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Abstract. A mixed graph is a graph with directed edges, called arcs, and undirected edges. A
k-coloring of the vertices is proper if colors from {1, 2, . . . , k} are assigned to each vertex such that
u and v have different colors if uv is an edge, and the color of u is less than or equal to (resp.
strictly less than) the color of v if uv is an arc. The weak (resp. strong) chromatic polynomial of a
mixed graph counts the number of proper k-colorings. Using order polynomials of partially ordered
sets, we establish a reciprocity theorem for weak chromatic polynomials giving interpretations of
evaluations at negative integers.

1. Introduction

A mixed graph G = (V,E,A) consists of a set of vertices, V = V (G), a set of undirected edges,
E = E(G), and a set of directed edges, A = A(G). For convenience, the elements of E will be
called edges and the elements of A will be called arcs. Given adjacent vertices u, v ∈ V , an edge
will be denoted by uv and an arc will be denoted by ~uv.

A k-coloring of a mixed graph G is a mapping c : V → [k], where [k] := {1, 2, . . . , k}. A weak
(resp. strong) proper k-coloring of G is a k-coloring such that

c(u) 6= c(v) if uv ∈ E and c(u) ≤ c(v) (resp. c(u) < c(v)) if ~uv ∈ A .

The weak (resp. strong) chromatic polynomial, denoted by χG(k) (resp. χ̂G(k)), is the number of
weak (resp. strong) proper k-colorings of G. It is well known (see, e.g., [4, 5]) that these counting
functions are indeed polynomials in k. Coloring problems in mixed graphs have various applications,
for example in scheduling problems in which one has both disjunctive and precedence constraints
(see, e.g., [2, 3, 6]).

An orientation of a mixed graph G is obtained by orienting the edges of G, i.e., assigning one
of u and v to be the head/tail of the edge uv ∈ E; if v is the head we use the notation u → v.
(An arc ~uv, for which we also use the notation u → v, cannot be re-oriented.) An orientation of
a mixed graph is acyclic if it does not contain any directed cycles. A mixed graph is acyclic if all
of its possible orientations are acyclic. A coloring c and an orientation of G are compatible if for
every u→ v in the orientation, c(u) ≤ c(v).

A famous theorem of Stanley says that, for any graph G = (V,E,∅) and positive integer k,

(−1)|V |χG(−k) enumerates the pairs of k-colorings and compatible acyclic orientations of G and, in

particular, (−1)|V |χG(−1) equals the number of acyclic orientations of G [8]; this is an example of
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a combinatorial reciprocity theorem. More recently, Beck, Bogart, and Pham proved the following
analogue of Stanley’s reciprocity theorem for the strong chromatic polynomial of a mixed graph [1]:

Theorem 1. For any mixed graph G = (V,E,A) and positive integer k, (−1)|V |χ̂G(−k) equals the
number of k-colorings of G, each counted with multiplicity equal to the number of compatible acyclic
orientations of G.

In this paper, we complete the picture by proving a reciprocity theorem for weak chromatic
polynomials χG(k) of mixed graphs. A coloring c and an orientation of G are intercompatible if for
every u→ v in the orientation,

c(u) ≤ c(v) if uv ∈ E(G) and c(u) < c(v) if ~uv ∈ A(G) .

Our main results is:

Theorem 2. For any acyclic mixed graph G = (V,E,A) and positive integer k, (−1)|V |χG(−k)
equals the number of k-colorings of G, each counted with multiplicity equal to the number of inter-
compatible acyclic orientations of G.

One can prove this theorem along somewhat similar lines to the (geometric) approach used in
[1], though there are subtle details that distinguish the case of weak chromatic polynomials from
the one of strong chromatic polynomials. For example, although both Theorems 1 and 2 result
in relating k-colorings of a mixed graph to its acyclic orientations, the reciprocity theorem for
strong chromatic polynomials applies to all mixed graphs G, while the reciprocity theorem for
weak chromatic polynomials requires the condition that G be an acyclic mixed graph: without this
condition, Theorem 2 is not true.

Our proof of Theorem 2 applies Stanley’s reciprocity theorem for order polynomials, stated in
Section 2, which also contains the proof of Theorem 2. In Section 3 we give a deletion–contraction
method for computing the weak and strong chromatic polynomials for mixed graphs, as well as an
example that shows Theorem 2 may not hold for mixed graphs that are not acyclic.

2. Posets, Order Polynomials, and the Proof of Theorem 2

Recall that a partially ordered set (a poset) is a set P with a relation � that is reflexive,
antisymmetric, and transitive. Following [7] (see also [9, Chapter 3]), we define an ω-labeling of a
poset with n elements as a bijection ω : P → [n], and the order polynomial ΩP,ω(k) as

ΩP,ω(k) := #

{
(x1, x2, ..., xn) ∈ [k]n :

xu ≤ xv if u � v and ω(u) < ω(v)
xu < xv if u � v and ω(u) > ω(v)

}
.

