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Abstract

Rainbow connection number, rc(G), of a connected graph G is the minimum number of colors neededto color its edges
so that every pair of vertices is connected by at least one path in which no two edges are colored the same (Note that the
coloring need not be proper). In this paper we study the rainbow connection number with respect to three importantgraph
productoperations (namelycartesian product, lexicographic productandstrong product) and the operation of taking the
power of a graph. In this direction, we show that ifG is a graph obtained by applying any of the operations mentioned
above on non-trivial graphs, thenrc(G) ≤ 2r(G) + c, wherer(G) denotes the radius ofG andc ∈ {0, 1, 2}. In general
the rainbow connection number of a bridgeless graph can be ashigh as the square of its radius [1]. This is an attempt to
identify some graph classes which have rainbow connection number very close to the obvious lower bound ofdiameter

(and thus theradius). The bounds reported are tight upto additive constants. The proofs are constructive and hence yield
polynomial time(2 + 2

r(G)
)-factor approximation algorithms.

Keywords: Graph Products, Graph Power, Rainbow Coloring.

1 Introduction

Edge colouringof a graph is a function from its edge set to the set of natural numbers. A path in an edge coloured graph with
no two edges sharing the same colour is called arainbow path. An edge coloured graph is said to berainbow connectedif
every pair of vertices is connected by at least one rainbow path. Such a colouring is called arainbow colouringof the graph.
The minimum number of colours required to rainbow colour a connected graph is called itsrainbow connection number,
denoted byrc(G). For example, the rainbow connection number of a complete graph is1, that of a path is its length, and
that of a star is its number of leaves. For a basic introduction to the topic, see Chapter11 in [7].

The concept of rainbow colouring was introduced in [6]. It was shown in [3] that computing the rainbow connection
number of a graph is NP-Hard. To rainbow colour a graph, it is enough to ensure that every edge of some spanning tree in the
graph gets a distinct colour. Hence order of the graph minus one is an upper bound for rainbow connection number. Many
authors view rainbow connectivity as one ‘quantifiable’ wayof strengthening the connectivity property of a graph [2, 3,12].
Hence tighter upper bounds on rainbow connection number forgraphs with higher connectivity have been a subject of
investigation. The following are the results in this direction reported in literature: LetG be a graph of ordern. If G is 2-edge-
connected (bridgeless), thenrc(G) ≤ 4n/5− 1 and ifG is 2-vertex-connected, thenrc(G) ≤ min{2n/3, n/2 +O(

√
n)}

[2]. This was very recently improved in [5], where it was shown that if G is 2-vertex-connected, thenrc(G) ≤ ⌈n/2⌉,
which is the best possible upper bound for the case. It also improved the previous best known upper bound for3-vertex
connected graphs of3(n+ 1)/5 [14]. It was shown in [12] thatrc(G) ≤ 20n/δ whereδ is the minimum degree ofG. The
result was improved in [4] where it was shown thatrc(G) ≤ 3n/(δ+1)+3. Hence it follows thatrc(G) ≤ 3n/(λ+1)+3
if G is λ-edge-connected andrc(G) ≤ 3n/(κ + 1) + 3 if G is κ-vertex-connected. It was shown in [5] that the above
bound in terms of edge connectivity is tight up to additive constants and that the bound in terms of vertex connectivity can
be improved to(2 + ǫ)n/κ+ 23/ǫ2, for anyǫ > 0.

Many, but not all, of the above bounds are increasing functions ofn. Since diameter, and hence radius, are lower bounds
for rainbow connection number, any upper bound which is a function of one of the lower bounds alone is of great interest.
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Apart from the structural insights that it gives to the problem, it can also have applications in the design and analysis of
approximation algorithms for rainbow colouring, which is known to be an NP-hard problem [3]. For a general graph, the
rainbow connection number cannot be upper bounded by a function of radius or diameter alone. For instance, the starK1,n

has a radius1 but rainbow connection numbern. Still, the question of whether such an upper bound exists for special graph
classes remain.

A very general result in this direction is the one by Basavaraju et al. [1] which says that for every bridgeless graph
of radiusr, the rainbow connection number is upper bounded byr(r + 2). They also demonstrate that the above bound,
which is quadratic in the radius, is tight not just for bridgeless graphs but also for graphs of any higher connectivity.
This result was extended to graphs with bridges in [8]. This throws open a few interesting questions. Which classes of
graphs have upper bounds on rainbow connection number whichis (1) constant factor of radius, (2) additive factor above
radius, etc. It is evident that answers to these questions will help in the design and analysis of constant factor and additive
factor approximation algorithms for the problem. Moreover, they can give hints to answering the still open question of
characterising graphs for which the rainbow connection number is equal to the diameter. Such additive factor upper bounds
were demonstrated for unit interval, interval, AT-free, circular arc, threshold and chain graphs in [4]. Basavaraju et. al [1]
also showed that rainbow connection number will have a constant factor upper bound on bridgeless graphs in which the size
of a maximum induced cycle (chordality) is bounded independently of radius.

In this paper, we demonstrate a large class of graphs for which the rainbow connection number is upper bounded by
a linear function of its radius. We study the rainbow connection number with respect to three importantgraph product
operations (namelycartesian product, lexicographic productandstrong product) and the operation of taking thepower of a
graph. Specifically, we show that ifG is a graph obtained by applying any of the operations mentioned above on non-trivial
graphs, thenrc(G) ≤ 2r(G) + c, wherer(G) denotes the radius ofG andc ∈ {0, 1, 2}. The bounds reported are either
tight or tight upto additive constants. See Section 1.2 for the exact statements. The proofs are constructive and hence yield
polynomial time(2 + 2

r(G))-factor approximation algorithms.

The rainbow connection number of some graph products has gotrecent attention [13, 9, 11]. One way to bound the
rainbow connection number of a graph product is in terms of the rainbow connection number of the operand graphs. Such
an approach was adopted by Li et al. [13] to study rainbow connection number with respect to Cartesian product and the
strong product. In particular, they show that the rainbow connection number of the Cartesian product and hence the strong
product of two connected graphs are upper bounded by the sum of the rainbow connection numbers of the operand graphs.
Later, it was shown in [9] that the rainbow connection numberof the strong product of two connected graphs is upper
bounded by the larger of the rainbow connection numbers of the operand graphs. Most of the bounds mentioned above
can be far from being tight when the rainbow connection number of the operand graphs is much higher than their radii.
The importance of the bounds reported here is that they are independent of the rainbow connection number of the operand
graphs and depends only on the radius of the resultant graph.

1.1 Preliminaries

The graphs considered in this paper are finite, simple and undirected. Given a graphG, |G| denotes the number of vertices
in the graph, also called theorder of G. A trivial graph is a graph of order 0 or 1.

Given a graphG, a walk in G, from vertexu to vertexv is defined as a sequence of vertices (not necessarily distinct),
starting atu and ending atv, say(u = u0), u1, . . . , (uk = v) such that(ui, ui+1) ∈ E(G) for 0 ≤ i ≤ k − 1. A walk in
which all the vertices are distinct is called apath. The length of a path is the number of edges in that path. A single vertex is
considered to be a path of length0. Thedistancebetween two verticesu andv in G is the length of a shortest path between
them and is denoted bydistG(u, v). Given two walksW1 = u0, u2, . . . , uk andW2 = v0, v1, . . . , vl such thatuk = v0, we
canconcatenateW1 andW2 to get a longer walk,W = W1.W2 = u0, u1, . . . , (uk = v0), v1, v2, . . . , vl.

Given a graphG, theeccentricityof a vertex,v ∈ V (G) is given byecc(v) = max{distG(v, u) : u ∈ V (G)}. The
radiusof G is given byr(G) = min{ecc(v) : v ∈ V (G)} and thediameterof G is defined asdiam(G) = max{ecc(v) :
v ∈ V (G)}. A central vertexof G is a vertex with eccentricity equal to the radius ofG.

Definition 1 (The Cartesian Product). Given two graphsG andH , the Cartesian product ofG andH , denoted byG�H ,
is defined as follows:V (G�H) = V (G) × V (H). Two distinct vertices[g1, h1] and[g2, h2] of G�H are adjacent if and
only if eitherg1 = g2 and(h1, h2) ∈ E(H) or h1 = h2 and(g1, g2) ∈ E(G).
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Definition 2 (The Lexicographic Product). Given two graphsG andH , the lexicographic product ofG andH , denoted by
G ◦H , is defined as follows:V (G ◦H) = V (G)×V (H). Two distinct vertices[g1, h1] and[g2, h2] ofG ◦H are adjacent
if and only if either(g1, g2) ∈ E(G) or g1 = g2 and(h1, h2) ∈ E(H).

Definition 3 (The Strong Product). Given two graphsG andH , the strong product ofG andH , denoted byG ⊠ H , is
defined as follows:V (G ⊠H) = V (G) × V (H). Two distinct vertices[g1, h1] and [g2, h2] of G⊠H are adjacent if and
only if one of the three conditions hold:

1. g1 = g2 and(h1, h2) ∈ E(H) or

2. h1 = h2 and(g1, g2) ∈ E(G) or

3. (g1, g2) ∈ E(G) and(h1, h2) ∈ E(H).

