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Abstract

Rainbow connection numherc(G), of a connected graph G is the minimum number of colors netdealor its edges
so that every pair of vertices is connected by at least orteipawhich no two edges are colored the same (Note that the
coloring need not be proper). In this paper we study the maintonnection number with respect to three imporgmaph
productoperations (namelgartesian produgtlexicographic producandstrong product and the operation of taking the
power of a graph In this direction, we show that iff is a graph obtained by applying any of the operations meation
above on non-trivial graphs, ther(G) < 2r(G) + ¢, wherer(G) denotes the radius @f andc € {0, 1,2}. In general
the rainbow connection number of a bridgeless graph can b&ghsas the square of its radidg [1]. This is an attempt to
identify some graph classes which have rainbow connectimnber very close to the obvious lower bounddefimeter
(and thus the-adius). The bounds reported are tight upto additive constants. pfbofs are constructive and hence yield
polynomial time(2 + %)-factor approximation algorithms.
Keywords: Graph Products, Graph Power, Rainbow Coloring.

1 Introduction

Edge colouringf a graph is a function from its edge set to the set of natunadlvers. A path in an edge coloured graph with
no two edges sharing the same colour is callegi@bow path An edge coloured graph is said to f@nbow connected
every pair of vertices is connected by at least one rainbdin guch a colouring is calledrainbow colouringof the graph.
The minimum number of colours required to rainbow colour anaxted graph is called itainbow connection number
denoted by¢(G). For example, the rainbow connection number of a completplyisl, that of a path is its length, and
that of a star is its number of leaves. For a basic introdadtidhe topic, see Chaptét in [7].

The concept of rainbow colouring was introduced]in [6]. Itsshown in[[8] that computing the rainbow connection
number of a graph is NP-Hard. To rainbow colour a graph, in@gh to ensure that every edge of some spanning tree in the
graph gets a distinct colour. Hence order of the graph mimes®an upper bound for rainbow connection number. Many
authors view rainbow connectivity as one ‘quantifiable’ vedigtrengthening the connectivity property of a graph [2L2],
Hence tighter upper bounds on rainbow connection humbegrfaphs with higher connectivity have been a subject of
investigation. The following are the results in this difentreported in literature: Le&% be a graph of order. If G is 2-edge-
connected (bridgeless), thea(G) < 4n/5 — 1 and if G is 2-vertex-connected, thewa(G) < min{2n/3,n/2+ O(y/n)}

[2]. This was very recently improved inl[5], where it was shothat if G is 2-vertex-connected, therc:(G) < [n/2],
which is the best possible upper bound for the case. It alpoaved the previous best known upper bound¥arertex
connected graphs 8{n + 1)/5 [14]. It was shown in[[12] thatc(G) < 20n/§ whered is the minimum degree a. The
result was improved iri [4] where it was shown thafG) < 3n/(5+1) + 3. Hence it follows thatc(G) < 3n/(A+1)+3

if G is A\-edge-connected ant(G) < 3n/(k + 1) + 3 if G is k-vertex-connected. It was shown [A [5] that the above
bound in terms of edge connectivity is tight up to additivastants and that the bound in terms of vertex connectivity ca
be improved tq2 + €)n/x + 23 /€2, for anye > 0.

Many, but not all, of the above bounds are increasing funstafn. Since diameter, and hence radius, are lower bounds
for rainbow connection number, any upper bound which is atian of one of the lower bounds alone is of great interest.
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Apart from the structural insights that it gives to the pmb| it can also have applications in the design and analysis o
approximation algorithms for rainbow colouring, which isdwn to be an NP-hard problem [3]. For a general graph, the
rainbow connection number cannot be upper bounded by aifumut radius or diameter alone. For instance, the Atar,

has a radiug but rainbow connection number Still, the question of whether such an upper bound existsgecial graph
classes remain.

A very general result in this direction is the one by Basguaed al. [1] which says that for every bridgeless graph
of radiusr, the rainbow connection number is upper bounded ({@y+ 2). They also demonstrate that the above bound,
which is quadratic in the radius, is tight not just for britegs graphs but also for graphs of any higher connectivity.
This result was extended to graphs with bridges_ in [8]. Thisws open a few interesting questions. Which classes of
graphs have upper bounds on rainbow connection nhumber vig{d) constant factor of radius, (2) additive factor above
radius, etc. Itis evident that answers to these questiolh&@p in the design and analysis of constant factor andtagdi
factor approximation algorithms for the problem. Moreguhey can give hints to answering the still open question of
characterising graphs for which the rainbow connectionlpems equal to the diameter. Such additive factor upper ésun
were demonstrated for unit interval, interval, AT-freecailar arc, threshold and chain graphslih [4]. Basavarajaldfl]
also showed that rainbow connection number will have a emgactor upper bound on bridgeless graphs in which the size
of a maximum induced cycle (chordality) is bounded indegenlg of radius.

In this paper, we demonstrate a large class of graphs forhathie rainbow connection number is upper bounded by
a linear function of its radius. We study the rainbow conimechumber with respect to three importagraph product
operations (namelgartesian productiexicographic producandstrong productand the operation of taking thpower of a
graph Specifically, we show that 7 is a graph obtained by applying any of the operations meati@iove on non-trivial
graphs, themc(G) < 2r(G) + ¢, wherer(G) denotes the radius @f andc € {0,1,2}. The bounds reported are either
tight or tight upto additive constants. See Secfion 1.2Herexact statements. The proofs are constructive and hézide y
polynomial time(2 + %)—factor approximation algorithms.

The rainbow connection number of some graph products hasegent attention [13.19, 11]. One way to bound the
rainbow connection number of a graph product is in terms @fr#finbow connection number of the operand graphs. Such
an approach was adopted by Li et al. ][13] to study rainbow eotion number with respect to Cartesian product and the
strong product. In particular, they show that the rainbowneetion number of the Cartesian product and hence thegstron
product of two connected graphs are upper bounded by the st inbow connection numbers of the operand graphs.
Later, it was shown in_[9] that the rainbow connection humdiiethe strong product of two connected graphs is upper
bounded by the larger of the rainbow connection numbersebierand graphs. Most of the bounds mentioned above
can be far from being tight when the rainbow connection nunatb¢he operand graphs is much higher than their radii.
The importance of the bounds reported here is that they depandent of the rainbow connection number of the operand
graphs and depends only on the radius of the resultant graph.

1.1 Preliminaries

The graphs considered in this paper are finite, simple anitestdd. Given a grap&', |G| denotes the number of vertices
in the graph, also called trrder of G. A trivial graph is a graph of order O or 1.

Given a graph, awalk in G, from vertexu to vertexv is defined as a sequence of vertices (not necessarily djstinc
starting at: and ending at, say(u = ug), u1, ..., (ur = v) such thafu;, u;+1) € E(G) for0 <i <k — 1. Awalkin
which all the vertices are distinct is calleghath The length of a path is the number of edges in that path. Asiertex is
considered to be a path of lendthThedistancebetween two verticeg andv in G is the length of a shortest path between
them and is denoted st (u, v). Given two walksWy = wug, us, . .., u andWs = vg, v1, . . ., v; such thaty, = vg, we
canconcatenaté?’; andW, to get a longer walkiV = W;. Wy = g, uq, . . ., (ur = vg), v1,v2,. .., U

Given a graphG, theeccentricityof a vertex,p € V(G) is given byecc(v) = max{distg(v,u) : u € V(G)}. The
radiusof G is given byr(G) = min{ecc(v) : v € V(G)} and thediameterof G is defined agliam(G) = max{ecc(v) :

v € V(G)}. A central vertexof G is a vertex with eccentricity equal to the radiugcaf

Definition 1 (The Cartesian Product)Given two graph&s and H, the Cartesian product af and H, denoted by-[1H,
is defined as followsV (GOH) = V(G) x V(H). Two distinct vertice$gy, h1] and[gz, h2] of GO H are adjacent if and
only if eitherg; = g2 and(hy, hs) € E(H) or hy = he and(g1, g2) € E(G).