(Here #S denotes the cardinality of the set S.) Stanley [7] proved that ΩP,ω(k) is indeed a polyno-
mial in k. The complementary labeling to ω is the ω-labeling of P defined by ω(v) := n+ 1−ω(v).
Thus

ΩP,ω(k) = #

{
(x1, x2, ..., xn) ∈ [k]n :

xu < xv if u � v and ω(u) < ω(v)
xu ≤ xv if u � v and ω(u) > ω(v)

}
.

Theorem 3 (Stanley [7]). ΩP,ω(−k) = (−1)|P |ΩP,ω(k) .

The reciprocity relation given in Theorem 3 takes on a special form when ω is a natural labeling of
P , i.e., one that respects the order of P . (It is easy to see that every poset has a natural labeling.)
In this case ΩP,ω(k) simply counts all order preserving maps x : P → [k] (i.e., u � v =⇒ xu ≤ xv),
whereas ΩP,ω(k) couns all strictly order preserving maps x : P → [k] (i.e., u ≺ v =⇒ xu < xv).
Theorem 3 implies that these two counting functions are reciprocal.
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For a mixed graph G = (V,E,A) with n vertices, the weak chromatic polynomial χG(k) can be
written as

χG(k) = #

{
(x1, x2, . . . , xn) ∈ [k]n :

xu ≤ xv if ~uv ∈ A
xu 6= xv if uv ∈ E

}
.

Each acyclic orientation of G can be translated into a poset by letting P = V (G) and introducing,
for each u→ v in the orientation, the relation u � v.

Throughout the remainder of this section, we fix an acyclic mixed graph G and denote by
G1, G2, . . . , Gm the (acyclic) orientations of G. For each 1 ≤ i ≤ m, denote Pi as the poset created
by the orientation Gi, and let φGi(k) be the number of weak proper k-colorings of Gi that are also
weak proper k-colorings of G.

Lemma 4. If G is an acyclic mixed graph, then χG(k) =

m∑
i=1

φGi(k) .

Proof. It is clear that each weak proper k-coloring of G is a weak proper k-coloring of Gi for some
1 ≤ i ≤ m. Conversely, assuming E(G) 6= ∅, for any 1 ≤ i < j ≤ k, there is some uv ∈ E(G) such
that u → v in Gi and v → u in Gj . This implies that there is no weak proper coloring that is a
weak proper k-coloring of Gi and Gj . If E(G) = ∅ then G is the only orientation of itself. �

Lemma 5. For each Gi, there exists an ωi-labeling of Pi such that

φGi(k) = ΩPi,ωi(k) .

Moreover, ΩPi,ωi(k) is the number of k-colorings intercompatible with Gi.

Proof. Given the orientation Gi, let Ri be the orientation of G obtained by reversing the orientation
of the edges in Gi (but not the arcs). We will construct ωi recursively.

Since Ri is acyclic, there exists a vertex v ∈ V such that all edges and arcs incident to v are
oriented away from it. Set ωi(v) := 1 and remove v and the arcs incident to v. Since Ri is acyclic,
Ri− v must also be acyclic. Now repeat, assigning each vertex in the process consecutive ωi-labels.
This gives ωi-labels that satisfy

u→ v in Ri =⇒ ωi(u) < ωi(v) ,

resulting in an ωi-labeling of Pi, the poset corresponding to Gi, that satisfies for u � v
ωi(u) < ωi(v) =⇒ ~uv ∈ A(G) ,

ωi(u) > ωi(v) =⇒ uv ∈ E(G) .

So

ΩPi,ωi(k) = #

{
(x1, x2, ..., xn) ∈ [k]n :

xu ≤ xv if u � v and ωi(u) < ωi(v)
xu < xv if u � v and ωi(u) > ωi(v)

}
= #

{
(x1, x2, ..., xn) ∈ [k]n :

xu ≤ xv if u→ v in Gi and ~uv ∈ A(G)
xu < xv if u→ v in Gi and uv ∈ E(G)

}
= φGi(k) .

For the second part of the proof, recall that

ΩPi,ωi(k) = #

{
(x1, x2, ..., xn) ∈ [k]n :

xu < xv if u � v and ωi(u) < ωi(v)
xu ≤ xv if u � v and ωi(u) > ωi(v)

}
= #

{
(x1, x2, ..., xn) ∈ [k]n :

xu < xv if u � v and ~uv ∈ A(G)
xu ≤ xv if u � v and uv ∈ E(G)

}
= # colorings intercompatible with Gi . �
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Proof of Theorem 2. If G is an acyclic mixed graph, then by Lemma 4,

χG(−k) =

m∑
i=1

φGi(−k)

=
m∑
i=1

ΩPi,ωi(−k) (by Lemma 5)

=
m∑
i=1

(−1)|Pi|ΩPi,ωi(k) (by Theorem 3)

= (−1)|V |
m∑
i=1

ΩPi,ωi(k) .