It is easy to see from the definitions of the products above that if G = K1 (respectivelyH = K1) then the resultant
graph is isomorphic toH (respectivelyG). The above graph products are extensively studied in graphtheory. See [10] for
a comprehensive treatment of the topic.

Definition 4 (Power of a graph). The k-th Power of a graph, denoted byGk wherek ≥ 1, is defined as follows:
V (Gk) = V (G). Two verticesu and v are adjacent inV (Gk) if and only if the distance between verticesu and v in
G, i.e.,distG(u, v) ≤ k.

Given a graphG, another graphG′ is called aspanning subgraphof G if G′ is a subgraph ofG andV (G′) = V (G). A
vertexv is calleduniversalif it is adjacent to all the other vertices in the graph.

Given a treeT , the unique path between any two vertices,u andv in T is denoted byPT (u, v). It is sometimes convenient
to consider some vertex from the tree as special; such a vertex is then called theroot of this tree. A tree with a fixed root is
called arooted tree.

Let T be arooted treewith rootroot(T ) = v0. Thelevel numberof any vertexv ∈ T is given byℓT (v) = distT (v, v0).
If the tree in context is clear then we simply useℓ(v). Thedepthof T is given byd(T ) = max{ℓ(v) : v ∈ V (T )}. Given
two verticesu, v ∈ V (T ), u is called anancestorof v if u ∈ PT (v, v0). It is easy to see thatℓ(v) ≥ ℓ(u). If u is an ancestor
of v andℓ(v) = ℓ(u) + 1 thenu is called theparentof v and is denoted byparent(v).

Definition 5 (Layer-wise Coloring of a Rooted Tree). Given a rooted treeT and an ordered multi-set of colorsC =
{ci : 1 ≤ i ≤ n} wheren ≥ d(T ), we define the edge coloring,fT,C : E(T ) → C as fT,C((u, v)) = ci where
i = max{ℓ(u), ℓ(v)}. We refer tofT,C as the Layer-wise Coloring ofT that uses colors from the setC.

Given an edge coloringf of a graphG using colors from the setC, let C′ ⊆ C. Consider a path inG that is rainbow
colored with respect tof . We call this path aC′-Rainbow-Pathif every edge of the path is colored only from the setC′.

Observation 1. Let T be a rooted tree andC = {c1, c2, . . . , cn} be an ordered set of colors suchci 6= cj for i 6= j
and n ≥ d(T ). Let fT,C be the Layer-wise Coloring ofT using colors fromC. If u, v ∈ V (T ) such thatu is an
ancestor ofv in T , thenPT (v, u) is a C-Rainbow-Path with respect to the coloringfT,C . In particular PT (v, u) is a
{cℓ(u)+1, cℓ(u)+2, . . . , cℓ(v)}-Rainbow-Path with respect tofT,C .

Recall the definition of the Cartesian Product of two graphsG andH , denoted byG�H . We define a decomposition of
G�H into edge disjoint subgraphs as follows:

Definition 6 ((G,H)-Decomposition ofG�H). Given graphsG andH with vertex setsV (G) = {gi : 0 ≤ i ≤ |G| − 1}
andV (H) = {hi : 0 ≤ i ≤ |H | − 1} respectively. We define a decomposition ofG�H as follows:
For 0 ≤ j ≤ |H | − 1, define induced subgraphs,Gj , with vertex sets,V (Gj) = {[gi, hj ] : 0 ≤ i ≤ |G| − 1}. Similarly, for
0 ≤ i ≤ |G| − 1, define induced subgraphs,Hi, with vertex sets,V (Hi) = {[gi, hj] : 0 ≤ j ≤ |H | − 1}. Then we have the
following:

1. For 0 ≤ j ≤ |H | − 1, Gj is isomorphic toG and for0 ≤ i ≤ |G| − 1, Hi is isomorphic toH .

2. For 0 ≤ i < j ≤ |H | − 1, V (Gi) ∩ V (Gj) = ∅ and henceE(Gi) ∩E(Gj) = ∅.

3. For 0 ≤ k < l ≤ |G| − 1, V (Hk) ∩ V (Hl) = ∅ and henceE(Hk) ∩ E(Hl) = ∅.

4. For 0 ≤ j ≤ |H | − 1 and0 ≤ i ≤ |G| − 1, V (Gj) ∩ V (Hi) = [gi, hj ] andE(Gj) ∩ E(Hi) = ∅.

We callG1, G2, . . . , G|H|−1, H1, H2, . . . , H|G|−1 as the(G,H)-Decomposition ofG�H .
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1.2 Our Results

1. If G is a connected graph thenr(Gk) ≤ rc(Gk) ≤ 2r(Gk) + 1 for all k ≥ 2. The upper bound is tight up to an

additive constant of1. Note thatr(Gk) =
⌈

r(G)
k

⌉

. [See Theorem 1, Section 2]

2. If G andH are two connected, non-trivial graphs thenr(G�H) ≤ rc(G�H) ≤ 2r(G�H). The bounds are tight.
Note thatr(G�H) = r(G) + r(H). [See Theorem 2, Section 3]

3. Given two non-trivial graphsG andH such thatG is connected we have the following:

(a) If r(G ◦H) ≥ 2 thenr(G ◦H) ≤ rc(G ◦H) ≤ 2r(G ◦H). This bound is tight.

(b) If r(G ◦H) = 1 then1 ≤ rc(G ◦H) ≤ 3. This bound is tight.

[See Theorem 3, Section 4]

4. If G andH are two connected, non-trivial graphs thenr(G⊠H) ≤ rc(G⊠H) ≤ 2r(G⊠H) + 2. The upper bound
is tight up to an additive constant2. Note thatr(G ⊠H) = max{r(G), r(H)}. [See Theorem 4, Section 5]

Most of the bounds available in literature for graph products are in terms of raibow connection number of the operand
graphs and hence can be far from being tight when the rainbow connection number of the operand graphs is much higher
than their radii. It may happen thatrc(G) or rc(H) are very large whereasrc(G�H), rc(G ⊠H), etc. are very small in
comparison. For example letG = K1,n andH = K2 then by the result in [13],rc(G�H) ≤ n+1 and by the result in [9],
rc(G ⊠H) ≤ n. But our results show thatrc(G�H) ≤ 4 andrc(G ⊠H) ≤ 4. This suggests that the rainbow connection
number of product of graphs may be related to the radii of the operand graphs (and hence on the radius of the resultant
graph) rather than on their rainbow connection numbers. Theresults reported here confirm that it is indeed the case. It may
be noted that a similar case is true even for graph powers. That is, rc(Gk) is independent ofrc(G) and is upper-bound by a
linear function ofr(Gk) = ⌈ r(G)

k
⌉.

2 Rainbow Connection Number of the k-th Power of a Graph H

For k ≥ 1, recall that thek-th power of a graph H, denoted byHk, as follows:V (Hk) = V (H) and any two verticesu

andv ∈ V (Hk) are adjacent if and only ifdistH(u, v) ≤ k. It is easy to verify thatr(Hk) =
⌈

r(H)
k

⌉

anddiam(Hk) =
⌈

diam(H)
k

⌉

.

SinceH1 = H , for the remainder of this section we assume thatk ≥ 2. Let T be theBFS-Treerooted at some central
vertex, sayh0, of H . Then clearly the depth of tree T,d(T ) = r(H). ClearlyT k is a spanning subgraph ofHk and hence
rc(Hk) ≤ rc(T k). So in order to derive an upper bound forrc(Hk) in terms ofr(Hk) it is enough to derive an upper

bound forrc(T k) in terms of
⌈

d(T )
k

⌉

( r(Hk) =
⌈

d(T )
k

⌉

).

Let V (T ) = { hi: 0≤ i ≤ |H | − 1 }. For0 ≤ i ≤ k − 1, letVi = { u ∈ V (T ) : ℓT (u) > 0 andℓT (u) ≡ i mod k}. It is
easy to see thatV =

⊎k−1
i=0 Vi ⊎{h0}.

For0 ≤ i ≤ k − 1 and0 ≤ j ≤
⌈

d(T )
k

⌉

we defineV j
i = {u ∈ Vi ∪ {h0} :

⌈

ℓT (u)
k

⌉

= j}. Note that ifu ∈ V (T ) \ {h0}
thenu belongs to exactly oneV j

i where0 ≤ i ≤ k − 1 and1 ≤ j ≤
⌈

d(T )
k

⌉

. For all0 ≤ i ≤ k − 1, vertexh0 is the only

vertex inV 0
i .

Now we define a function,par: V (T ) \ {h0} → V (T ) as follows:∀u ∈ V (T ) \ {h0}, par(u) = v such that ifu ∈ V j
i

thenv ∈ V j−1
i and(u, v) ∈ E(T k). Such a vertexv always exists because of the following reasons: If1 ≤ ℓT (u) ≤ k then

u ∈ V 1
i for some0 ≤ i ≤ k − 1; we may choosev to beh0 sinceh0 ∈ V 0

i and(h0, u) ∈ E(T k). If ℓT (u) > k then we
may choosev to be the ancestor ofu in T such thatℓT (v) = ℓT (u)− k. Then clearlyv ∈ V j−1

i and(u, v) ∈ E(T k).
For0 ≤ i ≤ k − 1, define graphGi with vertex set,V (Gi) = Vi ∪ {h0} and edge set,E(Gi) = {(u, par(u)) : u ∈ Vi}.

