arXiv:1110.0224v1 [math.CO] 2 Oct 2011

On a covering problem in the hypercube

Lale Ozkahya Brendon Stanton
email: ozkahya@illinoisalumni.org The Citadel
Department of Mathematics
Charleston, SC 29409 USA
email: bstanton@citadel.edu

October 23, 2018

Abstract

In this paper, we address a particular variation of the Turdn problem for the hypercube.
Alon, Krech and Szabé (2007) asked “In an n-dimensional hypercube, @,,, and for £ < d < n,
what is the size of a smallest set, S, of Q,’s so that every Q4 contains at least one member
of S7” Likewise, they asked a similar Ramsey type question: “What is the largest number
of colors that we can use to color the copies of @y in @),, such that each Qg contains a @)
of each color?” We give upper and lower bounds for each of these questions and provide
constructions of the set S above for some specific cases.

1 Introduction

For graphs @ and P, let ex(Q, P) denote the generalized Turan number, i.e., the maximum
number of edges in a P-free subgraph of Q). The n-dimensional hypercube, Q,, is the graph
whose vertex set is {0,1}" and whose edge set is the set of pairs that differ in exactly one
coordinate. For a graph G, we use n(G) and e(G) to denote the number of vertices and the
number of edges of G, respectively.
In 1984, Erdés [8] conjectured that

i ex(Qn,C4) - 1

im ————— = —.
Note that this limit exists, because the function above is non-increasing for n and bounded. The
best upper bound ex(Q,,,Cy)/e(Q,) < 0.62256 was obtained by Thomason and Wagner [16] by
slightly improving the bound 0.62284 given by Chung [4]. Brass, Harborth and Nienborg [3]
showed that the lower bound is £(1 + 1/y/n), when n = 4" for integer r, and (1 + 0.9/y/n),
when n > 9.
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Erdés [§] also asked whether o(e(@®,,)) edges in a subgraph of Q,, would be sufficient for the
existence of a cycle Cy, for k > 2. The value of ex(Q,,Cs)/e(Qy,) is between 1/3 and 0.3941
given by Conder [6] and Lu [I1], respectively. On the other hand, nothing is known for the
cycle of length 10. Except Cqg, the question of Erdos is answered positively by showing that

ex(Qn, Cor) = o(e(Qy)) for k>4 in [, [7] and [10].

A generalization of Erdds’ conjecture above is the problem of determining ex(Q,, Q) for
d > 3. As for d = 2, the exact value of ex(Q,,Q@s) is still not known. The best lower
bound for ex(Q,,Q3)/e(Q,) has been 1 — (5/8)%?° ~ 0.11086 due to Graham, Harary, Liv-
ingston and Stout [I4] until recently Offner [12] improved it to 0.1165. The best upper bound
is ex(Qn, Q3)/e(Qrn) < 0.25 due to Alon, Krech and Szabé [I]. They also gave the best bounds
for ex(Qn,Qq), d > 4, as

ogd, _ | ex(Qu,Qa) _ qigr [ disodd

a2 e(@Qn) T guary i dis even. (1)

o

These Turan problems are also asked when vertices are removed instead of edges and most of
these problems are also still open. In a very recent paper, Bollobas, Leader and Malvenuto [2] dis-
cuss open problems on the vertex-version and their relation to Turan problems on hypergraphs.

Here, we present results on a similar dual version of the hypercube Turdn problem that
is asked by Alon, Krech and Szabé in [I]. Let H! denote the collection of @Q;’s in Q,, for
1 <i<n-—1. Callasubset of # a (d,l)-covering set if each member of H% contains some
member of this set, i.e., ”Hfb is covered by this set. A smallest (d, £)-covering set is called optimal.
Alon, Krech and Szabé [I] asked what the size of the optimal (d, £)-covering set of @, is for
fixed ¢ < d. Call this function f)(n,d). Determining this function when ¢ = 1 is equivalent
to the determination of ex(Q,,Qq), since ex(Qn, Qq) + fM(n,d) = e(Q,) and the best bounds
for f1)(n,d) are given in [I] as (@). In [I], also the Ramsey version of this problem is asked
as follows. A coloring of ”Hfl is d, £-polychromatic if all colors appear on each copy Qg’s. Let
pcld) (n,d) be the largest number of colors for which there exists a d, ¢-polychromatic coloring of
1Y

n:

Let ¢®(n,d) be the ratio of f()(n,d) to the size of H, i.e.,

(é)(n d)
On,a) = LA )
c\(n, —
2n=(7)
One can observe that )
A (n,d) < (3)

= pc®(n,d)’



since any color class used in a d, f-polychromatic coloring is a (d, ¢)-covering set of @Q,. Note
that the following limits exist, since ¢(¥) (n, d) is non-decreasing, pc'¥) (n, d) is non-increasing and

both are bounded.

) = tim c(n,d), p{ = lim pd(n,a).

In Section 2, we obtain bounds on the polychromatic number.