Definition 2 (The Lexicographic Product)Given two graphgs and H, the lexicographic product a and H, denoted by
G o H, is defined as followsV' (G o H) = V(G) x V(H). Two distinct vertice§y:, k1] and[ga, h2] of G o H are adjacent
if and only if either(g1, g2) € E(G) or g1 = g2 and(hq, h2) € E(H).

Definition 3 (The Strong Product)Given two graph&~ and H, the strong product ofs and H, denoted byG X H, is
defined as followsV (G X H) = V(G) x V(H). Two distinct vertice$g,, h1] and[gz, ho] of G X H are adjacent if and
only if one of the three conditions hold:

1. g1 = g2 and(hy, h2) € E(H) or
2. hy = hg and(g1,92) € E(G) or
3. (91,92) € E(G) and(h1, he) € E(H).

It is easy to see from the definitions of the products aboveithd = K (respectivelyd = K;) then the resultant
graph is isomorphic téf (respectivelyG). The above graph products are extensively studied in gitegadry. See [1/0] for
a comprehensive treatment of the topic.

Definition 4 (Power of a graph) The k-th Power of a graph, denoted by;* wherek > 1, is defined as follows:
V(G*) = V(G). Two verticesu and v are adjacent inV (GF) if and only if the distance between verticesand v in
G,i.e. distg(u,v) < k.

Given a graplG, another grapld’ is called aspanning subgrapbf G if G’ is a subgraph off andV (G’) = V(G). A
vertexw is calleduniversalif it is adjacent to all the other vertices in the graph.

Given atred’, the unique path between any two verticeandov in T is denoted byPr(u, v). Itis sometimes convenient
to consider some vertex from the tree as special; such axisrtieen called theoot of this tree. A tree with a fixed root is
called arooted tree

Let T be arooted treewith rootroot(T') = vo. Thelevel numbenf any vertexs € T is given byl (v) = distr (v, vp).

If the tree in context is clear then we simply uge). Thedepthof T' is given byd(T') = max{{(v) : v € V(T)}. Given
two verticesu, v € V(T'), u is called arancestonf v if u € Pr(v,vp). Itis easy to see thdfv) > ¢(u). If u is an ancestor
of v and{(v) = ¢(u) + 1 thenu is called theparentof v and is denoted byarent(v).

Definition 5 (Layer-wise Coloring of a Rooted Treelsiven a rooted tre€l” and an ordered multi-set of colors =
{¢; + 1 < i < n}wheren > d(T), we define the edge coloringy ¢ : E(T) — C as frc((u,v)) = ¢; where
i = max{f(u), £(v)}. We refer tofr c as the Layer-wise Coloring df that uses colors from the sét

Given an edge coloring of a graphG using colors from the set, let C’ C C. Consider a path id that is rainbow
colored with respect tg. We call this path &’-Rainbow-Pathf every edge of the path is colored only from the €&t

Observation 1. Let T' be a rooted tree and’ = {c1,cs,...,c,} be an ordered set of colors sueh # ¢; fori # j
andn > d(T). Let fr,c be the Layer-wise Coloring df’ using colors fromC. If u,v € V(T) such thatu is an
ancestor ofv in T, then Pr(v,u) is a C-Rainbow-Path with respect to the colorifig . In particular Pr(v,u) is a
{Co(u)+1, Coquy+25 - - - » Coqw) y-Rainbow-Path with respect tfr .

Recall the definition of the Cartesian Product of two gra@tend H, denoted byGOH. We define a decomposition of
GUOH into edge disjoint subgraphs as follows:

Definition 6 ((G,H)-Decomposition oy H). Given graphsz and H with vertex setd’ (G) = {g; : 0 < i < |G| — 1}
andV(H) ={h; : 0 <i <|H| — 1} respectively. We define a decompositiotafH as follows:

For0 < j < |H| — 1, define induced subgraphs,;, with vertex setsV' (G,) = {[g:, h;] : 0 < < |G| — 1}. Similarly, for
0 <1i < |G| — 1, define induced subgraphd;, with vertex setsy (H;) = {[g:, h;] : 0 < j < |H| — 1}. Then we have the
following:

1. For0 <j < |H| -1, G, isisomorphic taz and for0 < ¢ < |G| — 1, H; is isomorphic taH..

2. For0<i<j<|H|-1,V(Gi)NV(G;) =0 and henc&(G;) N E(G;) = 0.

3. Foro<k<I<|G|—1,V(Hy) NV (H;) =0 and henceE(Hy) N E(H;) = (.

4. For0<j<|H|-1land0<i<|G|—-1,V(G;)NV(H;) = [gi;, h;] and E(G;) N E(H;) = 0.
We callGy, Ga, ..., G g1, Hi, Ha, . .., Hig)—1 as the(G,H)-Decomposition of GLIH.



1.2 Our Results

1. If G is a connected graph thetG*) < rc(G*) < 2r(GF) + 1 for all k > 2. The upper bound is tight up to an
additive constant of. Note that(G*) = [@W [See Theoreml1, Secti@n 2]

2. If G andH are two connected, non-trivial graphs thel&0JH) < re(GOH) < 2r(GOH). The bounds are tight.
Note that"(GOH) = r(G) + r(H). [See Theoreinl2, Sectigh 3]

3. Given two non-trivial graph& and H such thatz is connected we have the following:

(@ fr(Go H) > 2thenr(Go H) <re(Go H) <2r(Go H). This bound is tight.
(b) If r(G o H) = 1thenl < r¢(G o H) < 3. This bound is tight.

[See Theoremnl3, Sectidh 4]

4. If G andH are two connected, non-trivial graphs thé’ X H) < r¢(GX H) < 2r(GX H) + 2. The upper bound
is tight up to an additive constat Note thatr(G X H) = maz{r(G),r(H)}. [See Theoreml4, Sectidh 5]

Most of the bounds available in literature for graph prodwse in terms of raibow connection number of the operand
graphs and hence can be far from being tight when the rainloowextion number of the operand graphs is much higher
than their radii. It may happen that(G) or rc(H) are very large whereas(GOH), re(G X H), etc. are very small in
comparison. For example &t = K , andH = K> then by the result in [13f;,c(GOH) < n+ 1 and by the result ir_ [9],
re(G X H) < n. But our results show that(GOH) < 4 andrc(G X H) < 4. This suggests that the rainbow connection
number of product of graphs may be related to the radii of ierand graphs (and hence on the radius of the resultant
graph) rather than on their rainbow connection numbers.rébgts reported here confirm that it is indeed the case. yt ma
be noted that a similar case is true even for graph powerg.igha(G*) is independent ofc(G) and is upper-bound by a

linear function ofr(G*) = [@1.

2 Rainbow Connection Number of the k-th Power of a Graph H

For k > 1, recall that the&-th power of a graph Hdenoted byi*, as follows:V (H*) = V(H) and any two vertices
andv € V(H*) are adjacent if and only ifisty (u, v) < k. Itis easy to verify that(H*) = [@W anddiam(H") =

’Vdian;(H)—‘.

SinceH' = H, for the remainder of this section we assume that 2. Let T be theBFS-Treerooted at some central
vertex, sayhg, of H. Then clearly the depth of tree @(T) = r(H). ClearlyT* is a spanning subgraph é* and hence
rc(H*) < rc(T*). So in order to derive an upper bound fef H*) in terms ofr(H*) it is enough to derive an upper

bound forrc(T*) in terms of[@w (r(HF) = [@1).

LetV(T)={h;:0<i<|H|-1}.For0<i<k—1,letV;={ue V(T): {r(u) > 0andlr(u) =¢ mod k}.Itis
easy to see that = W) V; w{ho}.
For0<i<k—1land0<j< [@} we defineV/ = {u € V; U {ho} : VTT(“)W = j}. Note thatifu € V(T) \ {ho}

thenwu belongs to exactly onizf'ij where0 <i<k—1landl <j < [@W Forall0 < i < k — 1, vertexhy is the only

vertex inV;.