Since every vertex inGi has a path toh0, the only vertex inV 0
i , Gi is connected. Moreover using the definition of
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the functionpar, it is easy to verify thatGi does not contain any cycle. HenceGi is a tree. For0 ≤ i ≤ k − 1 let
root(Gi) = h0. For i 6= j we haveV (Gi) ∩ V (Gj) = {h0}, a singleton set and henceE(Gi) ∩ E(Gj) = ∅.

We define an edge coloring,f : E(T k) → A⊎B⊎{c} whereA = { ai: 1 ≤ i ≤ ⌈d(T )/k⌉ },B = { bi: 1 ≤ i ≤ ⌈d(T )/k⌉
} and{c} are ordered sets of colors. SinceE(Gi)∩E(Gj) = ∅ for i 6= j, in order to define the edge coloringf it is sufficient
to define an edge coloring ofGi, for 0 ≤ i ≤ k − 1 and an edge coloring of all the remaining edges ofT k, separately. For
0 ≤ i ≤ k − 1, if i ≡ 0 mod 2 then we choose theLayer-wise ColoringfGi,A to color the edges ofGi else we choose
Layer-wise ColoringfGi,B to color the edges ofGi. All the remaining edges ofT k are coloredc.

Claim 1. The edge coloringf is a rainbow coloring ofT k

Proof. Letu andv be two distinct vertices ofT k. Without loss of generality letu 6= h0. Thenu ∈ Gi where0 ≤ i ≤ k−1.
By Observation1 there is anA-Rainbow-Path(B-Rainbow-Path) from u to h0 if i is even(odd). Now we can assume that
u, v 6= h0. Let u ∈ V (Gi) andv ∈ V (Gj). To illustrate a rainbow path betweenu andv we consider the following two
cases.

Case 1: [When |i− j| ≡ 1 mod 2]
Without loss of generality leti ≡ 0 mod 2 andj ≡ 1 mod 2.

LetQ1 = PGi
(u, h0) andQ2 = PGj

(h0, v) be theA andB-Rainbow-Pathsin Gi andGj with respect to theLayer-wise
ColoringsfGi,A andfGj,B respectively (SeeObservation1). It follows thatQ1 andQ2 areA andB-Rainbow-Pathsin T k

with respect to edge coloringf . ClearlyQ = Q1.Q2 is a(A∪ B)-Rainbow-Pathfrom vertexu to vertexv.

Case 2: [When |i− j| ≡ 0 mod 2]
Without loss of generality we may assume thatℓT (v) ≥ ℓT (u).

If (u, v) ∈ E(T k) then there is a trivial rainbow path between them. IfℓT (u1) ≤ 1 andℓT (u2) ≤ 1 then (u1, u2) ∈
E(T k) (sincek ≥ 2). We consider the case when(u, v) /∈ E(T k). This happens when the level number of one of the
vertices is≥ 2 i.e. ℓT (v) ≥ 2. Let v1 ∈ V (T k) be the parent ofv in T . SinceℓT (v) ≥ 2, v1 6= h0. Let v1 ∈ Gl where
ℓT (v1) = ℓT (v)− 1 ≡ l mod k. FromCase 1we know that there is a(A ∪ B)-Rainbow-Path, sayP , between verticesu
andv1 since|i − l| ≡ 1 mod 2. Edge(v, v1) is coloredc since(v, v1) /∈ E(Gi) for any0 ≤ i ≤ k − 1. ExtendingP by
edge(v, v1) we get the required rainbow path between verticesu andv.
We have thus proved thatf is a rainbow coloring ofT k.

Theorem 1. If H is any connected, non-trivial graph then for allk ≥ 2, r(Hk) ≤ rc(Hk) ≤ 2r(Hk) + 1.

Proof. The edge coloringf uses|A| + |B| + |{c}| = 2r(Hk) + 1 colors. The upper bound follows fromClaim 1. The
lower bound is trivial.

Tight Example:
LetH be a path on2kr + 1 vertices. It is easy to see thatrc(Hk) ≥ diam(Hk) = 2r(Hk).

3 Rainbow Connection Number of the Cartesian Product of Two Non-trivial
Graphs G′ andH ′

Recall that the Cartesian product,G′
�H ′, of two graphsG′ andH ′ is defined as follows:V (G′

�H ′) = V (G′) × V (H ′).
Two distinct vertices [g1, h1] and [g2, h2] of G′

�H ′ are adjacent ifeither g1 = g2 and (h1, h2) ∈ E(H ′) or (g1, g2) ∈ E(G′)
andh1 = h2. It is easy to verify thatdiam(G′

�H ′) = diam(G′) + diam(H ′) and thatr(G′
�H ′) = r(G′) + r(H ′). See

[10] for proof.

Let G be theBreadth-First-Search-Tree(BFS-Tree) rooted at some central vertex, sayg0, of G′. Similarly let H be the
BFS-Treerooted at some central vertex, sayh0, of H ′. We have thatd(G)= r(G′) andd(H) = r(H ′) whered(G) andd(H)
are the depths of treesG andH respectively. ClearlyG�H is a connected spanning subgraph ofG′

�H ′ and therefore
rc(G′

�H ′) ≤ rc(G�H). So in order to derive an upper bound forrc(G′
�H ′) in terms ofr(G′

�H ′) it is sufficient to
derive an upper bound forrc(G�H) in terms ofr(G′

�H ′).

5



LetV (G) = { g0, g1, . . . , g|G|−1} andV (H) = { h0, h1, . . . , h|H|−1}. LetG1, . . . G|H|−1,H1, . . . , H|G|−1 be the(G,H)-
Decompositionof G�H as defined inDefiniton-6. For0 ≤ i ≤ |H |− 1 defineroot(Gi) = [g0, hi] and for0 ≤ j ≤ |G|− 1
defineroot(Hj) = [gj , h0].
Recall the following simple observations.

Observation 2. V (Gi) ∩ V (Hj) = {[gj, hi]}, V (Gi) ∩ V (Gj) = ∅ andV (Hi) ∩ V (Hj) = ∅, for all i 6= j.

Observation 3. E(G�H) =
⊎|H|−1

i=0 E(Gi)
⊎|G|−1

j=0 E(Hj)

We now define an edge coloring,f : E(G�H) → A ⊎ B ⊎ C ⊎D whereA = { ai : 1 ≤ i ≤ d(G) }, B = { bi : 1 ≤ i ≤
d(G) }, C = { ci : 1 ≤ i ≤ d(H) } andD = { di : 1 ≤ i ≤ d(H) } are ordered sets of colors. In view ofObservation-3 it
is clear that in order to define the coloringf , it is sufficient to describe separately, an edge coloring for eachGi, 0 ≤ i ≤
|H | − 1 and an edge coloring for eachHj , 0≤ j ≤ |G| − 1. We choose Layer-wise ColoringfG0,A to be the edge coloring
of G0 andfGi,B to be the edge coloring ofGi for 1≤ i ≤ |H | − 1. Similarly we choose Layer-wise ColoringfH0,C to be
the edge coloring ofH0 andfHi,D to be the edge coloring ofHi for 1 ≤ i ≤ |G| − 1.

Claim 2. The edge coloring,f , is a rainbow coloring ofG�H .

Proof. Let u = [gi, hj ] andv = [gk, hl] be two distinct vertices ofG�H . We demonstrate a rainbow path betweenu and
v, by considering the following cases:

Case 1: [At least one of the vertices belong toV (G�H) \(V (G0)∪ V (H0))]

Without loss of generality letv ∈ V (G�H) \(V (G0) ∪ V (H0)) i.e. l 6= 0 andk 6= 0. We now consider the follow-
ing twosub-cases.

Case 1.a:[Vertexu /∈ V (G0), hencej 6= 0]
Vertex v = [gk, hl] ∈ V (Hk) androot(Hk) = [gk, h0]. Let Q1 = PHk

(v, [gk, h0]), is a D-Rainbow-Pathin Hk with
respect to the coloringfHk,D, by observation1. Similarly letQ2 = PG0

([gk, h0], [g0, h0]), Q3 = PH0
([g0, h0], [g0, hj ])

andQ4 = PGj
([g0, hj ], [gi, hj ]) beA-, C- and B-Rainbow-Pathsin G0, H0 andGj (j 6= 0) respectively. It follows that

Q1, Q2, Q3 andQ4 areD-,A-,C- andB-Rainbow-Pathsin G�H with respect to the coloringf . ClearlyQ = Q1. Q2. Q3.
Q4 is arainbow walkfrom v to u in G�H that contains arainbow pathbetween them.

Case 1.b:[Vertexu ∈ V (G0), henceu = [gi, h0]]
Vertexv ∈ VGl

, letQ1 = PGl
(v, [g0, hl]), is aB-Rainbow-Pathin Gl with respect to edge coloringfGl,B, by Observation-

1. Similarly letQ2 = PH0
([g0, hl], [g0, h0]) andQ3 = PG0

([g0, h0], [gi, h0]) beC- andA-Rainbow-Pathsin H0 and
G0 respectively. It follows thatQ1, Q2 andQ3 areB-, C- andA-Rainbow-Pathsin G�H with respect to the coloringf .
ClearlyQ = Q1. Q2. Q3. is arainbow walkfrom v to u in G�H that contains a rainbow path between them.

