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Lale Özkahya

email: ozkahya@illinoisalumni.org

Brendon Stanton

The Citadel

Department of Mathematics

Charleston, SC 29409 USA

email: bstanton@citadel.edu

October 23, 2018

Abstract

In this paper, we address a particular variation of the Turán problem for the hypercube.
Alon, Krech and Szabó (2007) asked “In an n-dimensional hypercube, Qn, and for ℓ < d < n,
what is the size of a smallest set, S, of Qℓ’s so that every Qd contains at least one member
of S?” Likewise, they asked a similar Ramsey type question: “What is the largest number
of colors that we can use to color the copies of Qℓ in Qn such that each Qd contains a Qℓ

of each color?” We give upper and lower bounds for each of these questions and provide
constructions of the set S above for some specific cases.

1 Introduction

For graphs Q and P , let ex(Q,P ) denote the generalized Turán number, i.e., the maximum
number of edges in a P -free subgraph of Q. The n-dimensional hypercube, Qn, is the graph
whose vertex set is {0, 1}n and whose edge set is the set of pairs that differ in exactly one
coordinate. For a graph G, we use n(G) and e(G) to denote the number of vertices and the
number of edges of G, respectively.

In 1984, Erdős [8] conjectured that

lim
n→∞

ex(Qn, C4)

e(Qn)
=

1

2
.

Note that this limit exists, because the function above is non-increasing for n and bounded. The
best upper bound ex(Qn, C4)/e(Qn) ≤ 0.62256 was obtained by Thomason and Wagner [16] by
slightly improving the bound 0.62284 given by Chung [4]. Brass, Harborth and Nienborg [3]
showed that the lower bound is 1

2(1 + 1/
√
n), when n = 4r for integer r, and 1

2(1 + 0.9/
√
n),

when n ≥ 9.
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Erdős [8] also asked whether o(e(Qn)) edges in a subgraph of Qn would be sufficient for the
existence of a cycle C2k for k > 2. The value of ex(Qn, C6)/e(Qn) is between 1/3 and 0.3941
given by Conder [6] and Lu [11], respectively. On the other hand, nothing is known for the
cycle of length 10. Except C10, the question of Erdős is answered positively by showing that
ex(Qn, C2k) = o(e(Qn)) for k ≥ 4 in [4], [7] and [10].

A generalization of Erdős’ conjecture above is the problem of determining ex(Qn, Qd) for
d ≥ 3. As for d = 2, the exact value of ex(Qn, Q3) is still not known. The best lower
bound for ex(Qn, Q3)/e(Qn) has been 1 − (5/8)0.25 ≈ 0.11086 due to Graham, Harary, Liv-
ingston and Stout [14] until recently Offner [12] improved it to 0.1165. The best upper bound
is ex(Qn, Q3)/e(Qn) ≤ 0.25 due to Alon, Krech and Szabó [1]. They also gave the best bounds
for ex(Qn, Qd), d ≥ 4, as

Ω(
log d

d2d
) = 1− ex(Qn, Qd)

e(Qn)
≤

4
(d+1)2

if d is odd,
4

d(d+2) if d is even.
(1)

These Turán problems are also asked when vertices are removed instead of edges and most of
these problems are also still open. In a very recent paper, Bollobás, Leader and Malvenuto [2] dis-
cuss open problems on the vertex-version and their relation to Turán problems on hypergraphs.

Here, we present results on a similar dual version of the hypercube Turán problem that
is asked by Alon, Krech and Szabó in [1]. Let Hi

n denote the collection of Qi’s in Qn for
1 ≤ i ≤ n − 1. Call a subset of Hℓ

n a (d, ℓ)-covering set if each member of Hd
n contains some

member of this set, i.e., Hd
n is covered by this set. A smallest (d, ℓ)-covering set is called optimal.

Alon, Krech and Szabó [1] asked what the size of the optimal (d, ℓ)-covering set of Qn is for
fixed ℓ < d. Call this function f (ℓ)(n, d). Determining this function when ℓ = 1 is equivalent
to the determination of ex(Qn, Qd), since ex(Qn, Qd) + f (1)(n, d) = e(Qn) and the best bounds
for f (1)(n, d) are given in [1] as (1). In [1], also the Ramsey version of this problem is asked
as follows. A coloring of Hℓ

n is d, ℓ-polychromatic if all colors appear on each copy Qd’s. Let
pc(ℓ)(n, d) be the largest number of colors for which there exists a d, ℓ-polychromatic coloring of
Hℓ

n.