Now we define a functiomar: V(T') \ {ho} — V(T) as follows:vVu € V(T) \ {ho}, par(u) = v such that ifu € V/
thenv € V7" and(u, v) € E(T*). Such a vertex always exists because of the following reasons: 4f /7 (u) < k then
u € V; for some0 < i < k — 1; we may choose to beh, sincehy € V.? and(hg,u) € E(TF). If 1(u) > k then we
may choose to be the ancestor af in T such thats(v) = ¢7(u) — k. Then clearlyy € V7" and(u,v) € E(T*).

For0 < i < k — 1, define graplt?; with vertex setV (G;) = V; U {ho} and edge sef(G;) = {(u, par(u)) : u € V;}.
Since every vertex irG; has a path td, the only vertex inV?, G; is connected. Moreover using the definition of



the functionpar, it is easy to verify thatz; does not contain any cycle. Henc¢g is atree. Fo0 < i < k — 1 let
root(G;) = ho. Fori # j we haveV (G;) N V(G;) = {ho}, a singleton set and hené&G;) N E(G;) = 0.

We define an edge coloring; E(T*) — AwBw{c}whereA={a;: 1 <i < [d(T)/k] },B={b;:1<i< [d(T)/k]
} and{c} are ordered sets of colors. SinE¢G;)NE(G;) = 0 fori # j, in order to define the edge colorirfgt is sufficient
to define an edge coloring 6;, for 0 < i < k — 1 and an edge coloring of all the remaining edge& bf separately. For
0<i<k-—1,ifi =0 mod 2then we choose theayer-wise Coloringfg,, 4 to color the edges af¥; else we choose
Layer-wise Coloringfs, 5 to color the edges af;. All the remaining edges df* are colored-.

Claim 1. The edge coloring is a rainbow coloring off’*

Proof. Letw andv be two distinct vertices ¢f'*. Without loss of generality let # hq. Thenu € G; where0 < i < k—1.
By Observatiof there is arA-Rainbow-Pati{B-Rainbow-Pathfrom « to kg if 4 is even(odd). Now we can assume that
u,v # hy. Letu € V(G;) andv € V(G,). To illustrate a rainbow path betweerandv we consider the following two
cases.

Casel: [When |i — j| =1 mod 2]
Without loss of generality let=0 mod 2andj =1 mod 2.

LetQ: = Pg,(u, ho) andQ2 = Pg, (ho, v) be theA andB-Rainbow-Path#é G; andG; with respect to théayer-wise
Colorings fc, 4 and fg,,  respectively (Se®bservatioil). It follows thatQ; and@, areA andB-Rainbow-Path# Tk
with respect to edge colorinf} Clearly@ = Q1.Q- is a(A U B)-Rainbow-Pattlirom vertexu to vertexv.

Case2: [When |i — j| =0 mod 2]
Without loss of generality we may assume thatv) > (1 (u).

If (u,v) € E(T*) then there is a trivial rainbow path between them/4ifu;) < 1 and/r(us) < 1then 1, us) €
E(T*) (sincek > 2). We consider the case whén,v) ¢ E(T*). This happens when the level number of one of the
vertices is> 2 i.e. {r(v) > 2. Letv; € V(T*) be the parent of in T. Sincelr(v) > 2, v; # ho. Letv; € G; where
lp(v1) = ¢r(v) — 1 =1 mod k. FromCase lwe know that there is 84 U B)-Rainbow-Pathsay P, between vertices
andv; sinceli — | =1 mod 2. Edge(v,v;) is colorede since(v,v1) ¢ E(G;) forany0 < i < k — 1. ExtendingP by
edge(v, v1) we get the required rainbow path between verticasidv.

We have thus proved thdtis a rainbow coloring of *. O

Theorem 1. If H is any connected, non-trivial graph then for &> 2, r(H*) < rc(HF) < 2r(H*) + 1.

Proof. The edge coloring uses|A| + |B| + |{c}| = 2r(H*) + 1 colors. The upper bound follows fro@laim[I. The
lower bound is trivial. O

Tight Example:
Let H be a path or2kr + 1 vertices. Itis easy to see that(H*) > diam(H") = 2r(H*).

3 Rainbow Connection Number of the Cartesian Product of Two Mn-trivial
Graphs G’ and H’

Recall that the Cartesian produ€¥[J H’, of two graphs5’ andH' is defined as followsV (G'OH’) =V (G') x V(H').
Two distinct verticesdy, h1] and [g2, ho] of G'OJH' are adjacentiéither g1 = go and @1, ha) € E(H') or (g1, g2) € E(G’)
andhy = hq. Itis easy to verify thatliam(G'OH’) = diam(G') + diam(H') and that(G’'UH’) = r(G’) + r(H'). See
[10Q] for proof.

Let G be theBreadth-First-Search-TreBFS-Treg rooted at some central vertex, say of G’. Similarly letH be the
BFS-Treerooted at some central vertex, &y, of H'. We have that(G) = r(G’) andd(H) = r(H’) whered(G) andd(H )
are the depths of tre@s and H respectively. Clearl{7(JH is a connected spanning subgraph®f1H’ and therefore
re(G'OH’) < re(GOH). So in order to derive an upper bound fe{G'OH’) in terms ofr(G'OH’) it is sufficient to
derive an upper bound fex:(GOH) in terms ofr(G'OH’).



LetV(G)={ g0, 91, -- ,g‘G‘,l} andV (H)={ ho, h1, ..., h\H\—l}- LetGyq,... G\H\—ly Hq,..., H|G|71 be the(G,H)-
Decompositiomf GTIH as defined iDefinitonl@. For0 < i < |H|— 1 defineroot(G;) = [go, h;] and for0 < j < |G| —1
defineroot(H;) = [g;, hol.

Recall the following simple observations.

Observation 2. V(G;) NV (H;) = {[gj, h]}, V(Gi) NV(G;) =0 andV (H;) NV (H;) = 0, forall i # j.

Observation 3. E(GOH) = ") B(G:) W5\ B(H,)

We now define an edge coloring, E(GOH) - AW BWCW DwhereA={a;:1<i<d(G)},B={b;:1<i<
d(G) },C={c¢:1<i<d(H)}andD={d;:1<i<d(H) } are ordered sets of colors. In view©bservatiori3 it
is clear that in order to define the colorirfgit is sufficient to describe separately, an edge colorimgérhG;, 0 < i <
|H| — 1 and an edge coloring for eaéfi;, 0 < j < |G| — 1. We choose Layer-wise Colorinf;, 4 to be the edge coloring
of Gy and f¢, p to be the edge coloring @F; for 1 < i < |H| — 1. Similarly we choose Layer-wise Colorinfg;, ¢ to be
the edge coloring off, and fy, p to be the edge coloring df; for1 <i < |G| — 1.

Claim 2. The edge coloringf, is a rainbow coloring of7H.

Proof. Letu = [g;, h;] andv = [gs, ] be two distinct vertices ofLJH. We demonstrate a rainbow path betweesnd
v, by considering the following cases:

Case 1: [At least one of the vertices belong td/ (GO H) \(V(Go)U V (Hy))]

Without loss of generality let € V(GOH) \(V(Go) UV (Hp)) i.e. I # 0 andk # 0. We now consider the follow-
ing two sub-cases

Case 1.aVertexu ¢ V(Gy), hencej # 0]

Vertexv = [gi, ] € V(Hy) androot(Hy) = [gk, ho]. Let Q1 = Pm, (v, gk, ho]), is aD-Rainbow-Pathn Hj, with
respect to the coloring, . p, by observatiofll. Similarly letQ2 = P, ([gk, hol, (90, hol), @3 = P, ([90, hol, (g0, h;])
andQ4 = Pg, ([g0, hjl, [9s, h;]) beA-, C- and B-Rainbow-Pattia G, Hy andG; (j # 0) respectively. It follows that
Q1,Q2, Q3 andQ4 are D-,A-,C- and B-Rainbow-Path&n GLJH with respect to the coloring. Clearly@ = Q1. Q2. Qs.
Q4 is arainbow walkfrom v to v in GO H that contains aainbow pathbetween them.