Case 2: [Both the vertices belong toV (G0) ∪ V (H0)]
Without loss of generality letv 6= [g0, h0]. We consider the following 3 sub-cases:

Case 2.a:[Both the vertices belong toV (H0), henceu = [g0, hj] andv = [g0, hl]]
Vertexv = [g0, hl] ∈ V (Gl). Let v′ = [gk′ , hl] be another vertex inGl such that (v, v′) ∈ E(Gl). The existence ofv′

is guaranteed sinceG′ 6= K1. Let Q1 = PGl
(v, v′) i.e. the single edge(v, v′) is aB-Rainbow-Pathin Gl with respect to

the coloringfGl,B, noting thatl 6= 0 by the assumption thatv 6= [g0, h0]. Similarly letQ2 = PHk′
(v′, [gk′ , h0]), Q3 =

PG0
([gk′ , h0], [g0, h0]) andQ4 = PH0

([g0, h0], [g0, hj ]) beD-, A- andC-Rainbow-Pathsin Hk′ , G0 andH0 respectively.
It follows thatQ1, Q2, Q3 andQ4 areB-, D-, A-andC-Rainbow-Pathsin G�H with respect to coloringf . ClearlyQ =
Q1. Q2. Q3. Q4. is arainbow walkfrom v to u in G�H that contains arainbow pathbetween them.

Case 2.b:[Both the vertices belong toV (G0), henceu = [gi, h0] andv = [gk, h0]]
Vertex v ∈ V (Hk). Let v′ = [gk, hl′ ] be another vertex inHk such that (v, v′) ∈ E(Hk). The existence ofv′ is guar-
anteed sinceH ′ 6= K1. Let Q1 = PHk

(v, v′) i.e. the single edge(v, v′) is a D-Rainbow-Pathin Hk with respect to
the coloringfHk,D, noting thatl 6= 0 by the assumption thatv 6= [g0, h0]. Similarly letQ2 = PGl′

(v′, [g0, hl′ ]), Q3 =
PH0

([g0, hl′ ], [g0, h0]) andQ4 = PG0
([g0, h0], [gi, h0]) beB-, C-andA-Rainbow-Pathsin Gl′ , H0 andG0 respectively.
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It follows thatQ1, Q2, Q3 andQ4 areD-, B-, C-andA-Rainbow-Pathsin G�H with respect to coloringf . ClearlyQ =
Q1. Q2. Q3. Q4. is arainbow walkfrom v to u in G�H that contains arainbow pathbetween them.

Case 2.c:[One vertex belongs toV (G0) and the other toV (H0)]
Without loss of generality letu ∈ V (G0), v ∈ V (H0) thenj = 0 andl = 0. In view of Cases2.a and2.b we can assume
thatu, v 6= [g0, h0].

LetQ1 = PH0
(v, [g0, h0]) andQ2 = PG0

([g0, h0], u) is aC- andA-Rainbow-Pathsin H0 andG0 respectively. It follows
thatQ1 andQ2 areC- andA-Rainbow-Pathsin G�H with respect to the coloringf . ClearlyQ = Q1.Q2 is arainbow walk
from vertexv to vertexu in G�H that contains arainbow pathbetween them.

It follows thatf is a rainbow coloring ofG�H .

Theorem 2. If G′ andH ′ are two non-trivial, connected graphs thenr(G′
�H ′) ≤ rc(G′

�H ′) ≤ 2r(G′
�H ′)

Proof. The edge coloringf uses|A| + |B| + |C|+ |D| = 2(d(G) + d(H)) = 2(r(G′) + r(H ′)) = 2r(G′
�H ′) number of

colors. The upper bound follows fromClaim-2 and the lower bound is obvious.

Tight Example:
Consider two graphsG1 andG2 such thatdiam(G1) = 2r(G1) anddiam(G2) = 2r(G2). For exampleG1 andG2 may be
taken as paths with odd number of vertices. Thendiam(G1�G2) = diam(G1) + diam(G2) = 2(rG1) + r(H1)).

4 Rainbow Connection Number of the Lexicographic Product ofTwo Non-
trivial Graphs G′ andH

Recall that the lexicographic product,G′ ◦H , of two graphsG′ andH is defined as follows:V (G′ ◦H) = V (G′)× V (H).
Two distinct vertices [g1, h1] and [g2, h2] of G′ ◦H are adjacent ifeither(g1, g2) ∈ E(G′) or g1 = g2 and (h1, h2) ∈ E(H).
Note that unlike theCartesian Productand theStrong Product, theLexicographic Productis a non-commutative product.
ThusG′ ◦H need not be isomorphic toH ◦ G′. Also note that ifG′ andH are non-trivial graphs thenr(G′ ◦H) = 1 if
and only ifr(G′) = 1 andr(H) = 1.

Theorem 3. Given two non-trivial graphsG′ andH such thatG′ is connected we have the following:

1. If r(G′ ◦H) ≥ 2 thenr(G′ ◦H) ≤ rc(G′ ◦H) ≤ 2r(G′ ◦H). This bound is tight.

2. If r(G′ ◦H) = 1 then1 ≤ rc(G′ ◦H) ≤ 3. This bound is tight.

Part 1: r(G′ ◦H) ≥ 2

Sincer(G′ ◦H) ≥ 2, eitherr(G′) ≥ 2 or r(H) ≥ 2. In either case it can be shown thatr(G′ ◦H) ≥ r(G′). LetG be the
BFS-Treerooted at some central vertex, sayg0, of graphG′. It is easy to see that the depth ofG, d(G)= r(G′). SinceG◦H
is a connected spanning subgraph ofG′ ◦H , rc(G′ ◦H) ≤ rc(G ◦H). In order to derive an upper bound forrc(G′ ◦H)
in terms ofr(G′ ◦H) it is sufficient to derive an upper bound forrc(G ◦H) in terms ofr(G′ ◦H).

Let V (G) = { gi: 0≤ i ≤ |G| − 1 } andV (H) = { hi: 0≤ i ≤ |H | − 1 }. SinceG is connected and non-trivial, vertex
g0 has at least one neighbor. We label this neighbor asg1 i.e. (g0, g1) ∈ E(G). SinceH is a non-trivial graph, there are at
least two vertices inH − h0 andh1. Note that(h0, h1) need not be an edge inH . It is easy to see thatG�H is a spanning
subgraph ofG ◦H .

It is easy to see thatG�H is a spanning subgraph ofG ◦ H . Let G0, G1 . . . , G|H|−1, H0, H1, . . . , H|G|−1 be the
(G,H)-Decompositionof the subgraph ofG ◦H that is isomorphic toG�H (SeeDefinition6). Recall that everyGi is iso-
morphic toG and everyHj is isomorphic toH . We defineroot(Gi) = [g0, hi] androot(Hj) = [gj , h0]. FromObservation
2 we know that any vertex[gi, hj] belongs to bothGj andHi.

Special note on notation:
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In the rest of this section for any vertexv = [gi, hj ] ∈ V (Gj), we abuse the notation and simply useℓ(v) /ℓ([gi, hj ]) instead
ℓGj

(v) /ℓGj
([gi, hj]). Note thatℓH(v) need not make sense asH need not be a tree.

Definition 7. LetE1 =
⊎|H|−1

i=0 E(Gi)
⊎|G|−1

j=0 E(Hj) andE2 = E(G ◦H) \ E1.

We now define an edge coloring,f : E(G ◦ H) → A ⊎ B whereA = {ai : 1 ≤ i ≤ r(G′ ◦ H)} andB = {bi : 1 ≤
i ≤ r(G′ ◦H)} are ordered sets of colors. Sincer(G′ ◦H) ≥ 2, both the setsA andB are of cardinality at least2. Since
E(G ◦H) = E1 ⊎ E2, it is enough to define separately a coloring forE1 and a coloring forE2.

Coloring the edges of E1:
To define a coloring ofE1 it is enough to define an edge colorings for eachGi, 0 ≤ i ≤ |H |− 1 and an edge coloring for

eachHj , 0 ≤ j ≤ |G| − 1. We choose theLayer-wise Coloring, fG0,A (as defined inDefinition5) to color the edges ofG0.
We define a new ordered set,B′ = {b′i : 1 ≤ i ≤ r(G′ ◦H)} whereb′1 = ar(G′◦H) ∈ A and for2 ≤ i ≤ r(G′ ◦H),

b′i = bi ∈ B. For 1 ≤ i ≤ |H | − 1, we choose theLayer-wise ColoringfGi,B′ to be the edge coloring ofGi. For
0 ≤ j ≤ |G| − 1, we color all the edges ofHj using the colorb1.

