is an edge
of size k. The rank of H is the maximum cardinality among all the edges in H. If all
edges have the same cardinality k, the hypergraph is said to be k-uniform. A subset T of
vertices in H is a transversal (also called vertex cover or hitting set in many papers) if T
has a nonempty intersection with every edge of H. The transversal number τ(H) of H is
the minimum size of a transversal in H. For r ≥ 2, if H is an r-uniform hypergraph with
n vertices and m edges, then it is shown in [7] that τ(H) ≤ n ≤ n(ln(rm/n) + 1)/r. We
improve this bound as follows.

Theorem 11 For r ≥ 2, let H be an r-uniform hypergraph with n vertices and m edges

and with average degree d = rm/n and such that δ(H) ≥ 1. Then,

τ(H) ≤

(

1−

(

r − 1

r

)(

1

d

)
1

r−1

)

n ≤ n(ln(d) + 1)/r.

Proof. For 0 ≤ p ≤ 1, choose each vertex in H independently with probability p. Let X
be the set of chosen vertices and let Y be the set of edges from which no vertex was chosen.
Then, E(|X|) = np and E(|Y |) = m(1 − pr). By linearity of expectation, we have that
E(|X| + |Y |) = E(|X|) + E(|Y |) = np+m(1− p)r. Hence if we add to X one vertex from
each edge in Y we get a transversal T of H such that E(|T |) ≤ np +m(1 − p)r, implying
that τ(H) ≤ np+m(1− p)r. Let f(p) = np+m(1− p)r. This function is optimized when

p∗ = 1−

(

1

d

)
1

r−1

,

which is a legitimate value for p as d ≥ δ(H) ≥ 1. Further,

f(p∗) = n− n

(

1

d

)
1

r−1

+

(

nd

r

)(

1

d

)
r

r−1

=

(

1−

(

r − 1

r

)(

1

d

)
1

r−1

)

n.

We also note that np+m(1− p)r ≤ np+me−pr. Taking p = ln(d)/r = ln(rm/n)/r ≥ 0,
we get E(|T |) = E(|X| + |Y |) ≤ n ln(rm/n)/r + n/r = n(ln(d) + 1)/r. Hence the optimal

choice of p, namely p = 1−
(

1
d

)
1

r−1 , implies that

τ(H) ≤

(

1−

(

r − 1

r

)(

1

d

)
1

r−1

)

n ≤ n(ln(d) + 1)/r,

which completes the proof of the theorem. ✷

As an application of Theorem 11, we have the following upper bound on the simultaneous
domination number of a combined graph that improves the upper bound of Theorem 5. For
a graph G, the neighborhood hypergraph of G, denoted by NH(G), is the hypergraph with
vertex set V (G) and edge set {NG[v] | v ∈ V (G)} consisting of the closed neighborhoods of
vertices in G.
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Theorem 12 For k ≥ 2, if F1, F2, . . . , Fk are factors on n vertices, each of which has

minimum degree at least δ, then

γsd(F1, F2, . . . , Fk) ≤

(

1−

(

δ

δ + 1

)(

1

k(δ + 1)

)
1

δ

)

n.

Proof. Let G = G(F1, . . . , Fk) denote the combined graph of the factoring F1, F2, . . . , Fk

and let G have vertex set V . Let NH(Fi) be the neighborhood hypergraph of Fi, where
1 ≤ i ≤ k. In particular, we note that NH(Fi) has vertex set V and rank at least δ + 1.
Let Hi be obtained from NH(Fi) by shrinking all edges of NH(Fi), if necessary, to edges
of size δ + 1 (by removing vertices from each edge of size greater than δ + 1 until the
resulting edge size is δ + 1). Let H be the hypergraph with vertex set V and edge set
E(H) =

⋃k
i=1E(Hi). Then, H is a (δ+1)-uniform hypergraph with n(H) = n vertices and

m(H) ≤ kn edges. The average degree of H is d = (δ+1)m(H)/n(H) ≤ k(δ+1), implying
by Theorem 11, that

τ(H) ≤

(

1−

(

δ

δ + 1

)(

1

k(δ + 1)

)
1

δ

)

n.