Case 1.bjVertexu € V(Gy), henceu = [g;, ho)]

Vertexv € Vg, let Q1 = Pg, (v, [go, hi]), is aB-Rainbow-Patlin G; with respect to edge colorinfy;, g, by Observation-
[@. Similarly letQs = P, ([90, ], [90, ho]) andQs = Pg,([90, hol, [gi, ho]) be C- and A-Rainbow-Pathsn H, and
G respectively. It follows tha€);, Q> and@3 areB-, C-andA-Rainbow-Pathen GC1H with respect to the coloring.

Clearly@ = Q1. Q2. Qs. is arainbow walkfrom v to  in GOJH that contains a rainbow path between them.

Case 2: [Both the vertices belong toV (Gy) U V (Hy)]
Without loss of generality let # [go, ho]. We consider the following 3 sub-cases:

Case 2.a{Both the vertices belong t& (Hy), henceu = [go, h;] andv = [go, hy]]

Vertexv = [go, hi] € V(G)). Letv' =[gxs, h] be another vertex id7; such that ¢, v') € E(G;). The existence of’
is guaranteed sino8’ # K;. LetQ, = Pg, (v, v') i.e. the single edgév, v’) is aB-Rainbow-Pathn G; with respect to
the coloringfc,,5, noting that! # 0 by the assumption that # [go, ho]. Similarly letQs = Py, (v', [gx', ho]), Qs =
Pa, ([gx7, Pols [90, ho]) @andQa = Pr, ([g0, ko], [90, h;]) beD-, A-andC-Rainbow-Path& Hy., Gy andH, respectively.
It follows that@1, Q2, Q3 and@4 areB-, D-, A-andC-Rainbow-Pathén GO H with respect to coloring’. Clearly@ =
Q1. Q2. Q3. Q4. is arainbow walkfrom v to u in GOH that contains @aainbow pathbetween them.

Case 2.b{Both the vertices belong t&(Go), henceu = [g;, ho] andv = [gx, ho]]

Vertexv € V(Hy). Letv’ = [gx, hi/] be another vertex i, such that ¢, v') € E(Hy). The existence of’ is guar-
anteed sincdl’ # K;. LetQ; = Py, (v, v') i.e. the single edgév,v’) is a D-Rainbow-Pathn H}, with respect to
the coloringfx, p, noting thatl # 0 by the assumption that # [go, ho]. Similarly letQ. = Pg,, (v, [go, hr]), @3 =

P, ([90, hir]s (g0, hol) andQ4 = Pg,([90, hol, [gi, ho]) beB-, C-andA-Rainbow-Path# G/, Hy andG respectively.



It follows that @1, @2, Q3 and @, areD-, B-, C-andA-Rainbow-Pathin GO H with respect to coloring’. Clearly@ =
Q1. Q2. Q3. Q4. is arainbow walkfrom v to v in GO H that contains aainbow pathbetween them.

Case 2.c]{One vertex belongs t&(G) and the other t&’ (Hy)]
Without loss of generality let € V(Gy), v € V(Hyp) thenj = 0 andl = 0. In view of Case=2.a and2.b we can assume
thatu, v # [go, ho)-

Let @1 = Pu, (v, [g0, ho]) andQ2 = Pg, ([g0, ho], ©) is aC- andA-Rainbow-Paths; H, andG, respectively. It follows
that@; and@- areC- and A-Rainbow-Path&n GC1H with respect to the coloring. Clearly@ = Q1.Q- is arainbow walk
from vertexv to vertexu in GOH that contains @aainbow pathbetween them.

It follows that f is a rainbow coloring oGO H. O
Theorem 2. If G’ and H' are two non-trivial, connected graphs thetG'OH’) < r¢(G'OH’) < 2r(G'OH)

Proof. The edge coloring uses|A| + |B| + |C| + |D| = 2(d(G) + d(H)) = 2(r(G") + r(H')) = 2r(G’'UH’) number of
colors. The upper bound follows fro@aim{2 and the lower bound is obvious. O

Tight Example:
Consider two graph&'; andG» such thatliam(G;) = 2r(G1) anddiam(G2) = 2r(G2). For examplegs; andG; may be
taken as paths with odd number of vertices. Thenn(G10G2) = diam(G1) + diam(G2) = 2(rG1) + r(Hy)).

4 Rainbow Connection Number of the Lexicographic Product of Two Non-
trivial Graphs G’ and H

Recall that the lexicographic produ@; o H, of two graphs’ andH is defined as followsV (G’ o H) = V(G') x V(H).
Two distinct verticesd, k1] and [g2, ko] of G’ o H are adjacent iéither(g1, g2) € E(G’) or g1 = g2 and (1, he) € E(H).
Note that unlike theCartesian Productind theStrong Productthe Lexicographic Producis a non-commutative product.
ThusG’ o H need not be isomorphic tH o G’. Also note that ifG’ and H are non-trivial graphs then(G’ o H) = 1 if
and only ifr(G’') = 1 andr(H) = 1.

Theorem 3. Given two non-trivial graph&?’ and H such thatG’ is connected we have the following:
1. Ifr(G' o H) > 2thenr(G' o H) < rc¢(G' o H) < 2r(G' o H). This bound is tight.
2. Ifr(G' o H) = 1thenl < re(G’ o H) < 3. This bound is tight.

Partl: r(G'o H) > 2

Sincer(G' o H) > 2, eitherr(G’) > 2 orr(H) > 2. In either case it can be shown thd' o H) > r(G’). Let G be the
BFS-Treaooted at some central vertex, say of graphG’. Itis easy to see that the depth@fd(G)=r(G’). SinceGo H

is a connected spanning subgrapltfo H, rc(G’ o H) < re(G o H). In order to derive an upper bound far(G’ o H)

in terms ofr(G’ o H) it is sufficient to derive an upper bound fat(G o H) in terms ofr(G’ o H).

LetV(G)={g:: 0<i<|G| — 1}andV(H)={ h;: 0<i <|H| — 1}. SinceG is connected and non-trivial, vertex
go has at least one neighbor. We label this neighbara. (9o, g1) € E(G). SinceH is a non-trivial graph, there are at
least two vertices i — ho andh;. Note that(hg, k1) need not be an edge H. It is easy to see th&H is a spanning
subgraph ofy o H.

Itis easy to see that[1H is a spanning subgraph 6fo H. LetGo, G ..., G\g|—1, Ho, H1, ..., H g -1 be the
(G,H)-Decompositionf the subgraph off o H that is isomorphic ta(1H (SeeDefinition[d). Recall that everg; is iso-
morphic toG and everyH, is isomorphic toH. We defineroot(G;) = [go, hi] androot(H;) = [g;, ho]. FromObservation
[2 we know that any vertejy;, h;] belongs to botl7; and H;.

Special note on notation:



In the rest of this section for any vertex= [g;, h;] € V(G;), we abuse the notation and simply d¢e) /¢([g;, h;]) instead
a,; () /g, ([gi, hj]). Note that’/ (v) need not make sense Hsneed not be a tree.

Definition 7. Let By = .\ " E(G:) Wiy BE(H;) and B, = E(G o H) \ By

We now define an edge coloring,: £(Go H) - AW BwhereAd = {a; : 1 <i < r(G'oH)}andB = {b; : 1 <
i < r(G' o H)} are ordered sets of colors. Sing&’ o H) > 2, both the setsl and B are of cardinality at least. Since
E(Go H) = E1 ¥ Es, itis enough to define separately a coloring rand a coloring foi&s.

Coloring the edges of E;:
To define a coloring of; it is enough to define an edge colorings for e&Gh0 < ¢ < |H|— 1 and an edge coloring for
eachH;, 0 < j < |G| — 1. We choose theayer-wise Coloring f¢,, 4 (as defined iDefinition[) to color the edges ay.
We define a new ordered st = {b} : 1 < i < (G’ o H)} whereb} = a,(con) € Aandfor2 <i < r(G' o H),
b, = b, € B. Forl < i < |H| — 1, we choose théayer-wise Coloringfg, g’ to be the edge coloring aF;. For
0 <j < |G| — 1, we color all the edges df; using the colob;.