Coloring the edges of E2:
For any vertexv ∈ V (G ◦H) let E(v) be the set of edges fromE2 that are incident onv. We partitionE(v) into two sets
EL(v) andEU (v). Consider some edge(v, u) ∈ E(v), then(v, u) ∈ EL(v) if and only if ℓ(u) > ℓ(v) and(v, u) ∈ EU (v)
if and only if ℓ(u) < ℓ(v). For two verticesv1 andv2 ∈ V (G ◦ H) we have that(v1, v2) ∈ EL(v1) if and only if
(v1, v2) ∈ EU (v2).
To color the edges ofE2 we have the following set of rules:

Rule#1 : All the edges ofEL([g0, h0]) are coloredb1.

Rule#2 : For allv ∈ V (G0) \ [g0, h0], all the edges ofEL(v) are coloredaℓ(v)+1.

Rule#3 : All the edges ofEU ([gi, h0]), whereℓ([gi, h0]) = 1, are coloredbr(G′◦H).

Rule#4 : All the edges ofEL([g0, h1]) \ {([g0, h1], [gi, h0]) : ℓ([gi, h0]) = 1} are coloredar(G′◦H).

Rule#5 : For allv ∈ V (G1) \ [g0, h1], all the edges fromEL(v) are coloredbℓ(v)+1.

Rule#6 : All the edges ofEU ([gi, h1]) \ {([gi, h1], [g0, h0])}, whereℓG(gi) = 1, are coloredar(G′◦H).

Rule#7 : All the remaining edges ofE2 are coloredb1.

Claim 3. The coloringf is a rainbow coloring of the edges ofG ◦H .

Proof. Let u = [gi, hj ] andv = [gk, hl] be two distinct vertices ofG ◦H such thatℓ(v) ≥ ℓ(u). We demonstrate a rainbow
path between them by considering the following cases.

Case 1: [When ℓ(v) ≥ 2]
First we make the following3 observations.

(a): There exists anA-Rainbow-Pathfrom v to the vertex[g0, h0]:
If v ∈ V (G0), then the pathPG0

(v, [g0, h0]) is anA-Rainbow-Pathin G0 with respect to the edge coloringfG0,A (See
Observation1). If v /∈ V (G0), then∃ v1 ∈ V (G0) such thatℓ(v1) ≥ 1, ℓ(v1) = ℓ(v) − 1 and(v1, v) ∈ EL(v1). Such
a vertex always exists since we have assumed thatℓ(v) ≥ 2; G, H are non-trivial graphs andG is connected. Since
v1 ∈ V (G0) there is anA-Rainbow-Pathfrom v1 to [g0, h0] as explained earlier, let this path beP . SpecificallyP is a
{a1, a2, . . . , aℓ(v1)}-Rainbow-Path. Since edge(v1, v) is coloredaℓ(v1)+1 byRule#2, we can extend pathP by (v1, v) to
get the requiredA-Rainbow-Pathfrom v to [g0, h0].
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(b): There exists aB-Rainbow-Pathfrom v to the vertex[g0, h0]:
If v ∈ V (G1) then there exists an ancestor ofv, sayv2, in G1 such thatℓ(v2) = 1. The pathP1 = PG1

(v, v2) is a
{bℓ(v), bℓ(v)−1, . . . , b2}-Rainbow-Pathfrom v to v2 with respect to the edge coloringfG1,B′ . The edge(v2, [g0, h0]) is
coloredb1 by Rule #1. We can extendP1 by edge(v2, [g0, h0]) to get the requiredB-Rainbow-Pathfrom vertexv to
[g0, h0]. If v /∈ V (G1), then there existsv3 = [gi′ , h1] ∈ V (G1) such that(v, v3) ∈ EL(v3). Sincev3 ∈ V (G1) as explained
earlier there is a{bℓ(v), bℓ(v)−1, . . . , b2, b1}-Rainbow-Path, sayP2, from v3 to [g0, h0]. Since the edge(v3, v) is colored
bℓ(v3)+1 byRule#5, we can extendP2 by (v3, v) to get the requiredB-Rainbow-Pathfrom v to [g0, h0].

(c): There exist both{bℓ(v), bℓ(v)−1, . . . , b2, ar(G′◦H)} and
{aℓ(v), aℓ(v)−1, . . . , a2, br(G′◦H)}-Rainbow-Pathsfrom v to any vertex inV (H0) \ {[g0, h0]}:
Recall thatℓ(v) ≥ 2. From observation(a) it can be inferred that there is a{bℓ(v), bℓ(v)−1, . . . , b2}-Rainbow-Path
from v to some vertexv4 ∈ V (G1) such thatℓ(v4) = 1. For anyv5 ∈ V (H0) \ [g0, h0], the edge(v4, v5) is col-
oredar(G′◦H) by Rule #6 or by theLayer-wise ColoringfG1,B′ (whatever is applicable). This implies that there is a
{bℓ(v), bℓ(v)−1, . . . , b2, ar(G′◦H)}-Rainbow-Pathfrom vertexv to any vertex inV (H0) \{[g0, h0]}.
Similarly from observation(b) it can be inferred that there is a{aℓ(v), aℓ(v)−1, . . . , a2}-Rainbow-Pathfrom vertexv to
some vertexv6 ∈ V (G0) such thatℓ(v6) = 1. By Rule#3 any vertex inV (H0)\{[g0, h0]} is adjacent tov6 and is colored
br(G′◦H).

Now consider the different cases involving vertexu. If ℓ(u) ≥ 2 then from observations(a) and(b) it follows thatu
andv are rainbow connected. Ifℓ(u) = 0 then from observation(c) it follows thatu andv are rainbow connected. Finally
if ℓ(u) = 1 then we know that(u, [g0, h0]) ∈ E(G ◦ H) and is colored eithera1 or b1. Sincev has both anA and a
B-Rainbow-Pathto [g0, h0]. It follows thatu andv are rainbow connected.

Case 2: [When ℓ(v) ≤ 1]
Without loss of generality we assume that vertexu 6= [g0, h0].

Case 2.a:[Whenℓ(v) 6= ℓ(u)]
Verticesu andv are connected by an edge which is a trivialrainbow pathbetween them.

Case 2.b:[Whenℓ(v) = ℓ(u) = 0, henceu = [g0, hj] andv = [g0, hl]]
If v = [g0, h0] then we claim that the two length path,P = {v = [g0, h0]}, [g1, h0], {[g0, hj] = u} is a rainbow path

from v to u. The edges ofP are coloreda1, br(G′◦H) in that order. To see this: edge(v, [g1, h0]) ∈ E(G0) andG0 is
edge colored using theLayer-wise Coloring, fG0,A. It follows that the edge is coloreda1 (SeeObservation1). The edge
([g1, h0], u) ∈ EU ([g1, h0]) and is coloredbr(G′◦H) by Rule#3. Note that edge(v, [g1, h0]) ∈ E(G ◦ H) sinceG is
non-trivial and it is assumed that edge(g0, g1) ∈ E(G).

If v ∈ V (H0)\{[g0, h0]} then we claim that the four length path,P = {u = [g0, hj]}, [g1, h0], [g0, h0], [g1, h1], {[g0, hl] =
v} is a rainbow path fromu to v. The edges ofP are coloredbr(G′◦H), a1, b1, ar(G′◦H) in that order. To see this: edge
(u, [g1, h0]) ∈ EU ([g1, h0]) and is coloredbr(G′◦H) by Rule#3; edge([g1, h0], [g0, h0]) ∈ E(G0) and is coloreda1 by the
Layer-wise ColoringfG0,A; edge([g0, h0], [g1, h1]) ∈ EL([g0, h0]) and is coloredb1 byRule#1; finally edge([g1, h1], v)
is coloredar(G′◦H) by one of the two applicable rules:(a): Edge([g1, h1], v) ∈ E(G1) andG1 is edge colored using the
Layer-wise ColoringGG1,B′ or (b): Edge([g1, h1], v) ∈ EU ([g1, h1]) \{([g0, h0], [g1, h1])} and is coloredar(G′◦H) by
Rule#4.

Case 2.c:[Whenℓ(v) = ℓ(u) = 1]
If exactly one of the vertices is inG0. Without loss of generality letu ∈ V (G0) andv /∈ V (G0) thenu = [gi, h0] and

v = [gk, hl 6=0]. We claim that the two length pathP = {u = [gi, h0]}, [g0, h0], {[gk, hl] = v} is a rainbow path from vertex
u to vertexv. The edges ofP are coloreda1, b1 in that order.

If u, v ∈ V (G0) thenu = [gi, h0] andv = [gk, h0]. We claim that the four length pathP = {u = [gi, h0]}, [g0, h0],
[g1, h1], [g0, h1], {v = [gk, h0]} is a rainbow path from vertexu to vertexv. The edges are coloreda1, b1, ar(G′◦H), br(G′◦H)

in that order.
If u, v /∈ V (G0) thenu = [gi, hj 6=0] andv = [gk, hl 6=0]. We claim that the four length pathP = {u = [gi, hj ]}, [g0, h0],

[g1, h0], [g0, h1], {v = [gk, hl]} is a rainbow path fromu to v. The edges ofP are coloredb1, a1, br(G′◦H), ar(G′◦H) in that
order.
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We have thus proved thatf is a rainbow coloring ofG◦H . Sincef uses2r(G◦H) colors, we haverc(G◦H) ≤ 2r(G◦H).
Since it is assumed thatr(G ◦H) ≥ 2 we have proved the upper-bound inPart 1 of Theorem3.