Every transversal in H is a SD-set in G, implying that γsd(F1, F2, . . . , Fk) ≤ τ(H), and
the desired result follows. ✷

Let f(k, δ) denote the expression on the right-hand side of the inequality in Theorem 12.
For small k and small δ, the values of f(k, δ) are given in Table 3 in the Appendix.

5 Kr-Factors

As an application of Theorem 11, we have the following upper bound on the simultaneous
domination number of a combined graph when each factor consists of vertex disjoint union
of copies of Kr, for some r ≥ 2.

Theorem 13 Let r and n be integers such that 1 ≤ r ≤ n and n ≡ 0 (mod r). For k ≥ 2,
if F1, F2, . . . , Fk are factors on n vertices, each of which consist of the vertex disjoint union

of n/r copies of Kr, then

γsd(F1, F2, . . . , Fk) ≤

(

1−

(

r − 1

r

)(

1

k

)
1

r−1

)

n ≤ n(ln(k) + 1)/r.

Proof. Let G = G(F1, . . . , Fk) denote the combined graph of the factoring F1, F2, . . . , Fk

and let G have vertex set V . Let H be the hypergraph with vertex set V and edge set

8



defined as follows: For every copy of Kr in each of the factors Fi, 1 ≤ i ≤ k, add an r-edge
in H defined by the vertices of this copy of Kr. The resulting hypergraph H is an r-uniform
hypergraph on n vertices with m ≤ kn/r edges. The average degree of H is therefore
d = rm/n ≤ k, implying by Theorem 11, that

τ(H) ≤

(

1−

(

r − 1

r

)(

1

k

)
1

r−1

)

n ≤ n(ln(k) + 1)/r.

Every transversal in H is a SD-set in G, implying that γsd(F1, F2, . . . , Fk) ≤ τ(H), and
the desired result follows. ✷

Let g(k, δ) denote the middle term in the inequality chain in Theorem 13. For small k
and small δ, the values of g(k, δ) are given in Table 4 in the Appendix.

Recall that a graph is called well-dominated graph if every minimal dominating set in
the graph has the same cardinality. This concept was introduced by Finbow, Hartnell and
Nowakowski [9]. We remark that if v is an arbitrary vertex of a well-dominated graph
G, then the vertex v can be extended to a maximal independent set, which is a minimal
dominating set. However, every minimal dominating set in G is a minimum dominating
set in G since G is well-dominated. Therefore, every vertex of a well-dominated graph is
contained in a minimum dominating set of the graph.

A graph is 1-extendable-dominated if every vertex belongs to a minimum dominating set
of the graph. We note that every well-dominated graph is a 1-extendable-dominated graph.
However, not every 1-extendable-dominated graph is well-dominated as may be seen by
taking, for example, a cycle C6 or, more generally, a cycle Cn, where n ≥ 8.

Theorem 14 Let F be a 1-extendable-dominated graph of order r. Let n be an integer such

that r ≤ n and n ≡ 0 (mod r). If F1 and F2 are factors on n vertices, each of which consist

of the vertex disjoint union of n/r copies of F , then γsd(F1, F2) ≤
1
r (2γ(F )− 1)n.

Proof. We construct a bipartite graph G as follows. Let V1 and V2 be the partite sets of G
where for i ∈ {1, 2} the vertices of Vi correspond to the n/r copies of F in Fi. An edge in
G joins a vertex v1 ∈ V1 and a vertex v2 ∈ V2 if and only if the copies of F corresponding
to v1 and v2 in F1 and F2, respectively, have at least one vertex in common. We observe
that |V1| = |V2| = n/r.

We show that G contains a perfect matching. Let S be a nonempty subset of vertices of
V1. We consider the corresponding |S| vertex disjoint copies of F in F1. These |S| copies of
F cover exactly r|S| vertices in F1. But the minimum number of copies of F in F2 needed to
cover these r|S| vertices is at least |S| since each copy of F covers r vertices. Every vertex
in V2 corresponding to such a copy of F in F2 is joined in G to at least one vertex of S,
implying that |N(S)| ≥ |S|. Hence by Hall’s Matching Theorem, there is a matching in G
that matches V1 to a subset of V2. Since |V1| = |V2|, such a matching is a perfect matching
in G.