Coloring the edges of Es:

For any vertex € V(G o H) let £(v) be the set of edges froi, that are incident om. We partitiong (v) into two sets
Er(v) and&y(v). Consider some edde, u) € £(v), then(v,u) € £ (v) if and only if £(u) > ¢(v) and(v,u) € Ey(v)

if and only if £(u) < ¢(v). For two verticess; andve, € V(G o H) we have thafvy,v2) € Er(v1) if and only if
(v1,v2) € Ey(va).

To color the edges af’; we have the following set of rules:

Rule #1 : All the edges o€ ([go, ho]) are colored;.
Rule #2 : Forallv € V(Go) \ [g0, ho], all the edges of 1, (v) are coloredu(,)41-

Rule #3 : All the edges o€y ([g, ko)), wherel([g;, ko)) = 1, are colored, (o) -
Rule #4 : All the edges o€, ([go, h1]) \ {(lg0, h1], [9i, hol) : £([gi, ho]) = 1} are coloredi, (o) -
Rule #5 : Forallv € V(G1) \ [go, h1], all the edges frond, (v) are coloredy,1-
Rule #6 : All the edges o€y ([g:, h1]) \ {([g:, h1], [90, ho]) }, wherelg(g;) = 1, are colored:, o m)-
Rule #7 : All the remaining edges af; are colored; .

Claim 3. The coloringf is a rainbow coloring of the edges 6fo H.

Proof. Letu = [g;, h;] andv = [gs, h;] be two distinct vertices off o H such that(v) > ¢(u). We demonstrate a rainbow
path between them by considering the following cases.

Case 1: [When £(v) > 2]
First we make the following observations.

(a): There exists ad-Rainbow-Pattirom v to the vertexXgo, hol:
If v € V(Gy), then the pathPg, (v, [g0, ho]) is an A-Rainbow-Pathin G, with respect to the edge colorinfg, 4 (See
Observatiorfl). If v ¢ V(Gy), then3 v; € V(Gy) such that’(v) > 1, £(v1) = £(v) — 1 and(vy,v) € EL(v1). Such
a vertex always exists since we have assumed#ahat > 2; G, H are non-trivial graphs and' is connected. Since
v1 € V(Gy) there is anA-Rainbow-Patlirom v; to [go, ho] as explained earlier, let this path e SpecificallyP is a
{a1,az,...,a4.,)}-Rainbow-PathSince edgév:, v) is coloreday,,)4+1 by Rule #2, we can extend patR by (v;,v) to
get the required\-Rainbow-Pattirom v to [go, ho].



(b): There exists 8-Rainbow-Pattirom v to the vertexgo, ho):
If v € V(Gy) then there exists an ancestorwfsaywvs, in Gy such that/(vy) = 1. The pathP;, = Pg,(v,v2) IS a
{be(v)s be(vy—1, - - - ba }-Rainbow-Pathfrom v to v, with respect to the edge colorinfg, 5. The edge(ve, [go, ho]) is
coloredb;, by Rule #1. We can extend? by edge(vs, [go, ho]) to get the required®-Rainbow-PatHfrom vertexv to
[90, ho). If v ¢ V(G1), then there exists; = [gi7, h1] € V(G1) such thalv, vs) € £ (vs). Sincevs € V(G1) as explained
earlier there is gby(v), bev)—1, - - -, b2, b1 }-Rainbow-Pathsay P, from v to [go, ho]. Since the edgévs,v) is colored
be(vs)+1 DY Rule #5, we can extend, by (v3, v) to get the require8-Rainbow-Pattirom v to [go, ho).

(c): There exist botH by (., be(v)—1; - - -, b2, @r(crom) } @Nd
{ag(vys @ovy—1, - - - a2, by(rom) y-Rainbow-Pathérom v to any vertex inl” (Ho) \ {[go, ho]}:
Recall that/(v) > 2. From observatior(a) it can be inferred that there is &y (,), by(v)—1, - - ., b2 }-Rainbow-Path
from v to some vertexw, € V(Gp) such that/(vy) = 1. For anyvs € V(Hy) \ [go, ho], the edge(vs, vs) is col-
oreda,com) DY Rule #6 or by theLayer-wise Coloringfs, 5 (whatever is applicable). This implies that there is a
{be)s be(oy=1, - - - 5 b2, ar(rorr) f-RAINDOW-Patirom vertexv to any vertex inV’ (Ho) \{[go, ko] }-
Similarly from observatior(b) it can be inferred that there is @), a¢v)—1, - - - , a2 }-Rainbow-Pattfrom vertexv to
some vertexg € V(Go) such that(vs) = 1. By Rule #3 any vertex inV (Hy) \ {[go, ho} is adjacent tas and is colored

br(Grom)-

Now consider the different cases involving vertexIf ¢(u) > 2 then from observation&:) and (b) it follows thatw
andv are rainbow connected. #{«) = 0 then from observatio(x) it follows thatu andv are rainbow connected. Finally
if £(u) = 1 then we know thatu, [go, ho]) € E(G o H) and is colored eitheti; or b;. Sincev has both and and a
B-Rainbow-Patho [go, ho]. It follows thatu andv are rainbow connected.

Case 2: [When ¢(v) < 1]
Without loss of generality we assume that vertex [go, ho).

Case 2.a]When/(v) # £(u)]
Verticesu andv are connected by an edge which is a triveshbow pathbetween them.

Case 2.b{When/(v) = ¢(u) = 0, henceu = [go, hj] andv = [go, hi]]

If v = [go, ho] then we claim that the two length patR,= {v = [go, hol}. [91, hol, {[90, ;] = u} is a rainbow path
from v to u. The edges of are coloredu, b, (o) in that order. To see this: edde, [g1, ho]) € E(Go) andGy is
edge colored using thieayer-wise Coloring f¢, 4. It follows that the edge is coloredy (SeeObservatioril). The edge
([g91, hol,u) € Eu(lgr, ho]) and is colored,. o) by Rule#3. Note that edgév, g1, ho]) € E(G o H) sinceG is
non-trivial and it is assumed that edgg, g1) € F(G).

If v € V(Ho)\{[g0, ho]} then we claim that the four length path,= {u = [go, h;]}, [91, hol, [90, hol, (91, Ral, {90, ] =
v} is a rainbow path from: to v. The edges of are colored, (G/or), a1, b1, ar(arom) in that order. To see this: edge
(u, [g1, ho]) € Eu([g1, ho]) and is colored, ..y by Rule#3; edge([g1, ho, [g0, ho]) € E(Go) and is colored:; by the
Layer-wise Coloringfc,, a; edge([go, ko], [g1, R1]) € EL([g90, ho]) and is colored, by Rule #1; finally edge([g1, h1], v)
is coloreda, ¢+o ) by one of the two applicable rule¢a): Edge([g1, h1],v) € E(G1) andG, is edge colored using the
Layer-wise ColoringG'c, p- or (b): Edge([g1,h1],v) € Eu([g1,h1]) \{([g0, hol, [91, h1])} and is coloredr, c/ory DY
Rule #4.

Case 2.c{When/(v) = f(u) = 1]

If exactly one of the vertices is i6¥y. Without loss of generality let € V(G,) andv ¢ V(Gy) thenu = [g;, ho] and
v = gk, huo]. We claim that the two length path = {u = [g;, ho}, [90, hol, {[gk, hu] = v} is a rainbow path from vertex
u to vertexv. The edges of are coloredi;, b, in that order.

If u,v € V(Go) thenu = [g;, ho] andv = [gx, ho]. We claim that the four length path = {u = [g;, ho]}, [0, ho],
[91, h1], [90, h1], {v = [gx, ho]} is arainbow path from vertexto vertexv. The edges are colored, b1, a,(crom), br(crom)
in that order.