Theorem 1. For integers n > d > £, let 0 <r < {+1 such that r =d+1 (mod ¢+ 1). Then

{41 r l4+1—r {41
e (d+1 * S (d+1 S > d+1]"|d+ 1" (d+1 +‘
+1 C+1 C+1 +1 C+1

In Section Bl we present the following bounds on cgf) and ¢ (n, d).

Theorem 2. For integersn >d >{ andr =d —{ (mod £+ 1),

4 R | (+1 '

The determination of the exact values of pg and cf; remains open. The lower and upper
bounds on ¢\¥)(n,d) provided in Theorem 2] and Theorem [} respectively, are a constant factor
of each other when d and ¢ have a bounded difference from n.

Theorem 3. Let n — d and n — £ be fixed finite integers, where d > £. Then, for sufficiently
large n,

O (n,d) < {Ti()gg((ﬁ —'ﬂ 1+o(1)

= | 2
where r = n — d.

Finally, we show an exact result for ¢!)(n, d) when d =n — 1.

Theorem 4. For integers n —1 >/,

Onn—1)=

In our proofs, we make use of the following terminology. The collection of i-subsets of
[n] = {1,...,n}, 1 <i < mn, is denoted by ([7;}). For an edge e € E(Q,), star(e) denotes the
coordinate that is different at endpoints of e. The set of coordinates whose values are 0 (or 1,
resp.) at both endpoints of e are denoted by zero(e) (or one(e), resp.). For a subcube F' C @y,
star(F') := U.cp(r)star(e), one(F) := N.cprone(e) and zero(F) := N.cp(r)zero(e). Note
that Ey covers By for By € HY and By € He (d > ¢) if and only if zero(Ey) C zero(E;) and
one(Es) C one(Ey).



Definition 5. For any Q € HY and star(Q) with coordinates s1 < sy < ... < s, we define an
(0 + 1)-tuple w(Q) = (wy,wa, ..., wey1) as

-wy = [{z € one(Q) : x < s1},

-wj = {z €one(Q) : sj—1 <x <55}, for2 <j <4,

- wep1 = {z € one(Q) : = > s}

2 Polychromatic Coloring of Subcubes

Proof of Theorem [l The lower bound:
For any Q € H! with w(Q) = (w1, ws,...,wes1), we define the color of each Q € H' as the
(£ + 1)-tuple ¢(Q) = (¢1,. .., coq1) such that

¢i=w; (modk) ifl1<i<rand )
ci=w; (mod k) ifr+1<i</l+1,
where k = [(d 4+ 1)/(¢( +1)] and k' = [(d +1)/(¢ 4+ 1)|. We show that this coloring is d, (-

polychromatic.
Let C' € HY, where star(C)) consists of the coordinates a; < ag < --- < ag. We choose a
color (eq,...,cpy1) arbitrarily and show that C' contains a copy of Qy, call it @), with this color.
Since @ must be a subgraph of C, zero(C) C zero(Q) and one(C) C one(Q). We define

star(@Q) = {s1,..., s¢} such that

ik if1<i<r,
S, =
‘ Apft-(i—r) K ifr+1 <i< L.

We include the remaining d — ¢ positions of star(C') to one(Q) or zero(Q) such that w(Q) =
(w1, ws, ..., wpsq) satisfies [@). This is possible since by the definition of r, we have d — ¢ =
r(k—1)++1—r)(K—1).

The upper bound:

Since pc® (n,d) is a non-increasing function of n, we provide an upper bound for this function
when n is sufficiently large which is also an upper bound for pt(f).

For a subset S of [n], we define cube(S) as the subcube @ of @,, such that star(Q) = S and
zero(Q) = [n] \ S. Let G be a subfamily of HY such that G = {cube(S) : S € ([Z})}. We define a
coloring of the members of G as follows.

Consider a d, (-polychromatic coloring of H' using p colors, call this coloring P. Fix an
arbitrary ordering of the copies of Q;’s in Q4. We define a coloring of %;{i such that the color of
a copy of Qg is the list of colors of each Q; under P in this fixed order. By using this coloring

d _
on the members of G, we obtain a coloring of G using p(e)Qd ’ colors.



Now, consider the auxiliary d-uniform hypergraph G’ whose vertex set is the set of coordinates
[n] and whose edge set is defined as the collection of star(E)’s for each F in G, ie., G is a
complete d-uniform hypergraph on the vertex set [n]. Also we define a coloring of the edges
of G’ by using the colors on the corresponding members of G as described above. Ramsey’s
theorem on hypergraphs implies that there is a sufficiently large value of n such that there exists
. L . . dYod—1
a complete monochromatic subgraph on d?+d—1 vertices in any edge coloring of G’ with p(f)2
colors. Let K C [n] be the vertex set of a monochromatic complete subgraph of G’ on d? +d — 1
vertices. We define S as the collection of id" coordinates in K , 1 <1 <d, so that there are at
least d — 1 coordinates between elements of S.

Claim 6. If Q is a copy of Qy in cube(S), then the color of Q under P depends only on w(Q).