Let c(ℓ)(n, d) be the ratio of f (ℓ)(n, d) to the size of Hℓ
n, i.e.,

c(ℓ)(n, d) =
f (ℓ)(n, d)

2n−ℓ
(

n
ℓ

) . (2)

One can observe that

c(ℓ)(n, d) ≤ 1

pc(ℓ)(n, d)
, (3)
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since any color class used in a d, ℓ-polychromatic coloring is a (d, ℓ)-covering set of Qn. Note
that the following limits exist, since c(ℓ)(n, d) is non-decreasing, pc(ℓ)(n, d) is non-increasing and
both are bounded.

c
(ℓ)
d = lim

n→∞
c(ℓ)(n, d), p

(ℓ)
d = lim

n→∞
pc(ℓ)(n, d).

In Section 2, we obtain bounds on the polychromatic number.

Theorem 1. For integers n > d > ℓ, let 0 < r ≤ ℓ+ 1 such that r = d+ 1 (mod ℓ+ 1). Then

eℓ+1

(

d+ 1

ℓ+ 1

)ℓ+1

≥
(

d+ 1

ℓ+ 1

)

≥ p
(ℓ)
d ≥

⌈

d+ 1

ℓ+ 1

⌉r ⌊d+ 1

ℓ+ 1

⌋ℓ+1−r

≈
(

d+ 1

ℓ+ 1

)ℓ+1

.

In Section 3, we present the following bounds on c
(ℓ)
d and c(ℓ)(n, d).

Theorem 2. For integers n > d > ℓ and r = d− ℓ (mod ℓ+ 1),

(

2d−ℓ

(

d

ℓ

))−1

≤ c
(ℓ)
d ≤

⌈

d+ 1

ℓ+ 1

⌉−r ⌊d+ 1

ℓ+ 1

⌋−(ℓ+1−r)

.

The determination of the exact values of pℓd and cℓd remains open. The lower and upper
bounds on c(ℓ)(n, d) provided in Theorem 2 and Theorem 3, respectively, are a constant factor
of each other when d and ℓ have a bounded difference from n.

Theorem 3. Let n − d and n − ℓ be fixed finite integers, where d > ℓ. Then, for sufficiently

large n,

c(ℓ)(n, d) ≤
⌈

r log (n − ℓ)

log ( rr

rr−r!)

⌉

1 + o(1)

2d−ℓ
(

d
l

) ,

where r = n− d.

Finally, we show an exact result for c(ℓ)(n, d) when d = n− 1.

Theorem 4. For integers n− 1 > ℓ,

c(ℓ)(n, n− 1) =

⌈

2n
n−ℓ

⌉

2n−ℓ
(

n
ℓ

) .

In our proofs, we make use of the following terminology. The collection of i-subsets of
[n] = {1, . . . , n}, 1 ≤ i ≤ n, is denoted by

([n]
i

)

. For an edge e ∈ E(Qn), star(e) denotes the
coordinate that is different at endpoints of e. The set of coordinates whose values are 0 (or 1,
resp.) at both endpoints of e are denoted by zero(e) (or one(e), resp.). For a subcube F ⊂ Qn,
star(F ) := ∪e⊆E(F ) star(e), one(F ) := ∩e⊆E(F ) one(e) and zero(F ) := ∩e⊆E(F ) zero(e). Note

that E1 covers E2 for E1 ∈ Hℓ
n and E2 ∈ Hd

n (d > ℓ) if and only if zero(E2) ⊂ zero(E1) and
one(E2) ⊂ one(E1).
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Definition 5. For any Q ∈ Hℓ
n and star(Q) with coordinates s1 < s2 < . . . < sℓ, we define an

(ℓ+ 1)-tuple w(Q) = (w1, w2, . . . , wℓ+1) as
- w1 = |{x ∈ one(Q) : x < s1}|,
- wj = |{x ∈ one(Q) : sj−1 < x < sj}|, for 2 ≤ j ≤ ℓ,
- wℓ+1 = |{x ∈ one(Q) : x > sℓ}|.

2 Polychromatic Coloring of Subcubes

Proof of Theorem 1. The lower bound:

For any Q ∈ Hℓ
n with w(Q) = (w1, w2, . . . , wℓ+1), we define the color of each Q ∈ Hℓ

n as the
(ℓ+ 1)-tuple c(Q) = (c1, . . . , cℓ+1) such that

ci = wi (mod k) if 1 ≤ i ≤ r and

ci = wi (mod k′) if r + 1 ≤ i ≤ ℓ+ 1,
(4)

where k = ⌈(d + 1)/(ℓ + 1)⌉ and k′ = ⌊(d + 1)/(ℓ + 1)⌋. We show that this coloring is d, ℓ-
polychromatic.