Tight Example:
LetG be a connected graph such thatr(G) ≥ 2 anddiam(G) = 2r(G); letH be any non-trivial graph. It is easy to see that
diam(G ◦H) = diam(G) andr(G ◦H) = r(G). Hence we can conclude thatdiam(G ◦H) = 2r(G ◦H). We know that
rc(G ◦H) ≥ diam(G ◦H) andrc(G ◦H) ≤ 2r(G ◦H) (Part 1 fromTheorem3). It follows thatrc(G ◦H) = 2r(G ◦H).

Part 2: r(G′ ◦H) = 1

We know that ifr(G′ ◦H) = 1 thenr(G′) = r(G) = 1 andr(H) = 1.

Claim 4. If G′ andH are two non-trivial graphs such thatr(G′ ◦H) = 1 thenrc(G′ ◦H) ≤ 3.

Proof. Sincer(G′ ◦H) = 1 there exists an universal vertex, sayu ∈ V (G′ ◦H). It is easy to verify thatG′ ◦H is 2 vertex
connected. Now consider the following theorem:
Theorem Chandran et al.[4]: If D is a connected two-way dominating set in a graph G, thenrc(G) ≤ rc(G[D]) + 3.
The proof and definitions involved are given in[4].

The universal vertex,u, is a trivial dominating set. Moreover sinceG′ ◦H is two vertex connected and consequently
two edge connected, it follows that{u} is a two-way dominating set inG′ ◦ H . As a resultrc(G′ ◦ H) ≤ rc({u}) +3.
Sincerc({u}) = 0 we haverc(G′ ◦H) ≤ 3. We have thus proved theclaim and the upper-bound inPart 2 of Theorem
3.

Tight Example:
Consider two non-trivial graphsG andH such thatG = K1,n (astar graph) wheren ≥ 2m + 1 andH is a graph such that
r(H) = 1 and|H | = m. We claim thatrc(G ◦H) = 3.

Proof. We prove the claim by contradiction.
Let f be a rainbow coloring ofG ◦H using at most2 colors, saya1 anda2. Let V (G) = {g0, g1, . . . , gn} whereg0 is

the central vertex ofG. Similarly letV (H) = {h0, h1, . . . , hm−1}. LetH0 be the induced subgraph ofG ◦H with vertex
setV (H0) = {[g0, hi] : 0 ≤ i ≤ m− 1}. GraphH0 is isomorphic toH .

For1 ≤ i ≤ n define the functionfi : {[gi, h0]}×V (H0) → {a1, a2} asfi(([gi, h0], [g0, hj ])) = f(([gi, h0], [g0, hj ])).
Each of the functions,fi, are one among2|H| possible functions. Sincen > 2|H|, by pigeon hole principlethere must exist
somefi andfk such thati 6= k andfi = fk. If so there isno rainbow pathbetween the vertices[gi, h0] and[gk, h0] with
respect to the edge coloringf . This is beacause any rainbow path with respect tof between the two vertices is of length2.
Now any two length path between the vertices is of the form[gi, h0], v, [gk, h0] wherev is the intermediate vertex. It is easy
to see thatv ∈ V (H0). We know thatfi([gi, h0], v) = fk([gk, h0], v) = f([gi, h0], v) = f([gk, h0], v) for all v ∈ V (H0).
This is a contradiction. Hencef is not arainbow coloringof G ◦H .
Therefore any rainbow coloring ofG ◦H uses at least 3 colors. It follows fromClaim 4 thatrc(G ◦H) = 3.

Proof of Theorem 3: The upper bounds follow fromClaim 3 andClaim4. The lower bounds are trivial.

5 Rainbow Connection Number of the Strong Product of Two Non-Trivial, Con-
nected GraphsG′ andH

′

Recall that thestrong productof two graphsG′ andH ′, denoted byG′
⊠ H ′, is defined as follows:V (G′

⊠ H ′) =
V (G′) × V (H ′). The edge set ofG′

⊠ H ′ consists of two types of edges. An edge([g1, h1], [g2, h2]) is Type-1if and
only if either g1 = g2 and(h1, h2) ∈ E(H ′) or h1 = h2 and(g1, g2) ∈ E(G′). The edge is ofType-2 if and only if
(g1, g2) ∈ E(G′) and(h1, h2) ∈ E(H ′). Let rmax = max{r(G′), r(H ′)}. It is easy to see thatr(G′

⊠ H ′) = rmax and
diam(G′

⊠H ′) = max{diam(G′), diam(H ′)}. See[10] for proof.
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We assume without loss of generality thatr(G′) ≥ r(H ′) asG′
⊠H ′ is isomorphic toH ′

⊠G′. LetG andH beBFS-
Treesrooted at some central vertices,g0 andh0 respectively ofG′ andH ′. It is easy to see that the depths ofG andH are
d(G) = r(G′) andd(H) = r(H ′) respectively. LetV (G) = {gi : 0 ≤ i ≤ |G| − 1} andV (H) = {hi : 0 ≤ i ≤ |H | − 1}.
SinceG andH are non-trivial connected trees there is atleast one neighbor for g0 andh0 in G andH respectively. In
the remainder of the section we always let these vertices beg1 andh1 respectively. Therefore(g0, g1) ∈ E(G) and
(h0, h1) ∈ E(H).

LetLw(G) = {gi ∈ V (G): ℓG(gi) = w } for 0 ≤ w ≤ d(G) andLx(H) = {hi ∈ V (H): ℓH (hi) = x } for 0 ≤ x ≤ d(H).
We defineVw,x = Lw(G)× Lx(H) for 0 ≤ w ≤ d(G) and0 ≤ x ≤ d(H).

SinceG⊠H is a spanning subgraph ofG′
⊠H ′, rc(G′

⊠H ′) ≤ rc(G ⊠H). So in order to derive an upper bound for
rc(G′

⊠H ′) in terms ofr(G′
⊠H ′) it is enough to derive an upper bound forrc(G⊠H) in terms ofd(G) = rmax = r(G′).

Recall that we have assumed thatr(G′) ≥ r(H ′) and thereforer(G′
⊠H ′) = r(G′).

We define an edge coloring,f : E(G ⊠H) → A ⊎ B ⊎ {c, d} whereA = {ai : 1 ≤ i ≤ d(G)} andB = {bi : 1 ≤
i ≤ d(G)} are ordered sets of colors; andc andd are colors that are not inA ⊎B. SinceE(G⊠H) is the disjoint union of
Type-1 andType-2 edges, we can define the coloring forType-1 andType-2 edges separately.

Coloring the Type-1 edges

Note that if we restrict the edge set ofG⊠H to Type-1edges alone then the subgraph thus obtained is isomorphic toG�H ,
the Cartesian Product ofG andH . Let G1, G2, . . . , G|H|−1, H1, H2, . . . , H|G|−1 be the(G-H)-Decompositionof G�H
(Type-1 edges) as defined inDefinition6. For0 ≤ j ≤ |H | − 1, defineroot(Gj) = [g0, hj ] and for0 ≤ i ≤ |G| − 1, define
root(Hi) = [gi, h0]

Recall thatA = {ai : i ≤ i ≤ d(G)} andB = {bi : 1 ≤ i ≤ d(G)} are ordered sets of colors. We define
several new ordered (multi) sets of colors by slightly modifying the setsA andB. First we define the ordered set,
A0 = {a0i : 1 ≤ i ≤ d(G)} wherea01 = c anda0i = ai ∈ A for 2 ≤ i ≤ d(G). Also for 1 ≤ w ≤ d(H), we
define ordered multi-sets,Aw = {awi : 1 ≤ i ≤ d(G)} andBw = {bwi : 1 ≤ i ≤ d(G)} whereawi = d andbwi = d for
1 ≤ i ≤ w and awi = ai ∈ A andbwi = bi ∈ B for w + 1 ≤ i ≤ d(G).

Rules to colors theType-1 edges:

T1-R1: We choose theLayer-wise ColoringfH0,A to color the edges ofH0.

T1-R2: For eachHi such thatℓG(gi) = 1, we choose theLayer-wise coloringfHi,B to color the edges ofHi.

T1-R3: For eachHi such thatℓG(gi) ≥ 2, we color all the edges ofHi usingd.

T1-R4: For0 ≤ w ≤ d(H) we choosefGi,Aw
to color the edges ofGi if w is evenand we choosefGi,Bw

to the color the
edges ofGi if w is odd.

Coloring the Type-2 edges

Observation 4. If an edge([gi, hj], [gk, hl]) ∈ E(G ⊠H) is of Type-2 such that[gi, hj ] ∈ Vw,x and [gk, hl] ∈ Vy,z then
we have|w − y| = 1 and|x− z| = 1.

Proof. Since the edge([gi, hj ], [gk, hl]) is of Type-2, edges(gi, gk) and(hj , hl) are edges of treesG andH respectively.
Therefore|w − y| = |ℓG(gi)− ℓG(gk)| = 1 and|x− z| = |ℓH(hj)− ℓH(hl)| = 1.