If u,v ¢ V(Go) thenu = [g;, hjxo] andv = [gx, hio]. We claim that the four length path = {u = [g;, 5]}, [g0, hol,
[91, hol; [90, P1], {v = [gk, Iu]} is a rainbow path fromx to v. The edges oP are colored, a1, b, (G0, ar(arom) iN that
order.



We have thus proved thgtis a rainbow coloring of¥o H. Sincef use<2r(GoH) colors, we havec(GoH) < 2r(GoH).
Since it is assumed thatG o H) > 2 we have proved the upper-boundRart[I of TheoreniB. O

Tight Example:

Let G be a connected graph such théf) > 2 anddiam(G) = 2r(G); let H be any non-trivial graph. Itis easy to see that
diam(G o H) = diam(G) andr(G o H) = r(G). Hence we can conclude th&tum (G o H) = 2r(G o H). We know that
re(Go H) > diam(Go H) andrc(G o H) < 2r(G o H) (Part[ from Theoren). It follows thatrc(Go H) = 2r(G o H).

Part2: r(G'o H) =1
We know that ifr(G' o H) = 1 thenr(G') = r(G) = 1andr(H) = 1.
Claim 4. If G’ and H are two non-trivial graphs such tha{G’ o H) = 1 thenre(G' o H) < 3.

Proof. Sincer(G’ o H) = 1 there exists an universal vertex, sa¥ V (G’ o H). ltis easy to verify tha&’ o H is 2 vertex
connected. Now consider the following theorem:

Theorem Chandran et al.[4]: If D is a connected two-way dominating set in a graph G, th€&) < rc¢(G[D]) + 3.

The proof and definitions involved are given[#].

The universal vertexy, is a trivial dominating set. Moreover sin¢& o H is two vertex connected and consequently
two edge connected, it follows tht.} is a two-way dominating set i’ o H. As a resultrc¢(G’ o H) < re({u}) +3.
Sincerc({u}) = 0 we haverc(G' o H) < 3. We have thus proved thdaim and the upper-bound iRart[2 of Theorem
B O

Tight Example:
Consider two non-trivial graphs andH such thatz = K, ,, (astar graph wheren > 2™ 4 1 andH is a graph such that
r(H) =1and|H| = m. We claim that¢(G o H) = 3.

Proof. We prove the claim by contradiction.

Let f be a rainbow coloring o7 o H using at mosg colors, sayu; andas. LetV(G) = {go, 91, - - -, gn } Wheregg is
the central vertex ofs. Similarly letV (H) = {ho, h1, ..., hm—1}. Let Hy be the induced subgraph 6fo H with vertex
setV(Hy) = {[go, hi] : 0 <i < m — 1}. GraphH, is isomorphic toH .

Fori<i<n define the fUnCtiOlfi : {[gz, ho]} X V(Ho) — {CLl, CLQ} ani(([gi, ho], [go, hj])) = f(([gz, ho], [go, hj]))
Each of the functionsf;, are one among!’| possible functions. Since > 2!#!, by pigeon hole principléhere must exist
somef; and f, such that # k and f; = f. If so there isno rainbow pattbetween the verticelg;, ko] and|[gx, ho] with
respect to the edge colorirfg This is beacause any rainbow path with respegt between the two vertices is of length
Now any two length path between the vertices is of the fagrho], v, [gx, ho] Wherev is the intermediate vertex. Itis easy
to see that € V(Hy). We know thatf;([g;, ho],v) = fx([9k, hol,v) = f([gs, ho),v) = f([gk, hol,v) forall v € V(Hy).
This is a contradiction. Hencgis not arainbow coloringof G o H.

Therefore any rainbow coloring @f o H uses at least 3 colors. It follows fro@laimid thatrc(G o H) = 3. O

Proof of Theorem[3 The upper bounds follow fror@laim[3 andClaim[. The lower bounds are trivial.

5 Rainbow Connection Number of the Strong Product of Two Nontrivial, Con-
nected GraphsG’ and H’

Recall that thestrong productof two graphsG’ and H’, denoted by’ X H’, is defined as followsV (G’ X H') =
V(G") x V(H'). The edge set o’ X H' consists of two types of edges. An edde, h1], [g2, h2]) is Type-1if and
only if either gy = g2 and(hy,h2) € E(H’) or hy = he and(g1,92) € E(G’). The edge is offype2 if and only if
(91,92) € E(G') and(hq,he) € E(H'). Letryqae = max{r(G'),r(H')}. Itis easy to see tha{ G’ K H') = 7,4, and
diam(G'® H') = max{diam(G"), diam(H')}. Seef1Q] for proof.
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We assume without loss of generality thé€’') > »(H') asG’ X H' is isomorphic toH’' X G'. LetG andH beBFS-
Treesrooted at some central verticeg,andhg respectively of’ andH'. It is easy to see that the depths@andH are
d(G) =r(G") andd(H) = r(H') respectively. LeV(G) = {g; : 0 <i < |G| — 1} andV(H) = {h; : 0 <i < |H| — 1}.
SinceG and H are non-trivial connected trees there is atleast one neigiao go and by in G and H respectively. In
the remainder of the section we always let these verticeg, bend h, respectively. Thereforégy,g1) € E(G) and
(ho, hl) € E(H)

LetL,(G) ={g: € V(G): Lc(g;)=w } for0 < w < d(G) andL,(H) ={h; € V(H): {p(h;) =z } for0 <z < d(H).
We defineV,, ,, = L,,(G) x L, (H) for0 < w < d(G) and0 < x < d(H).

SinceG X H is a spanning subgraph 6f X H', r¢(G' K H') < r¢(G X H). So in order to derive an upper bound for
re(G'K H') interms ofr(G' K H') itis enough to derive an upper bound fe{ GX H) in terms ofd(G) = ryae = 7(G').
Recall that we have assumed thé&f?’) > »(H’) and therefore(G' X H') = r(G’).

We define an edge coloring,: E(GX H) - AW BW{c,d} whereA = {a; : 1 <i < d(G)}andB ={b; : 1 <
i < d(G)} are ordered sets of colors; andndd are colors that are notid W B. SinceE (G K H) is the disjoint union of
Typed andType2 edges, we can define the coloring fiiped andType2 edges separately.

Coloring the Type-1 edges

Note that if we restrict the edge set@fX H to Type-ledges alone then the subgraph thus obtained is isomorp&icid,
the Cartesian Product &f andH. Let Gy, Gs, ..., G g|—1, H1, Hs, ..., H g -1 be the(G-H)-Decompositiorf GO H
(Typed edges) as defined Definitionlel. For0 < j < |H| — 1, defineroot(G;) = [go, h;] and for0 < i < |G| — 1, define
root(H;) = [gi, ho)

Recall thatA = {a; : i < i < d(G)} andB = {b; : 1 < ¢ < d(G)} are ordered sets of colors. We define
several new ordered (multi) sets of colors by slightly mypidi§ the setsA and B. First we define the ordered set,
Ag = {af : 1 < i < d(G)} wherea! = canda? = a; € Afor2 < i < d(G). Also for1l < w < d(H), we
define ordered multi-sets},, = {a? : 1 < i < d(G)} andB,, = {b?’ : 1 < i < d(G)} wherea? = d andby = d for
1<i<wanda? =a;, € Aandd? =b; € Bforw+1 <i <d(G).
Rules to colors theType-1 edges:

T1-R1: We choose theayer-wise Coloringfx, 4 to color the edges affy.

T1-R2: For eact; such thatc(g;) = 1, we choose theayer-wise coloringfy, g to color the edges off;.

T1-R3: For eactH; such tha?s(g;) > 2, we color all the edges df/; usingd.

T1-R4: For0 < w < d(H) we choosefg,, 4, to color the edges aoff; if w is evenand we choos¢g, g, to the color the

edges of; if wis odd

Coloring the Type-2 edges

Observation 4. If an edge([g;, h;], [gx, li]) € E(G X H) is of Type2 such thatg;, h;] € V., » and[gx, ;] € V,, . then
we havdw —y| =1and|z — z| = 1.