Let C ∈ Hd
n, where star(C) consists of the coordinates a1 < a2 < · · · < ad. We choose a

color (c1, . . . , cℓ+1) arbitrarily and show that C contains a copy of Qℓ, call it Q, with this color.
Since Q must be a subgraph of C, zero(C) ⊂ zero(Q) and one(C) ⊂ one(Q). We define

star(Q) = {s1, . . . , sℓ} such that

si =

{

aik if 1 ≤ i ≤ r,

ark+(i−r)k′ if r + 1 ≤ i ≤ ℓ.

We include the remaining d − ℓ positions of star(C) to one(Q) or zero(Q) such that w(Q) =
(w1, w2, . . . , wℓ+1) satisfies (4). This is possible since by the definition of r, we have d − ℓ =
r(k − 1) + (ℓ+ 1− r)(k′ − 1).

The upper bound:

Since pc(ℓ)(n, d) is a non-increasing function of n, we provide an upper bound for this function

when n is sufficiently large which is also an upper bound for p
(ℓ)
d .

For a subset S of [n], we define cube(S) as the subcube Q of Qn such that star(Q) = S and

zero(Q) = [n] \ S. Let G be a subfamily of Hd
n such that G = {cube(S) : S ∈

([n]
d

)

}. We define a
coloring of the members of G as follows.

Consider a d, ℓ-polychromatic coloring of Hℓ
n using p colors, call this coloring P . Fix an

arbitrary ordering of the copies of Qℓ’s in Qd. We define a coloring of Hd
n such that the color of

a copy of Qd is the list of colors of each Qℓ under P in this fixed order. By using this coloring

on the members of G, we obtain a coloring of G using p(
d

ℓ
)2d−ℓ

colors.
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Now, consider the auxiliary d-uniform hypergraph G ′ whose vertex set is the set of coordinates
[n] and whose edge set is defined as the collection of star(E)’s for each E in G, i.e., G′ is a
complete d-uniform hypergraph on the vertex set [n]. Also we define a coloring of the edges
of G′ by using the colors on the corresponding members of G as described above. Ramsey’s
theorem on hypergraphs implies that there is a sufficiently large value of n such that there exists

a complete monochromatic subgraph on d2+d−1 vertices in any edge coloring of G′ with p(
d

ℓ
)2d−ℓ

colors. Let K ⊂ [n] be the vertex set of a monochromatic complete subgraph of G′ on d2 + d− 1
vertices. We define S as the collection of idth coordinates in K, 1 ≤ i ≤ d, so that there are at
least d− 1 coordinates between elements of S.

Claim 6. If Q is a copy of Qℓ in cube(S), then the color of Q under P depends only on w(Q).

Proof. Let E1 and E2 be two different copies of Qℓ in cube(S) such that w(E1) = w(E2)
according to Definition 5. There exists a subset S′ ⊂ K with |S′| = d such that
- (one(E2) ∪ star(E2)) ⊂ S′, i.e., E2 is contained in cube(S′) and
- the restriction of E2 on S′ gives the same vector as the restriction of E1 on S.
Clearly, one can find S′ that satisfies the first condition. It is also possible that S′ fulfills the
second condition, since we can remove or add up to d−1 coordinates fromK between consecutive
coordinates of ones and stars in E2 to define S′. This implies that the colors of E1 and E2 are
the same under P , since cube(S) and cube(S′) have the same colors.

Hence, the number of colors used in any d, ℓ-polychromatic coloring of Hℓ
n is at most the

number of possible vectors w(Q) for any Q ∈ Hℓ
n. The number of possible (ℓ+ 1)-tuples w(Q)

for any Q ∈ G is given by the number of partitions of at most d − ℓ ones into ℓ + 1 parts and
therefore it is at most

(

d+1
ℓ+1

)

. �

3 The Covering Problem

Proof of Theorem 2. Note that a trivial lower bound on f (ℓ)(n, d) is given by the ratio of
|Hd

n | to the exact number of Qd’s that a single Qℓ covers in Qn. Thus, by (2), for all n,

c(ℓ)(n, d) ≥
⌈

2n−d
(

n
d

)

(

n−ℓ
n−d

)

⌉

· 1

2n−ℓ
(

n
ℓ

) . (5)

By using the equality
(

n
d

)(

d
d−ℓ

)

=
(

n
ℓ

)(

n−ℓ
d−ℓ

)

, we are done.
The upper bound is implied together by (3) and Theorem 1. �

We define a (0, 1)-labelling of a set as an assignment of labels 0 or 1 to its elements.