Rules to colors theType-2 edges:

T2-R1: Let([gi, hj ], [gk, hl]) ∈ E(G⊠H) be an edge ofType-2 such that[gi, hj ] ∈ Vy,z and[gk, hl] ∈ Vy+1,z+1, then define

f(([gi, hj ], [gk, hl])) =

{

az+1 if |z − y| is even
bz+1 if |z − y| is odd

Note thatz + 1 = ℓH(hl) ≤ d(H) ≤ d(G) and thereforeaz+1 andbz+1 exist.
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T2-R2: Let([gi, hj ], [gk, hl]) ∈ E(G⊠H) such that[gi, hj] ∈ V1,1 and[gk, hl] ∈ V2,0 then we choosef(([gi, hj ], [gk, hl])) =
a2.

Note that if[gk, hl] ∈ V2,0 thenℓG(gk) = 2 and thusd(G) ≥ 2 anda2 exists.

T2-R3: All the remaining edges ofType-2 are coloredd.

A-Reachable and B-Reachable Vertices:
We define the following2 concepts with respect to the edge coloringf . We define a vertex[gi, hj ] ∈ V (G ⊠ H) to be
A-Reachableif there exists anA-Rainbow-Pathfrom [gi, hj] to the vertex[g0, h0]. We define[gi, hj ] to beB-Reachableif
there exists aB-Rainbow-Pathfrom [gi, hj] to some vertex inV1,0.

We define two subsets,RA andRB of V (G⊠H):

RA =
⊎

0≤z≤d(H)

V0,z

⊎

1≤y≤z, |y−z| is even

Vy,z

⊎

2≤y≤d(G)

Vy,0

⊎

2≤z<y, z is even

Vy,z

RB =
⊎

0≤z≤d(H)

V1,z

⊎

2≤y≤z, |y−z| is odd

Vy,z

⊎

z<y, z is odd

Vy,z

It is easy to verify thatRA ∪RB = V (G⊠H), butRA ∩RB is non-empty.

Claim 5. If u ∈ RA, thenu is A-Reachable with respect to the edge coloringf .

Proof. Let u = [gi, hj ] ∈ Vy,z. We consider the following4 cases.

Case 1: [When u ∈ V0,z where0 ≤ z ≤ d(H)]
FromRule T1-R1we know that the edges ofH0 are colored using theLayer-wise Coloring, fH0,A. Hence byObservation
1 there is anA-Rainbow-Pathfrom vertexu to root(H0) = [g0, h0]. It follows thatu is A-Reachable.

Case 2: [When u ∈ Vy,z where1 ≤ y ≤ z and |y − z| is even]
SinceℓG(gi) = y, the path fromgi to g0 in G hasy + 1 vertices. Let this path begi = gi0 , gi1 , . . . , giy = g0. Let hj′ be
the ancestor ofhj in H such thatℓH(hj′) = z − y. Let hj = hj0 , hj1 , . . . , hj′ = hjy be the path fromhj to hj′ in H . It
hasy+ 1 vertices. ClearlyP1 = {[gi, hj ] = [gi0 , hj0 ]}, [gi1 , hj1 ], . . . , [g0, hj′ ] is a path inG⊠H whose edges are colored
az, az−1, . . . , az−y+1 in that order (ByRule T2-R1). Note that ify = z thenhj′ = h0 andP1 is the requiredA-Rainbow-
Pathfrom u to [g0, h0]. If z < y then since[g0, hj′ ] ∈ V (H0), by Case 1there is aA-Rainbow-Path, sayP2, from [g0, hj′ ]
to [g0, h0]. In particularP2 is a{az−y, az−y−1, . . . , a1} Rainbow Path. ClearlyP = P1. P2 is a{a1, a2, . . . , az}-Rainbow-
Pathfrom vertexu to [g0, h0] with respect to coloringf . Henceu is A-Reachable.

Case 3: [When u ∈ Vy,0 where2 ≤ y ≤ d(G), henceu = [gi, h0] ∈ V (G0)]
Let u1 = [gi′ , h0] be an ancestor ofu in G0 such thatℓG0

(u1) = 2. By Rule T1-R4 G0 is edge colored using the
Layer-wise ColoringfG0,A0

. The path from vertexu to u1 in G0, sayP1, is rainbow colored using colors from the set
{ay, ay−1, . . . , a3}. Let gi′′ be the parent ofgi′ in G. SinceH is non-trivialh1 exists and(h0, h1) ∈ E(H). Therefore
([gi′ , h0], [gi′′ , h1]) ∈ E(G ⊠ H) and is coloreda2 by Rule T2-R2. SinceℓG(gi′′) = 1, (gi′′ , g0) ∈ E(G) and therefore
([gi′′ , h1], [g0, h0]) ∈ E(G⊠H) and is coloreda1 by Rule T2-R1. Hence the pathP = P1. ([gi′ , h0], [gi′′ , h1], [g0, h0]) is
anA-Rainbow-Pathfrom vertexu to [g0, h0]. Henceu is A-Reachable.

Case 4: [When u ∈ Vy,z wherey > z ≥ 2 and z is even]
Vertexu = [gi, hj] ∈ V (Gj). Letu1 = [gi′ , hj ] be an ancestor ofu in Gj such thatℓGj

(u1) = z. LetP1 be the path inGj

from vertexu to u1. SinceℓH(hj) = z is even, by Rule T1-R4, Gj is edge colored using theLayer-wise ColoringfGj,Az
.

The edges ofP1 are coloreday, ay−1, . . . , az+1 in that order. Sinceu1 = [gi′ , hj ] ∈ Vz,z andz ≥ 2, by Case 2we have
a {az, az−1, . . . , a1}-Rainbow-Path, sayP2, from vertexu1 to vertex[g0, h0]. ClearlyP = P1. P2 is anA-Rainbow-Path
from vertexu to [g0, h0]. Hence vertexu is A-Reachable.

Claim 6. If u ∈ RB, then u is B-Reachable with respect to the edge coloringf .
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Proof. Let u = [gi, hj ] ∈ Vy,z. We consider the following3 cases.

Case 1: [When u ∈ V1,z for 0 ≤ z ≤ d(G)]
Vertexu ∈ V (Hi) with root(Hi) = [gi, h0]. SinceℓG(gi) = 1, Hi is edge colored using theLayer-wise ColoringfHi,B

by Rule T1-R2. FromObservation1 we infer that there is a{b1, b2, . . . , bz}-Rainbow-Pathfrom vertexu to [gi, h0] ∈ V1,0

in Hi. If follows thatu is B-Reachablewith respect to the edge coloringf .

Case 2: [When u ∈ Vy,z where2 ≤ y ≤ z and |y − z| is odd]
Let u = [gi, hj ] ∈ Vy,z. In G let gi′ be the ancestor ofgi with ℓG(gi′) = 1. SinceℓG(gi) = y, the path inG from gi to
gi′ in G hasy vertices. Letgi = gi0 , gi1 , . . . , giy−1

= gi′ be that path. Similarly inH let hj′ be the ancestor ofhj with
ℓH(hj′) = z − y + 1. Then the path inH from hj to hj′ hasy vertices. Lethj = hj0 , hj1 , . . . , hjy−1

= hj′ be that
path. ClearlyP1 = [gi, hj ], [gi1,hj1

], . . . , [gi′ , hj′ ] is a path inG⊠H and its edges are coloredbz, bz−1, . . . , bz−y+2 in that
order (ByRule T2-R1). Now [gi′ , hj′ ] ∈ V1,z−y+1 and byCase 1there is a{b1, b2, . . . , bz−y+1}-Rainbow-Path, sayP2,
from [gi′ , hj′ ] to [gi′ , h0] ∈ V1,0. ClearlyP = P1. P2 is aB-Rainbow-Pathfrom u to [gi′ , h0] ∈ V1,0. It follows thatu is
B-Reachablewith respect to the edge coloringf .

Case 3: [When u ∈ Vy,z wherey > z and z is odd]
Let u = [gi, hj ] ∈ Vy,z. We consider the following two sub-cases.

Case 3.a:[Wheny = z + 1]
SinceℓH(hj) = z, the path fromhj to h0 in H hasz + 1 vertices. Let this path behj = hj0 , hj1 , . . . , hjz = h0. Similarly
let gi′ be the ancestor ofgi in G such thatℓG(gi′) = 1. SinceℓG(gi) = z+1 the path fromgi to gi′ in G hasz+1 vertices.
Let this path begi = gi0 , gi1 , . . . , giz = gi′ . Clearlyu = [gi, hj ], [gi1 , hj1 ], . . . , [gi′ , h0] is a path inG ⊠H and is colored
bz, bz−1, . . . , b1 in that order (ByRule T2-R1). Since[gi′ , h0] ∈ V1,0 vertexu is B-Reachable.

Case 3.b:[Wheny> z + 1]
Vertexu ∈ Gj . Let u1 = [gi′′ , hj ] be an ancestor ofu in Gj such thatℓGj

(u1) = z + 1. Sincez is odd, byRule T1-
R4 we know thatGi is edge colored usiong theLayer-wise ColoringfGj,Bz

. The edges of path,P1 = PGj
(u, u1) are

coloredby, by−1, . . . , bz+2 in that order and is a rainbow path. Sinceu1 ∈ Vz+1,z by Case 3.athere is a{bz, bz−1, . . . , b1}-
Rainbow-Path, sayP2, from vertexu1 to some vertex, sayu2 in V1,0. ClearlyP = P1. P2 is aB-Rainbow-Pathfrom vertex
u to u2 ∈ V1,0. It follows thatu is B-Reachablewith respect to the coloringf .