9



Let M be a perfect matching in G. For each edge e ∈ M , select a vertex ve that
is common to the copies of F in F1 and F2 that correspond to the ends of the edge e.
Since F is a 1-extendable-dominated graph, this common vertex ve extends to minimum
dominating set in both copies of F creating a dominating set of these two copies with at
most 2γ(F )− 1 vertices. Let De denote the resulting dominating set of these two copies of
F . Then the set ∪e∈MDe is a SD-set in the combined graph of F1 and F2, implying that
γsd(F1, F2) ≤ |M | · (2γ(F ) − 1) ≤ (2γ(F ) − 1)n/r. ✷

We remark that the bound in Theorem 14 is strictly better than the bound of Theorem 3
and Theorem 10(c) in the case of k = 2 when γ(F ) < (2r + 3)/6. As a consequence of
Theorem 14, we have the following results.

Theorem 15 Let r and n be integers such that 1 ≤ r ≤ n and n ≡ 0 (mod r). If F1 and F2

are factors on n vertices, each of which consist of the vertex disjoint union of n/r copies of

Kr, then γsd(F1, F2) = n/r.

Proof. We note that Kr is a well-dominated graph. Further, γ(Kr) = 1. Applying
Theorem 14 with the graph F = Kr, we have that γsd(F1, F2) ≤ n/r. By Observation 1(a),
we know that γsd(F1, F2) ≥ γ(F1) = n/r. Consequently, γsd(F1, F2) = n/r. ✷

Corollary 16 Let r and n be integers such that 1 ≤ r ≤ n and n ≡ 0 (mod r). If F1 and

F2 are factors on n vertices, each of which contain a spanning subgraph that is the vertex

disjoint union of n/r copies of Kr, then γsd(F1, F2) ≤ n/r.

As an immediate consequence of Corollary 16 and Observation 1, we have the following
observation.

Corollary 17 For n even, if F1 and F2 are factors on n vertices both having a 1-factor,
then γsd(F1, F2) ≤ n/2. Further, if max{γ(F1), γ(F2)} = n/2, then γsd(F1, F2) = n/2.

We next extend the result of Theorem 15 to more than two factors.

Theorem 18 Let r and n be integers such that 1 ≤ r ≤ n and n ≡ 0 (mod r). For k ≥ 2,
if F1, F2, . . . , Fk are factors on n vertices, each of which consist of the vertex disjoint union

of n/r copies of Kr, then

γsd(F1, F2, . . . , Fk) ≤

(

1−

(

r − 1

r

)k−1
)

n.

Proof. We proceed by induction on k ≥ 2. The base case when k = 2 follows from
Theorem 15. Assume, then, that k ≥ 3 and that the result holds for k′ factors, each of

10



which consist of the vertex disjoint union of n/r copies of Kr, where 2 ≤ k′ < k. Let
F1, F2, . . . , Fk be factors on n vertices, each of which consist of the vertex disjoint union
of n/r copies of Kr. First we consider the combined graph G(F1, F2, . . . , Fk−1) with only
F1, F2, . . . , Fk−1 as factors. Let D be a γsd(F1, F2, . . . , Fk−1)-set in G(F1, F2, . . . , Fk−1), and
so |D| = γsd(F1, F2, . . . , Fk−1). By the inductive hypothesis,

|D| ≤

(

1−

(

r − 1

r

)k−2
)

n.

We now consider the combined graph G(F1, F2, . . . , Fk). Since each copy of Kr in Fk can
have at most r vertices from D, the set D must dominate at least |D|/r copies of Kr from
Fk. Therefore in Fk there remains at most n/r−|D|/r copies of Fk that are not dominated
by D. We now extend the set D to an SD-set of G(F1, F2, . . . , Fk) by adding to it one vertex
from each non-dominated copy of Kr of Fk. Hence,

γsd(F1, F2, . . . , Fk) ≤ |D|+
n− |D|

r

=
1

r
(n + (r − 1)|D|)

≤
1

r

(

n+ (r − 1)

(

1−

(

r − 1

r

)k−2
)

n

)

≤
1

r

(

r − (r − 1)

(

r − 1

r

)k−2
)

n

=

(

1−

(

r − 1

r

)k−1
)

n,

completing the proof of the theorem. ✷

We remark that the bound in Theorem 18 is strictly better than the bounds of Theorem 3,
Theorem 10(c) and Theorem 13 when k = 3 and for all r ≥ 3. In particular, we remark
that when k = 3 and r ≥ 3, the bound in Theorem 18 is strictly better than the bound of
Theorem 13 if

1−

(

r − 1

r

)2

< 1−

(

r − 1

r

)(

1

3

)
1

r−1

,

or, equivalently, if
1

3
<

(

r − 1

r

)r−1

.