Proof. Let E; and Es be two different copies of @ in cube(S) such that w(E;) = w(E2)
according to Definition [l There exists a subset S C K with |S’| = d such that

- (one(Ey) Ustar(Ey)) C ', i.e., Ey is contained in cube(S’) and

- the restriction of Fy on S’ gives the same vector as the restriction of £ on S.

Clearly, one can find S’ that satisfies the first condition. It is also possible that S’ fulfills the
second condition, since we can remove or add up to d—1 coordinates from K between consecutive
coordinates of ones and stars in Fs to define S’. This implies that the colors of F; and E5 are
the same under P, since cube(S) and cube(S’) have the same colors. O

Hence, the number of colors used in any d, {-polychromatic coloring of ’Hfl is at most the
number of possible vectors w(Q) for any @ € HY. The number of possible (£ + 1)-tuples w(Q)
for any @ € G is given by the number of partitions of at most d — ¢ ones into £ 4+ 1 parts and

therefore it is at most (?ﬂ) O

3 The Covering Problem

Proof of Theorem 2. Note that a trivial lower bound on f)(n, d) is given by the ratio of
\Hfl | to the exact number of QQ4’s that a single @y covers in @,,. Thus, by (@), for all n,

(O, d) > F"_dm ! (5)

(o) |2 @)
By using the equality (1) ( df ) =0 (Z:ﬁ), we are done.
The upper bound is implied together by ([B) and Theorem [ O

We define a (0, 1)-labelling of a set as an assignment of labels 0 or 1 to its elements.

Observation 7. Since any subcube Q C @y, is defined by zero(Q) and one(Q), a (d,£)-covering
set of Qn can be defined as a collection of (0,1)-labellings of sets chosen from (n[T—L]z) such that

any (0, 1)-labelling of sets in (n[’_L]d) is contained in at least one of the labelled (n — {)-sets.



When providing constructions for the upper bounds in Theorems B and [, we provide con-
structions for the equivalent covering problem in Observation [71
Proof of Theorem [3l

We construct a (d, £)-covering of @,, by providing a construction for the equivalent problem
as stated in Observation [l In the following, we describe this construction in two steps. First,
we choose the (n — £)-subsets of [n] to label and then, we describe an efficient way to (0, 1)-label
these sets.

Step 1: We make use of the following well-known result on the general covering problem.
An (n, k,t)-covering is defined as a collection of k-subsets of n elements such that every t¢-set is
contained in at least one k-set. Let C'(n,k,t) be the minimum number of k-sets in an (n, k,t)-
covering. Rodl proved the following result by also settling a long-standing conjecture of Erdos
and Hanani [9]. For any fixed integers k and ¢ with 2 <t < k < n,

lim R0 (6)

e (1)/(3)

By our assumption, n — d and n — £ are fixed integers where n —d < n — . By (@), there exists
a (n,n — £,n — d)-covering F for sufficiently large n such that | F| = (1 + o(l))(nfd)/(z:fl).

Step 2: We obtain a collection of (0,1)-labellings for each edge e € F so that all (0,1)-
labellings of (n — d)-subsets of e are covered. The union of these (0, 1)-labellings is a covering
set.

An r-cut of an r-uniform hypergraph is obtained by partitioning its vertex set into r parts
and taking all edges that meet every part in exactly one vertex. An r-cut cover of a hypergraph
is a collection of r-cuts such that each edge is in at least one of the cuts. An upper bound on
the minimum size of an r-cut cover is shown by Cioaba, Kiindgen, Timmons and Vysotsky in [5]
using a probabilistic proof.

Theorem 8 ([5]). For every r, an r-uniform complete hypergraph on n vertices can be covered
with [clogn] r-cuts if
—r

>
log (")

rr

C

For a fixed edge e of F, let G, be the complete (n — d)-uniform hypergraph on the vertex
set of e. Let C' = [clog (n — )] be the size of a minimum (n — d)-cut cover of G, as given by
Theorem We obtain a collection of (0,1)-labellings of e by labelling each cut in this cover
such that the vertices in each part are labelled identically with 0 or 1. Thus, the total number
of (0, 1)-labellings of e is 2"~¢C. (If some labelling of an edge is used more than once, then we
count this labelling only once.) Finally, we use similarly labellings for each edge of F in the
covering set. This yields that

(C(1+ 0(1))2"‘d@ =C(1+0(1))

c® n,d) < -
= ) (ol




where the last equality is obtained by using the relation (7)) ( d ) =(}) ("_é).

d—2¢ d—r{

Proof of Theorem [l

The lower bound follows from ().
For the upper bound, we construct a collection of (0, 1)-labellings of sets chosen from (7@5),

where singletons in [n] have both 0 and 1 in some labelling. Let k = [n/(n — ¢)]. We choose a
partition [n] = (P1,..., P;) such that |Pj| =n — ¢ for i < k. Let P € (n[i]e) such that P, C P.
In the covering set, we include two labellings of each of Py,..., P._1, P, where all labels are the
same, either 0 or 1.

0
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