Claim 7. Letu ∈ V (G⊠H) \ {[g0, h0]} then we have the following:
(a) If u ∈ RA \RB then there existsu1 ∈ RB such that(u, u1) ∈ E(G⊠H) and is coloredd.
(b) If u ∈ RB \RA then there existsu1 ∈ RA such that(u, u1) ∈ E(G⊠H) and is coloredd.

Proof. We consider the following cases.

Case 1: [When u ∈ V0,z where0 ≤ z ≤ d(H), i.eu ∈ V (H0) ]
In this caseu = [g0, hj ] ∈ RA \RB . We takeu1 = [g1, hj ]. SinceG is non-trivial, vertexg1 exists and(g0, g1) ∈ E(G).
SinceℓG(gi) = 1, we haveu1 ∈ V1,z ⊆ RB, where1 ≤ z = ℓH(hj) ≤ d(H). Note thatz 6= 0 sinceu 6= [g0, h0].
Now the edge(u, u1) = ([g0, hj ], [g1, hj ]) ∈ E(Gj). By Rule T1-R4, Gj is edge colored using theLayer-wise Coloring
fGj,Az

or fGj ,Bz
, wherez = ℓH(hj), depending on whetherz is evenor odd. Recalling thatAz = {az1, az2, . . . , azd(G)} and

Bz = {bz1, bz2, . . . , bzd(G)} the edge(u, u1) is colored eitheraz1 or bz1. Sincez ≥ 1, az1 = bz1 = d and hence the edge(u, u1)
is colored eitheraz1 = d or bz1 = d.

Case 2: [When u ∈ V1,z where0 ≤ z ≤ d(H)]
In this caseu ∈ RB. Note that ifz is odd thenV1,z ⊆ RA ∩RB. So we can assume thatz is even.

Case 2.a:[Whenu ∈ V1,0]
Let u = [gi, h0] ∈ V1,0 with ℓG(gi) = 1. We takeu1 = [g0, h1]. SinceH is non-trivial,h1 exists and(h0, h1) ∈ E(H).
Also edge(g0, gi) ∈ E(G). Therefore the edge(u, u1) = ([gi, h0], [g0, h1]) ∈ E(G ⊠ H). It is easy to see that
u1 ∈ V0,1 ⊆ V (H0) ⊆ RA. The edge(u, u1) is coloredd by Rule T2-R3.
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Case 2.b:[Whenu ∈ V1,z where2 ≤ z ≤ d(H) andz is even]
Let u = [gi, hj ] ∈ V1,z with ℓG(gi) = 1. Then (g0, g1) ∈ E(G). We takeu1 = [g0, hj ] ∈ V0,z ⊆ RA, then
(u, u1) = ([gi, hj], [g0, hj ]) ∈ E(Gj). By Rule T1-R4, Gj is edge colored using theLayer-wise ColoringfGj,Az

, since
z = ℓH(hj) is even. Sincez ≥ 2, az1 = bz1 = d and the edge(u, u1) is coloredd.

Case 3: [When u ∈ Vy,z where2 ≤ y ≤ z]
Let u = [gi, hj ] ∈ Gj . Letu1 = [gi′ , hj ] be the parent ofu in Gj . SinceℓG(gi′) = ℓG(gi)− 1 = y − 1, u1 ∈ Vy−1,z. We
claim that ifu ∈ Vy,z ⊆ RA \ RB thenu1 ∈ Vy−1,z ⊆ RB and if u ∈ Vy,z ⊆ RB \ RA thenu1 ∈ Vy−1,z ⊆ RA. To see
this first note that

⊎

1≤y≤z, |y−z| is even Vy,z ⊆ RA and
⊎

1≤y≤z, |y−z| is odd Vy,z ⊆ RB. Now the following is easy to see:
if 2 ≤ y ≤ z andVy,z ⊆ RB \RA (respectively RA \RB) then1 ≤ y−1 < z andVy−1,z ⊆ RA (respectively RB) since
the parity of|y − z| is different from the parity of|(y − 1) − z|. By Rule T1-R4, Gj is edge colored using theLayer-wise
ColoringfGj,Az

or fGj,Bz
depending on whetherz = ℓH(hj) is evenor odd. From the definition of the setsAz andBz we

have that, for1 ≤ i ≤ z, azi = bzi = d. Since2 ≤ y ≤ z, edge(u, u1) is coloredazy = d or bzy = d.

Case 4: [When u ∈ Vy,0 where2 ≤ y ≤ d(G)]
In this caseu ∈ RA \ RB. Let u = [gi, h0] ∈ V (Hi). Let u1 = [gi, h1] ∈ V (Hi). Since(h0, h1) ∈ E(H),
(u, u1) = ([gi, h0], [gi, h1]) ∈ E(Hi). Vertexu1 ∈ Vy,1 ⊆ RB as(z = 1) < 2 ≤ y and1 is odd. SinceℓG(gi) = y ≥ 2,
by Rule T1-R3 all the edges ofHi are coloredd. Hence(u, u1) is coloredd.

Case 5: [When u ∈ Vy,z where1 ≤ z < y]
Let u = [gi, hj ] ∈ V (Hi). Let u1 = [gi, hj′ ] be the parent ofu in Hi. Then(u, u1) = ([gi, hj], [gi, hj′ ]) ∈ E(Hi) and
ℓH(hj′) = ℓH(hj)− 1 = z − 1 ≥ 0. Sincey > z − 1 if u ∈ Vy,z ⊆ RA \RB (respectively RB \ RA) thenz − 1 is odd
(even) andu ∈ Vy,z−1 ⊆ RB (respectively RA). Also sincey ≥ 2 by Rule T1-R3, all the edges ofHi are coloredd.

Lemma 1. The edge coloringf is a rainbow coloring ofG⊠H .

Proof. We show that any distinct pair of vertices,u andv from G ⊠ H have a rainbow path between them with respect
to the edge coloringf . SinceV (G ⊠ H) = RA ∪ RB, vertexu ∈ RA or u ∈ RB. The same applies to vertexv. Let
u = [g0, h0]. If v ∈ RA then byClaim 5 there is anA-Rainbow-Pathfrom v to u = [g0, h0]. If v ∈ RB then byClaim 6
there is aB-Rainbow-Pathfrom v to some vertexv′ ∈ V1,0. We know that(v′, [g0, h0]) ∈ E(G0) and is coloredc by the
Layer-wise ColoringfG0,A0

. Hence there is a({c} ⊎B)-Rainbow-Pathfrom vertexv to u = [g0, h0].
We may now assume thatu, v 6= [g0, h0]. We have the following two cases:

Case 1: [When one of the vertices is inRA and the other is inRB]
Without loss of generality letu ∈ RA and v ∈ RB. By Claim 5 there is anA-Rainbow-Pathbetween vertexu and
vertex [g0, h0], let this path beP1. Similarly by Claim 6 there is aB-Rainbow-Pathbetween vertexv and some ver-
tex v1 = [gi, h0] ∈ V1,0, let this path beP2. Now v1 ∈ V (G0) and ℓG(gi) = 1, hence(g0, g1) ∈ E(G) and
(v1, [g0, h0]) ∈ E(G0). By Rule T1-R4 G0 is edge colored using theLayer-wise ColoringfG0,A0

. The edge(v1, [g0, h0])
is coloreda01 = c. Clearly the pathP = P1. ([g0, h0], v1). P2 is a(A ⊎B ⊎ {c})-Rainbow-Pathbetween verticesu andv.

Case 2: [When both the vertices are inRA \RB]
By Claim 7 there exists a vertexu1 ∈ RB ⊂ V (G ⊠H) such that(u, u1) ∈ E(G ⊠H) and is coloredd. Sincev ∈ RA

andu1 ∈ RB by Case 1there is a(A ⊎B ⊎ {c})-Rainbow-Pathfrom vertexv to u1, sayP1. ClearlyP = P1. (u1, u) is a
rainbow path from vertexv to vertexu.

Case 3: [When both the vertices are inRB \RA]
By Claim 7 there exists a vertexu2 ∈ RA ⊂ V (G ⊠ H) such that(u, u2) ∈ E(G ⊠ H) and is coloredd. Now using
arguments similar toCase 2we can prove that there exists a rainbow path between verticesu andv.

Theorem 4. r(G′
⊠H ′) ≤ rc(G′

⊠H ′) ≤ 2r(G′
⊠H ′) + 2

Proof. The rainbow coloringf uses|A| + |B| + |{c, d}| = 2d(G) + 2 = 2r(G ⊠H) + 2 colors. Sinced(G) = r(G′) =
r(G′

⊠H ′) From ofClaim1 the upper bound follows. The lower bound is trivial.
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Tight Example:
Consider two graphsG1 andG2 such thatdiam(G1) = 2r(G1) ≥ diam(G2). For exampleG1 may be taken as a path with
odd number of vertices. Thenrc(G1 ⊠G2) ≥ diam(G1 ⊠G2) = 2r(G1 ⊠G2).
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