Since
(

r−1
r

)r−1
attains the value 4/9 when r = 3 and is a decreasing function in r ap-

proaching 0.367879 as r → ∞, the above inequality holds. In the special case in Theorem 18
when k = 3, we have the following result.
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Corollary 19 Let r and n be integers such that 1 ≤ r ≤ n and n ≡ 0 (mod r). If F1, F2, F3

are factors on n vertices, each of which consist of the vertex disjoint union of n/r copies of

Kr, then

γsd(F1, F2, F3) ≤

(

2r − 1

r2

)

n.

Using Corollary 19, the upper bound of Theorem 18 can be improved slightly as follows.

Theorem 20 Let r and n be integers such that 1 ≤ r ≤ n and n ≡ 0 (mod r). For k ≥ 2,
if F1, F2, . . . , Fk are factors on n vertices, each of which consist of the vertex disjoint union

of n/r copies of Kr, then

γsd(F1, F2, . . . , Fk) ≤



















(

k

2r

)

n if k is even

(

r(k + 1)− 2

2r2

)

n if k is odd.

Proof. Suppose first that k is even. Consider the combined graph G(F2i−1, F2i) with only
F2i−1 and F2i as factors, where 1 ≤ i ≤ k/2. For each such i, let Di be a γsd(F2i−1, F2i)-set

in G(F2i−1, F2i) and note that by Theorem 15, we have |Di| = n/r. Let D =
⋃k/2

i=1 Di. Then
the set D is a SD-set of G(F1, F2, . . . , Fk), implying that γsd(F1, F2, . . . , Fk) ≤ |D| ≤ kn/2r.

Suppose next that k is odd. Let D1 be a γsd(F1, F2, F3)-set in the combined graph
G(F1, F2, F3) with only F1, F2, F3 as factors. By Corollary 19, we have |D1| ≤ (2r− 1)n/r2.
For i with 2 ≤ i ≤ (k − 1)/2, consider the combined graph G(F2i, F2i+1) with only F2i and
F2i+1 as factors and let Di be a γsd(F2i, F2i+1)-set in G(F2i, F2i+1). By Theorem 15, we

have |Di| = n/r for 2 ≤ i ≤ (k − 1)/2. Let D =
⋃(k−1)/2

i=1 Di. Then the set D is a SD-set of
G(F1, F2, . . . , Fk), implying that

γsd(F1, F2, . . . , Fk) ≤ |D| ≤

(

2r − 1

r2

)

n+

(

k − 3

2r

)

n =

(

r(k + 1)− 2

2r2

)

n,

which established the desired upper bound in this case when k is odd. ✷

We remark that the bound in Theorem 20 is strictly better than the bounds of Theorem 3
and Theorem 10(c) for r ≥ 3. Further the bound in Theorem 20 is strictly better than the
bound of Theorem 13 for r ≥ 4.

We close this section by considering the special case when every factor in the combined
graph is the disjoint union of copies of K2. If G is a graph of even order and if F is a
1-regular spanning subgraph of G, we call F a 1-factor of G. Hence if F is a 1-factor of a
graph G of order n, then F = n

2K2 and the edges of F form a perfect matching in G.
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Theorem 21 For k ≥ 2 and n even, if F1, F2, . . . , Fk are 1-factors on n vertices, then

γsd(F1, F2, . . . , Fk) ≤



















(

k − 1

k

)

n if k is even

(

k

k + 1

)

n if k is odd.

and these bounds are sharp.

Proof. Let G = G(F1, . . . , Fk) denote the combined graph of the factoring F1, F2, . . . , Fk

and let G have vertex set V . Then, ∆(G) ≤ k. By Brook’s Coloring Theorem, χ(G) ≤ k+1
with equality if and only if G has a component isomorphic to Kk+1 or a component that is
an odd cycle and k = 2.