Proof. Since the edg€[g;, h;], [gk, hi]) is of Type2, edges(g;, gx) and(h;, h;) are edges of tree§ and H respectively.
Therefordw — y| = |[€c(g:) — La(gr)| = 1and|z — z| = |[€u(h;) — Lu(hy)| = 1. O

Rules to colors theType-2 edges:

T2-R1: Let([gi, k], [gx, i]) € E(GRH) be an edge ofype2 such thafg,, h;] € V,, . and|gx, hi] € V,41,.+1, then define

a,y11f |z —y|is even

F((lgs: bl lgw, 1u])) = {b +11f |z —yl|is odd

Note thatz + 1 = ¢y (k) < d(H) < d(G) and therefore .., andb. ;1 exist.
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T2-R2: Let([g;, hjl, gk, M]) € E(GRH) suchthafg;, h;] € V1,1 and[gk, hi] € Va0 then we choosé(([g:, ], [gk, u])) =
as.

Note that if[g, k] € V20 thenl(gx) = 2 and thusi(G) > 2 andas exists.
T2-R3: All the remaining edges diype2 are colored!.

A-Reachable and B-Reachable Vertices:

We define the following concepts with respect to the edge colorihgWe define a vertely;, h;] € V(G X H) to be
A-Reachabléf there exists arA-Rainbow-Pattrom [g;, h;] to the verteXgo, ho]. We defin€glg;, h;] to beB-Reachabléf
there exists 8-Rainbow-Pattirom [g;, h;] to some vertex iV} .

We define two subset® 4 andRp of V(G X H):

Ry = V. v Ve W Vo Ve
0<z<d(H) 1<y<z, |y—=z| is even 2<y<d(QG) 2<z<y, z is even

Rp = . W v W v
0<z<d(H) 2<y<z, |ly—z]| is odd z<y, z is odd

Itis easy to verify thalR4 U Rp = V(G X H), but R4 N Rp is non-empty.
Claim 5. If u € R4, thenu is A-Reachable with respect to the edge colorjfng

Proof. Letu = [g;, h;] € V},... We consider the following cases.

Casel: [Whenwu € V., where0 < z < d(H)]

FromRule T1-Riwe know that the edges @, are colored using thkeayer-wise Coloring f, 4. Hence byObservation
[ there is arA-Rainbow-Patlirom vertexu to root(Hy) = [go, hol. It follows thatu is A-Reachable

Case2: [Whenwu € V,, ., wherel <y < zand |y — z| is even]

Sincelc(g:) = v, the path frony; to go in G hasy + 1 vertices. Let this path bg; = gi,,9i,,--.,9i, = go. Leth; be
the ancestor ok; in H such that’y (hj) = z — y. Leth; = hj,, hj,, ..., hy = h;, be the path fronh; to hj in H. It
hasy + 1 vertices. Clearly: = {[g:, h;] = [9i0, Rjo]}s [girs Rji s - - -, [90, hyr] IS @ path inG X H whose edges are colored

az,G5—1,...,06;—y4+1 iN that order (ByRule R2-R1). Note that ify = z thenh; = ho andP; is the requiredA-Rainbow-
Pathfrom w to [go, hol. If z < y then sincdgo, h;/] € V(Hy), by Case there is @A-Rainbow-Pathsay P», from [go, ]
to [go, ho]. In particularP; is a{a,—_y, az—y—1,...,a1 } Rainbow PathClearlyP = P;. P, is a{a1, as, . . ., a, }-Rainbow-
Pathfrom vertexu to [go, ho] with respect to coloring’. Henceu is A-Reachable

Case 3: [Whenu € V,, o where2 < y < d(G), henceu = [g;, ho] € V(Go)]

Let u; = [gs, ho] be an ancestor of in Gy such that/c,(u;) = 2. By Rule TI-R4 G is edge colored using the
Layer-wise Coloringfe, 4,- The path from vertex: to u; in G, say P, is rainbow colored using colors from the set
{ay,ay—1,...,as}. Letg;» be the parent of» in G. SinceH is non-trivial by exists andho, h1) € E(H). Therefore
([g&7, hol, [giv, h1]) € E(GX H) and is colorediz by Rule 2-R2. Sincelg(giv) = 1, (97, 90) € E(G) and therefore
([gi7, Pl [90, ho]) € E(GK H) and is colored:; by Rule 2-R1. Hence the pat® = P;. ([gi', ko], [gi, R1], [90, ho]) IS
anA-Rainbow-Pattirom vertexu to [go, ho]. Henceu is A-Reachable

Case4: [Whenwu € V, . wherey > z > 2 and z is even]
Vertexu = [g;, hj] € V(G;). Letuy = [gi, h;] be an ancestor af in G; such thatc, (u1) = 2. Let P, be the path irG;
from vertexu to u;. Sincely (h;) = z is even by Rule TI-R4, G; is edge colored using tHeayer-wise Coloringfc; 4. .

The edges o, are coloret,,ay—1,...,a.+1 in that order. Since, = [g7, h;] € V., andz > 2, by Case 2we have
a{ay,a,_1,...,a1 }-Rainbow-Pathsay P, from vertexu; to vertex|go, ho]. Clearly P = P;. P, is anA-Rainbow-Path
from vertexu to [go, ho]. Hence vertex: is A-Reachable O

Claim 6. If u € Rp, then u is B-Reachable with respect to the edge colofing
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Proof. Letu = [g;, h;] € V}, .. We consider the following cases.

Casel: [Whenwu € Vy , for 0 < z < d(G)]

Vertexwu € V(H;) with root(H;) = [gi, ho]. Sincela(g;) = 1, H; is edge colored using tHeayer-wise Coloringfy, g
by Rule TI-R2. FromObservatioffll we infer that there is &b1, bo, . . ., b, }-Rainbow-Pattirom vertexu to [g;, ho] € V1o
in H;. If follows thatw is B-Reachablevith respect to the edge coloring

Case2: [Whenu €V, . where2 < y < zand |y — z| is odd]

Letu = [gi, hj] € V.. In G let g; be the ancestor af; with £5(g:») = 1. Sincelc(g;) = y, the path inG from g; to
gi In G hasy vertices. Lety; = giy, 9i,,---,9i,_, = g« be that path. Similarly inff let h; be the ancestor df; with
ly(hj) = z —y + 1. Then the path ind from h; to h; hasy vertices. Leth; = hy,, hy,,...,h;,_, = h; be that
path. ClearlyP, = [g;, hj],[giy.n,, |, - - - > [9i7, hyr] is @ path inG X H and its edges are coloréd,b. 1, ...,b, 2 inthat
order (ByRule 2-R1). Now [g;, hj/] € Vi ,_,+1 and byCase 1there is a{b1, b2, . . ., b,—,+1 }-Rainbow-Pathsay P,
from [gi/, hj] t0 [gi, ho] € V1. Clearly P = P,. P, is aB-Rainbow-Pattfrom « to [g;/, ho] € Vi o. It follows thatw is
B-Reachablevith respect to the edge coloring

Case 3: [Whenu € V,, . wherey > z and z is odd]
Letu = [g;, h;] € V,,.. We consider the following two sub-cases.