Observation 7. Since any subcube Q ⊂ Qn is defined by zero(Q) and one(Q), a (d, ℓ)-covering

set of Qn can be defined as a collection of (0, 1)-labellings of sets chosen from
( [n]
n−ℓ

)

such that

any (0, 1)-labelling of sets in
( [n]
n−d

)

is contained in at least one of the labelled (n − ℓ)-sets.
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When providing constructions for the upper bounds in Theorems 3 and 4, we provide con-
structions for the equivalent covering problem in Observation 7.
Proof of Theorem 3.

We construct a (d, ℓ)-covering of Qn by providing a construction for the equivalent problem
as stated in Observation 7. In the following, we describe this construction in two steps. First,
we choose the (n− ℓ)-subsets of [n] to label and then, we describe an efficient way to (0, 1)-label
these sets.

Step 1: We make use of the following well-known result on the general covering problem.
An (n, k, t)-covering is defined as a collection of k-subsets of n elements such that every t-set is
contained in at least one k-set. Let C(n, k, t) be the minimum number of k-sets in an (n, k, t)-
covering. Rödl proved the following result by also settling a long-standing conjecture of Erdős
and Hanani [9]. For any fixed integers k and t with 2 ≤ t < k < n,

lim
n→∞

C(n, k, t)
(

n
t

)

/
(

k
t

) = 1. (6)

By our assumption, n− d and n− ℓ are fixed integers where n− d < n− ℓ. By (6), there exists
a (n, n− ℓ, n− d)-covering F for sufficiently large n such that | F | = (1 + o(1))

(

n
n−d

)

/
(

n−ℓ
n−d

)

.
Step 2: We obtain a collection of (0, 1)-labellings for each edge e ∈ F so that all (0, 1)-

labellings of (n − d)-subsets of e are covered. The union of these (0, 1)-labellings is a covering
set.

An r-cut of an r-uniform hypergraph is obtained by partitioning its vertex set into r parts
and taking all edges that meet every part in exactly one vertex. An r-cut cover of a hypergraph
is a collection of r-cuts such that each edge is in at least one of the cuts. An upper bound on
the minimum size of an r-cut cover is shown by Cioabă, Kündgen, Timmons and Vysotsky in [5]
using a probabilistic proof.

Theorem 8 ([5]). For every r, an r-uniform complete hypergraph on n vertices can be covered

with ⌈c log n⌉ r-cuts if

c >
−r

log ( r
r−r!
rr

)
.

For a fixed edge e of F , let Ge be the complete (n − d)-uniform hypergraph on the vertex
set of e. Let C = ⌈c log (n− ℓ)⌉ be the size of a minimum (n − d)-cut cover of Ge as given by
Theorem 8. We obtain a collection of (0, 1)-labellings of e by labelling each cut in this cover
such that the vertices in each part are labelled identically with 0 or 1. Thus, the total number
of (0, 1)-labellings of e is 2n−dC. (If some labelling of an edge is used more than once, then we
count this labelling only once.) Finally, we use similarly labellings for each edge of F in the
covering set. This yields that

c(ℓ)(n, d) ≤ 1

2n−ℓ
(

n
ℓ

)(C(1 + o(1))2n−d

(

n
n−d

)

(

n−ℓ
n−d

) = C(1 + o(1))
1

2d−ℓ
(

d
l

) ,
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where the last equality is obtained by using the relation
(

n
d

)(

d
d−ℓ

)

=
(

n
ℓ

)(

n−ℓ
d−ℓ

)

.
�

Proof of Theorem 4.

The lower bound follows from (5).

For the upper bound, we construct a collection of (0, 1)-labellings of sets chosen from
( [n]
n−ℓ

)

,
where singletons in [n] have both 0 and 1 in some labelling. Let k = ⌈n/(n − ℓ)⌉. We choose a

partition [n] = (P1, . . . , Pk) such that |Pi| = n − ℓ for i < k. Let P ∈
( [n]
n−ℓ

)

such that Pk ⊂ P .
In the covering set, we include two labellings of each of P1, . . . , Pk−1, P , where all labels are the
same, either 0 or 1.

�
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