We show that every component of G has even order. Suppose to the contrary that there
is a component, F , in G of odd order. For each vertex v in V (F ), let v′ be its neighbor in
F1 =

n
2K2 and let S = ∪v∈V (F ){v, v

′}. Then, V (F ) = S. However, |S| is even, while |V (F )|
is odd, a contradiction. Therefore, every component of G has even order. In particular, no
component of G is an odd cycle.

If k is odd, then by Theorem 10(c), γsd(F1, F2, . . . , Fk) ≤ kn/(k + 1), as desired. If k is
even, then no component of G is isomorphic to Kk+1, implying that χ(G) ≤ k. This in turn
implies that α(G) ≥ n/χ(G) = n/k, and so, by Observation 7 and Theorem 10(a) we have
that γsd(F1, F2, . . . , Fk) ≤ τ(G) = n− α(G) ≤ (k − 1)n/k, as desired.

That these bounds are sharp may be seen as follows. For k odd, take n ≡ 0 (mod k + 1).
Then the 1-factors F1, F2, . . . , Fk of Kn can be chosen so that the combined graph G consists
of the disjoint union of n/(k + 1) copies of Kk+1. Let S be an SD-set in G of minimum
cardinality and let F be an arbitrary copy of Kk+1 in G. If |S ∩ V (F )| ≤ k − 1, then there
would be two vertices, u and v, in F that do not belong to S. However the edge uv belongs
to one of the factor of G, implying that in such a 1-factor neither u nor v is dominated by S,
a contradiction. Hence, |S∩V (F )| ≥ k. This is true for every copy of Kk+1 in G. Therefore,
γsd(F1, F2, . . . , Fk) = |S| ≥ kn/(k + 1). As shown earlier, γsd(F1, F2, . . . , Fk) ≤ kn/(k + 1).
Consequently, γsd(F1, F2, . . . , Fk) = kn/(k + 1).

For k even, we simply take Fk−1 = Fk, and note that in this case γsd(F1, F2, . . . , Fk) =
γsd(F1, F2, . . . , Fk−1). Since k− 1 is odd, the construction in the previous paragraph shows
that the 1-factors F1, F2, . . . , Fk−1 of Kn can be chosen so that the combined graph G
satisfies γsd(F1, F2, . . . , Fk) = (k − 1)n/k. ✷

We remark that the bound in Theorem 21 is better than the bound of Theorem 13 always,
better than the bound of Theorem 3 for k ≥ 2, and better than the bound of Theorem 10(c)
for k even.
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6 Cycle Factors

In this section, we consider the case when each factor is a cycle or a disjoint union of cycles.
As a consequence of Corollary 16, we have the following upper bound on the simultaneous
domination number of a combined graph with two factors, both of which are cycles or paths.

Theorem 22 The following holds.

(a) For n ≡ 0 (mod 2) and n ≥ 4, γsd(Cn, Cn) ≤ n/2 and γsd(Pn, Pn) ≤ n/2.
(b) For n ≡ 1 (mod 2) and n ≥ 5, γsd(Cn, Cn) ≤ (n + 1)/2.

Proof. (a) For n ≡ 0 (mod 2) and n ≥ 4, both the cycle Cn and the path Pn contains
a spanning subgraph that is the vertex disjoint union of n/2 copies of K2, and so by
Corollary 16, we have that γsd(Cn, Cn) ≤ n/2 and γsd(Pn, Pn) ≤ n/2.

(b) For n ≡ 1 (mod 2) and n ≥ 3, let v be an arbitrary vertex in the cycle Cn. Deleting the
vertex v from the cycle, we produce a path Pn−1, where n−1 ≡ 0 (mod 2). Applying Part (a),
we have that γsd(Pn−1, Pn−1) ≤ (n− 1)/2. Adding the deleted vertex v to a minimum SD-
set in the combined graph with the two paths Pn−1 as factors, we produce a SD-set in the
original combined graph with the two cycles Cn as factors of cardinality γsd(Pn−1, Pn−1) +
1 ≤ (n+ 1)/2. ✷

For generally, we can establish the following upper bound on the simultaneous domination
number of a combined graph with k ≥ 2 factors, each of which is a cycle. For simplicity,
we restrict the number of vertices to be congruent to zero modulo 6.

Theorem 23 For k ≥ 2 and n ≡ 0 (mod 6), let F1, F2, . . . , Fk be factors on n vertices, each

of which is isomorphic to a cycle Cn. Then,

γsd(F1, F2, . . . , Fk) ≤

(

1−
1

2

(

2

3

)k−2
)

n.