Case 3.afWheny =z + 1]

Sincely (h;) = z, the path fromh; to hg in H hasz + 1 vertices. Let this path be; = hj,, hj,, ..., h;, = ho. Similarly

let g;» be the ancestor af; in G such thatc(g:/) = 1. Sincels(g;) = z + 1 the path frony; to ¢g;» in G hasz + 1 vertices.
Let this path bey; = giy, giy» - - -, gi. = gir- Clearlyu = [g;, hyl, [9i,, by, - - -, [gir, ho] is @ path inG X H and is colored
bz, bs—1,...,b1 inthat order (ByRule 2-R1). Since|g;/, ho] € V1 ¢ vertexu is B-Reachable

Case 3.bJWheny > z + 1]
Vertexu € Gj;. Letu; = [giv, h;] be an ancestor af in G such that/g,(u1) = z + 1. Sincez is odd, byRule T-
R4 we know thatG; is edge colored usiong tHeayer-wise Coloringfc, 5,. The edges of path?y = Pg, (u,u;) are

coloredb,, b,_1,...,b,4o in that order and is a rainbow path. Sincee V., , by Case 3.ghereis ab,,b,_1,...,b1}-
Rainbow-PathsayPs, from vertexu; to some vertex, say, in V o. Clearly P = P;. P; is aB-Rainbow-Patlirom vertex
utoug € V; . It follows thatu is B-Reachablavith respect to the coloring. O

Claim7. Letu € V(G K H) \ {[g0, ho]} then we have the following:
(@) If u € R4\ Rp then there exists; € Rp such that{u,u;) € F(GX H) and is colored.
(b) If u € Rp \ Ra then there exists; € R4 such thatu,u;) € F(GX H) and is coloredi.

Proof. We consider the following cases.

Casel: [Whenwu €V, , where0 < z < d(H), i.eu € V(Hp)]

In this caseu = [go, h;] € Ra \ Rp. We takeu; = [g1, h;]. SinceG is non-trivial, vertexy; exists andgo, g1) € E(G).

Sincels(g;) = 1, we haveu; € Vi, C Rp, wherel < z = ¢y(h;) < d(H). Note thatz # 0 sinceu # [go, hol-

Now the edg&w, u1) = (g0, k], [91, h;]) € E(G;). By Rule TI-R4, G, is edge colored using tHeayer-wise Coloring
fa,.A. O fa, B., Wwherez = (g (h;), depending on whetheris evenor odd Recalling thatd, = {af, a3, ... ,aZ(G)} and
B, = {b7,b3,..., b5} the edggu, u) is colored eitherf or bi. Sincez > 1, af = b7 = d and hence the edde, u1)

is colored eithen? = d orbj = d.

Case 2: [Whenwu € Vi , where(0 < z < d(H)]
In this casa: € Rp. Note that ifz is odd thenV; . C R4 N Rp. SO we can assume thats even.

Case 2.a]Whenu € V o]

Letu = [gs, ho] € V1o With £g(g;) = 1. We takeus = [go, h1]. SinceH is non-trivial, hy exists andho, h1) € E(H).
Also edge(go,9;) € E(G). Therefore the edgéu,u1) = ([g:, hol, (g0, M1]) € E(GX H). Itis easy to see that
u; € Vo1 CV(Hp) C Ry. The edgdu, uy) is coloredd by Rule 2-R3.
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Case 2.b]Whenu € V; , where2 < z < d(H) andz is even]

Letu = [g;,h;] € Vi, with lg(g;) = 1. Then(go,g1) € E(G). We takeu; = [go,h;] € Vo,. C Ra, then
(u,u1) = ([gi, hj], [go,h ]) € E(Gy). By Rule TI-R4, G is edge colored using theayer-wise Coloringfc;, 4., since
z =l (h;) is even. Since > 2, af = b} = d and the edgéu uy) is coloredd.

Case 3: [Whenwu €V, , where2 <y < z]

Letu = [g;, hj] € G;. Letus = [gi, h;] be the parent of, in G;. Sincelg(gi) = la(g) — 1=y —1,u1 € Vy_1,. We
claimthatifu € V, ., C R4\ Rgthenu; € Vy,_1, C Rgandifu €V, ., C Rg\ Ra thenu; € V,_; . C R4. To see
this first note thakt); -, . 1, .| is cven Vooe S Ra@Nd W< o. 1y is 0aa Vo2 © R2s. Now the following is easy to see:
if 2 <y <zandV, . C Rg\Ra (respectively Ra\ Rg) thenl < y—1 < zandV,_; , C Ry (respectively Rg) since
the parity of|ly — z| is different from the parity of(y — 1) — z|. By Rule TI-R4, G; is edge colored using tHeayer-wise
Coloring fg; A, or fa,; . depending on whether= (x (h;) is evenor odd From the definition of the set$, andB, we
have that, forl <i<zaf =bf=d. Since2 <y < z, edge(u uy) is coloreda; = d orb; = d.

Case 4: [Whenu € V,, o where2 < y < d(G)]

In this caseu € Ra \ Rp. Letu = [gi,ho] € V(H;). Letu; = [g;, 1] € V(H;). Since(ho,h1) € E(H),
(w,u1) = ([gs, hol, [gs, P1]) € E(H;). Vertexu, € V,1 C Rgpas(z =1) <2 <yandlisodd Sincelz(g;) =y > 2,
by Rule TI-R3 all the edges of{; are colored!. Hence(u, u1) is coloredd.

Case5: [Whenu €V, , wherel < z < y]

Letu = [g;, h;] € V(H;). Letuy = [g;, h;] be the parent of. in H,. Then(u,u1) = ([g:, ks, [9i, hj7]) € E(H;) and
lr(hy) =La(hj) —1=2z—-12>0.Sincey > z—1ifu eV, ., C Ra\ Rp (respectively Rp \ R4) thenz — 1 is odd
(even andu € V,, .1 C Rp (respectively R4). Also sincey > 2 by Rule T1-R3, all the edges off; are coloredi. [

Lemma 1. The edge coloring is a rainbow coloring of&7 X H.

Proof. We show that any distinct pair of vertices,andv from G X H have a rainbow path between them with respect
to the edge coloring. SinceV(G X H) = R4 U Rp, vertexu € R4 oru € Rp. The same applies to vertex Let
u = [go, ho]- If v € R4 then byClaim[§ there is arA-Rainbow-Pattirom v to v = [go, hy]. If v € Rp then byClaim[g
there is aB-Rainbow-Pattirom v to some vertex’ € V1 o. We know that(v', [go, ho]) € E(Go) and is colored: by the
Layer-wise Coloringfs,.4,. Hence there is & ¢} & B)-Rainbow-Pattrom vertexv to u = [go, ho].

We may now assume thatv # [go, ho]. We have the following two cases:

Case 1: [When one of the vertices is inR 4 and the other is in Rg]

Without loss of generality let € R4 andv € Rp. By Claim[H there is anA-Rainbow-Pattbetween vertex: and
vertex [go, hol, let this path beP;. Similarly by Claim[6 there is aB-Rainbow-Pattbetween vertex and some ver-
tex v1 = [gi,ho] € Vi, let this path beP,. Now v; € V(Gp) andlq(g:) = 1, hence(go,91) € E(G) and
(v1,[g0, ho]) € E(Go). By Rule TI-R4 G is edge colored using tHeayer-wise Coloringfc, 4,. The edg&uwy, [go, ho))
is coloreda( = c. Clearly the pathP? = P;. ([go, ho),v1). P2 is a(A W B & {c})-Rainbow-Pattbetween vertices andv.

Case 2: [When both the vertices are inR4 \ Rg]

By Claim[7] there exists a vertex; € Rg C V(G X H) such thafu,u;) € F(G X H) and is colored!. Sincev € R4
andu; € Rp by Case 1there is 8 A W B W {c})-Rainbow-PatHrom vertexv to u1, sayP;. Clearly P = P;. (uj,u) is a
rainbow path from vertex to vertexu.

Case 3: [When both the vertices are inRg \ Rl
By Claim[7] there exists a vertex, € R4 C V(G X H) such that(u,us) € E(G X H) and is coloredl. Now using
arguments similar t€ase 2we can prove that there exists a rainbow path between vettiaadv. O

Theorem4. r(G' X H') <re(G'RH') <2r(G'XH') 42

Proof. The rainbow coloring’ uses 4| + |B| + |[{¢,d}| = 2d(G) + 2 = 2r(G K H) + 2 colors. Sincel(G) = r(G’)
r(G' ® H') From of Claim[dl the upper bound follows. The lower bound is trivial.

O
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Tight Example:
Consider two graph&; andGs such thatliam(G1) = 2r(G1) > diam(G2). For exampleés; may be taken as a path with
odd number of vertices. Ther(G; K G3) > diam(G1 K G3) = 2r(G1 K G3).
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