By applying Lemma 5 again, the proof is completed. �

3. Deletion–Contraction Computations

Let G = (V,E,A) be a mixed graph, e ∈ E(G), and a ∈ A(G). Define G−e = (V,E−e,A) as the
mixed graph with edge e deleted and G− a = (V,E,A− a) as the mixed graph with arc a deleted.
An edge or arc is contracted by deleting the edge or arc and identifying the vertices incident to
it (keeping only one copy of each edge and arc). Denote G/e as the mixed graph obtained by
contracting edge e in G and G/a as the mixed graph obtained by contracting arc a in G. The
standard proof for the deletion–contraction formula for (unmixed) graphs gives:

Proposition 6. If G is a mixed graph and e ∈ E(G), then

χG(k) = χG−e(k)− χG/e(k) .

Define Ga as the mixed graph G with arc a directed in the reverse direction. In other words, if
a = ~uv then Ga = (V,E,A− { ~uv} ∪ { ~vu}).
Proposition 7. If G is a mixed graph and a ∈ A(G), then

χG(k) + χGa(k) = χG−a(k) + χG/a(k) .

Proof. Let a = ~uv, C be the set of weak proper k-colorings of G, and Ca be the set of weak proper
k-colorings of Ga. Therefore, χG(k) + χGa(k) = |C ∪ Ca|+ |C ∩ Ca|.

A coloring c ∈ C ∪Ca if and only if c is a weak proper k-coloring of G−a. A coloring c ∈ C ∩Ca

if and only if c(u) = c(v) and c corresponds to a weak proper k-coloring of G/a in which the
vertex created by identifying u and v is colored with c(u). Therefore, χG−a(k) = |C ∪ Ca| and
χG/a(k) = |C ∩ Ca|. �

Propositions 6 and 7 give the following equations:

χG(k) = χG−e(k)− χG/e(k) ,(1)

χG(k) = χG−a(k) + χG/a(k)− χGa(k) .(2)

Equation (1) is very useful in computing the weak chromatic polynomials since it recursively gives
the weak chromatic polynomial of a mixed graph as a difference of (in the number of vertices or
edges) smaller mixed graphs. On the other hand, equation (2) gives the weak chromatic polynomial
of G in terms of Ga, which is not a smaller graph. However, we will show how it can be used in
computation.

A directed graph G = (V,∅, A) is strongly connected if for any pair of vertices u, v ∈ V there
exists a directed path from u to v.
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Proposition 8. If G is a strongly connected directed graph, then χG(k) = k.

Proof. Fix u ∈ V , and let c be a weak proper coloring of G. Since there is a directed path from
u to any v and vice versa, c(v) ≤ c(u) ≤ c(v) for every v ∈ V . Therefore, c(u) = c(v) for every
v ∈ V , and since there are k colors that can be assigned to u, χG(k) = k. �

Given a subgraph S of G, denote G/S as the mixed graph G with all edges and arcs of S removed
and all vertices of S identified to one vertex; resulting parallel edges/arcs should be replaced by a
single edge/arc.

Proposition 9. Let G be a mixed graph and S be a strongly connected directed subgraph of G.
Then χG(k) = χG/S(k).

Proof. Let s be the vertex that S contracts to in G/S. For each weak proper k-coloring of G, the
vertices of S must all be colored the same color j. By defining c(s) = j we get a bijection between
the weak proper k-colorings of G and G/S. �

Computing the weak chromatic polynomial of a mixed graph is reduced to computing the weak
chromatic polynomial of smaller directed graphs by applying Proposition 6. Computing the weak
chromatic polynomial of a directed graph is reduced to computing the weak chromatic polynomial
of smaller acyclic directed graphs (directed trees) by recursively reversing arcs and applying Propo-
sition 7 until a strongly connected subgraph is created and Proposition 9 can be applied. Note that
a strongly connected subgraph of a directed graph can be obtained by reversing arcs as long as the
underlying graph is not acyclic.

G2G1G

Figure 1. A mixed graph G and its two orientations.

As an example, let G = ({u, v, w}, {uv}, { ~vw, ~wu}) (shown in Figure 1). G is a cyclic mixed
graph since it has an orientation, G1, that contains a directed cycle. Consider k = 2. If c is an
intercompatible coloring of G1 or G2, then c(v) < c(w) < c(u). Therefore, G1 and G2 have no
intercompatible colorings and the number of 2-colorings of G, each counted with multiplicity equal
to the number of intercompatible acyclic orientations of G is 0.

We now use contraction and deletion, with e = uv, to compute the weak chromatic polynomial of
G. The contracted graph G/e (see Figure 2) is a strongly connected directed graph, so χG/e(k) = k.
In G− e, there are (k − i+ 1)i weak proper k-colorings with c(w) = i. Therefore,

χG−e(k) =
k∑

i=1

(k − i+ 1)i =
(k + 2)(k + 1)k

3
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Figure 2. G and its contraction and deletion.

and so χG(k) = 1
3(k + 2)(k + 1)k − k. We can now see that Theorem 2 does not hold for G since

χG(−2) = −2.
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