Proof. We proceed by induction on k ≥ 2. The base case when k = 2 follows from
Theorem 22(a). Assume, then, that k ≥ 3 and that the result holds for k′ factors, each of
which is isomorphic to a cycle Cn, where 2 ≤ k′ < k. Let F1, F2, . . . , Fk be factors on n
vertices, each of which is isomorphic to a cycle Cn. First we consider the combined graph
G(F1, F2, . . . , Fk−1) with only F1, F2, . . . , Fk−1 as factors. Let D be a γsd(F1, F2, . . . , Fk−1)-
set in G(F1, F2, . . . , Fk−1), and so |D| = γsd(F1, F2, . . . , Fk−1). By the inductive hypothesis,

|D| ≤

(

1−
1

2

(

2

3

)k−3
)

n.

We now consider the combined graph G(F1, F2, . . . , Fk). Let Fk be the cycle v1v2 . . . vnv1.
For i = 1, 2, 3, let Di = {vj | j ≡ i (mod 3)}. We note that for i ∈ {1, 2, 3}, each set Di
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is a dominating set in Fk and |Di| = n/3. We now extend the set D to a SD-set of
G(F1, F2, . . . , Fk) as follows. Renaming vertices, if necessary, we may assume that

|D ∩D1| = max
1≤i≤3

|D ∩Di|.

Thus, |D| =
∑3

i=1 |D ∩Di| ≤ 3|D ∩D1|, or, equivalently, |D ∩D1| ≥ |D|/3. Let S be the
set of vertices in D1 that do belong to D. Then, S = D1 \D and |S| = |D1| − |D ∩D1| ≤
n/3 − |D|/3. Since D1 ⊆ D ∪ S and D1 is a dominating set of Fk, the set D ∪ S is a
dominating set of Fk. Since D is a DS-set of G(F1, F2, . . . , Fk−1), the set D is a dominating
set in Fi for 1 ≤ i ≤ k − 1. Hence, D ∪ S is a SD-set of G(F1, F2, . . . , Fk), implying that

γsd(F1, F2, . . . , Fk) ≤ |D|+ |S|

≤ |D|+ n−|D|
3

≤ n+2|D|
3

≤ 1
3

(

n+ 2
(

1− 1
2

(

2
3

)k−3
)

n
)

=
(

1− 1
2

(

2
3

)k−2
)

n,

completing the proof of the theorem. ✷

We remark that Theorem 23 is better than Theorem 21 when k = 3, since in this case
the upper bound of Theorem 23 is 2n/3 while that of Theorem 21 is 3n/4.

6.1 C4-Factors

We consider here the case when every factor in the combined graph is the disjoint union of
copies of a 4-cycle. As a consequence of Corollary 17, we have the following result.

Theorem 24 For n ≡ 0 (mod 4), let F1 and F2 be factors on n vertices, both of which are

isomorphic to n
4C4. Then, γsd(F1, F2) = n/2.

Proof. We observe that F1 and F2 are factors on n vertices both having a 1-factor. Further,
each of the n/4 copies of C4 in F1 need two vertices to dominate that copy of C4, implying
that γ(F1) ≥ n/2. The desired result now follows from Corollary 17. ✷

Theorem 25 For n ≡ 0 (mod 4), let F1, F2, F3 be factors on n vertices, each of which is

isomorphic to n
4C4. Then, γsd(F1, F2, F3) ≤ 3n/4.

Proof. First we consider the combined graph G(F1, F2) with only F1 and F2 as factors.
Let D be a γsd(F1, F2)-set in G(F1, F2). By Theorem 24, |D| = n/2. We next consider
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the factor F3. For 0 ≤ i ≤ 4, let ni denote the number of copies of C4 in F3 that contain
exactly i vertices in the set D. Counting the number of vertices not in D, we have that

n

2
= n− |D| =

4
∑

i=0

(4− i)ni ≥ 4n0 + 3n1,

implying that 2n0 + n1 ≤ 2n0 + 3n1/2 ≤ n/4. We now extend the set D to a SD-set of
G(F1, F2, F3) as follows. From each copy of C4 in F3 that contains exactly one vertex in D,
we add to D the vertex that is not adjacent in F3 to a vertex of D. From each copy of C4 in
F3 that contains no vertex in D, we add any two vertices to D. The resulting set is a SD-set
of G(F1, F2, F3), implying that γsd(F1, F2, F3) ≤ |D|+ 2n0 + n1 ≤ n/2 + n/4 = 3n/4. ✷

We remark that the bound in Theorem 24 is strictly better than the bounds of Theorem 3
and Theorem 10(c) when k = 2. The bound in Theorem 25, namely 3n/4, is better than
the general probabilistic bound of Theorem 12, namely f(3, 2)n = 7n/9 (see Table 3).

6.2 C5-Factors

We consider here the case when every factor in the combined graph is the disjoint union of
copies of a 5-cycle.

Theorem 26 For n ≡ 0 (mod 5) and k ≥ 2, let F1, F2, . . . , Fk be factors on n vertices, each

of which is isomorphic to n
5C5. Then, γsd(F1, F2) ≤ 3n/5 and this bound is sharp. Further,

for k ≥ 3,

γsd(F1, F2, . . . , Fk) ≤

(

3

5
+

2

5

(

1−

(

3

5

)k−2
))

n.

Proof. We proceed by induction on k ≥ 2. Let F1 and F2 be factors on n vertices, where
both F1 and F2 consist of the vertex-disjoint union of n/5 copies of C5. Since the 5-cycle
C5 is well-dominated, we have by Theorem 14 that γsd(F1, F2) ≤

1
5 (2γ(C5) − 1)n = 3n/5.

This establishes the base case when k = 2. Assume, then, that k ≥ 3 and that the
result holds for k′ factors, each of which consist of the vertex disjoint union of n/5 copies
of C5, where 2 ≤ k′ < k. Let F1, F2, . . . , Fk be factors on n vertices, each of which is
isomorphic to n

5C5. First we consider the combined graph G(F1, F2, . . . , Fk−1) with only
F1, F2, . . . , Fk−1 as factors. Let D′ be a γsd(F1, F2, . . . , Fk−1)-set in G(F1, F2, . . . , Fk−1),
and so |D′| = γsd(F1, F2, . . . , Fk−1). By the inductive hypothesis, |D′| ≤ 3n/5 if k = 3,
while for k ≥ 4, we have

|D′| ≤

(

3

5
+

2

5

(

1−

(

3

5

)k−3
))

n.

We add vertices to D′, if necessary, until the cardinality of the resulting superset D is
either 3n/5 if k = 3 or is precisely the expression on the right-hand side of the above
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inequality if k ≥ 4. Since D′ is a SD-set of G(F1, F2, . . . , Fk−1), so too is the set D. We now
consider the combined graph G(F1, F2, . . . , Fk). For 0 ≤ i ≤ 5, let ni denote the number
of copies of C5 in Fk that contain exactly i vertices in the set D. Counting the number of
vertices not in D, we have that

2

5

(

3

5

)k−3

n = n− |D| =

5
∑

i=0

(5− i)ni ≥ 5n0 + 4n1 + 3n2 ≥ 5n0 + 5(n1 + n2)/2,

implying that

2n0 + n1 + n2 ≤
4

25

(

3

5

)k−3

n.

We now extend the set D to a SD-set of G(F1, F2, . . . , Fk) as follows. From each copy
of C5 in Fk that contains no vertex of D, we add two vertices that dominate that copy of
C5. From each copy of C5 in Fk that contains one or two vertices of D, we select one such
vertex of D and we add to D a vertex from that copy of C5 that is not adjacent in Fk to
that selected vertex. The resulting set is a SD-set of G(F1, F2, . . . , Fk), implying that

γsd(F1, F2, . . . , Fk) ≤ |D|+ 2n0 + n1 + n2.

If k = 3, then

γsd(F1, F2, . . . , Fk) ≤
3n

5
+

4n

25
=

(

3

5
+

2

5

(

1−

(

3

5

)k−2
))

n.

If k ≥ 4, then

γsd(F1, F2, . . . , Fk) ≤

(

3

5
+

2

5

(

1−

(

3

5

)k−3
))

n+
4

25

(

3

5

)k−3

n

=

(

3

5
+

2

5

(

1−

(

3

5

)k−3

+
2

5

(

3

5

)k−3
))

n

=

(

3

5
+

2

5

(

1−
3

5

(

3

5

)k−3
))

n

=

(

3

5
+

2

5

(

1−

(

3

5

)k−2
))

n.

completing the proof of the upper bound of the theorem. That the bound is sharp when
k ≥ 2, may be seen as follows. For r ≥ 1, let G = rK5 be the disjoint union of r copies of
K5 and let G have order n. Then there exists two edge-disjoint spanning subgraphs, F1 and
F2, of G both of which are isomorphic to the disjoint union of r copies of C5. In order to
simultaneously dominate the copies of C5 in F1 and F2 corresponding to a copy of K5 in G
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at least three vertices are needed, implying that γsd(F1, F2) ≥ 3r = 3n/5. By Theorem 26,
γsd(F1, F2) ≤ 3n/5. Consequently, γsd(F1, F2) = 3n/5 in this case. ✷

We remark that the bound in Theorem 26 is strictly better than the bounds of Theorem 3
and Theorem 10(c) when k = 2. Theorem 26 (when k = 2) implies the following result.

Theorem 27 γsd(2, 2, n) ≥ 3n/5.

7 Open Questions and Conjectures

Recall that in Theorem 27, we established that γsd(2, 2, n) ≥ 3n/5. The following conjecture
was posed by Dankelmann and Laskar [8], albeit using different notation.

Conjecture 1 γsd(2, 2, n) = 3n/5.

By Theorem 26, if Conjecture 1 is true, then it suffices to prove the following state-
ment: If F1 and F2 are factors on n vertices both having minimum degree at least 2, then
γsd(F1, F2) ≤ 3n/5.

Recall that in Theorem 22, for n ≡ 0 (mod 2) and n ≥ 4, we show that γsd(Cn, Cn) ≤ n/2
and γsd(Pn, Pn) ≤ n/2. Further for n ≡ 1 (mod 2) and n ≥ 5, γsd(Cn, Cn) ≤ (n+ 1)/2. We
pose the following problem.

Problem 1 For all n ≥ 4, determine the exact value of γsd(Cn, Cn) and γsd(Pn, Pn).

Recall by Corollary 17 that if F1 and F2 are factors on n vertices both having a 1-factor,
then γsd(F1, F2) ≤ n/2. Further, if max{γ(F1), γ(F2)} = n/2, then γsd(F1, F2) = n/2. We
close with the following problem that we have yet to settle.

Problem 2 Characterize the connected factors F1 and F2 on n vertices that have a 1-factor
and satisfy γsd(F1, F2) = n/2.

For n even, let G be the family of graphs G whose vertex set can be partitioned into two
sets X and Y such that |X| = |Y | = n/2, the set [X,Y ] of edges that join a vertex of X
and a vertex of Y is a 1-factor in G, the set X is independent, and the subgraph G[Y ] is
connected. By construction, every graph in the family G is connected, has a 1-factor and
has domination number one-half its order. Therefore by Corollary 17, we observe that if
F1 and F2 are factors on n vertices that belong to the family G, then γsd(F1, F2) = n/2.
However we have yet to provide a characterization of all factors F1 and F2 that meet the
requirements of Problem 2.
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APPENDIX:

k 2 3 4 5 6 7

γsd(k, n)
2

3

3

4

5

6

7

8

9

10

11

12

Table 1. Upper bounds on γsd(k, n) in Theorem 3 for small k.

k 2 3 4 5 6 7

γsd(k, n)
2

3

3

4

4

5

5

6

6

7

7

8

Table 2. Upper bounds on γsd(k, n) in Theorem 10(c) for small k.

k
2 3 4 5

1 0.8750 0.9167 0.9375 0.9500
2 0.7278 0.7777 0.8075 0.8278

r 3 0.6250 0.6724 0.7023 0.7237
4 0.5501 0.5935 0.6217 0.6432
5 0.4930 0.5325 0.5586 0.5779

Table 3. Approximate values of f(k, δ) in Theorem 12 for small k and δ.

k
2 3 4 5

2 0.7500 0.8333 0.8750 0.9000
r 3 0.5286 0.6151 0.6666 0.7018

4 0.4047 0.4800 0.5275 0.5614
5 0.3272 0.3921 0.4343 0.4650

Table 4. Approximate values of g(k, δ) in Theorem 13 for small k and δ.
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