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Abstract

We show that a quotient group of a CI-group with respect to (di)graphs is a CI-group with
respect to (di)graphs.

In [1, 2], Babai and Frankl provided strong constraints on which finite groups could be CI-

groups with respect to graphs. As a tool in this program, they proved [1, Lemma 3.5] that a

quotient group G/N of a CI-group G with respect to graphs is a CI-group with respect to graphs

provided that N is characteristic in G. They were not able to prove that a quotient group of a

CI-group with respect to graphs is a CI-group with respect to graphs in the general case, and so

introduced the notion of a weak CI-group with respect to graphs in order to treat quotient groups

of CI-groups. In some sense, the program that Babai and Frankl started was completed by Li [4]

when he showed that all CI-groups are solvable. (Babai and Frankl mention in [2] a sequel to their

first paper that addressed showing all CI-groups with respect to graphs are solvable. This sequel

never appeared.) We will show that a quotient group of a CI-group with respect to (di)graphs is a

CI-group with respect to (di)graphs. This will allow for a simplification of the proofs of Babai and

Frankl in [1,2] (for example the notion of a weak CI-group with respect to graphs will no longer be

needed), and consequently, as Li’s proof in [4] was based on the earlier work of Babai and Frankl, a

simplification of the proof that a CI-group with respect to graphs is solvable. We begin with some

basic definitions.

Definition 1 Let G be a group and S ⊂ G. Define a Cayley digraph of G, denoted Cay(G,S),
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to be the digraph with V (Cay(G,S)) = G and E(Cay(G,S)) = {(g, gs) : g ∈ G, s ∈ S}. We call S

the connection set of Cay(G,S). If S = S−1, then Cay(G,S) is a graph.

Typically, definitions of Cayley (di)graphs assume 1G 6∈ S to avoid loops, but this assumption

is rarely material to proofs, and will not be made here.

It is straightforward to show that gL : G → G by gL(x) = gx is always an automorphism of

Cay(G,S), and so GL = {gL : g ∈ G} is a subgroup of Aut(Cay(G,S)), the automorphism group

of Cay(G,S). GL is the left regular representation of G.

Definition 2 We say that a group G is a CI-group with respect to (di)graphs if given

Cay(G,S) and Cay(G,S′), S, S′ ⊂ G, then Cay(G,S) and Cay(G,S′) are isomorphic if and only if

α(S) = S′ for some α ∈ Aut(G).

It is also straightforward to verify that α(Cay(G,S)) = Cay(G,α(S)) is a Cayley (di)graph of

G for every S ⊂ G and α ∈ Aut(G). Thus if one is testing whether or not two Cayley (di)graphs of

a group G are isomorphic, one must always check whether or not there is a group automorphism of

G that acts as an isomorphism. A CI-group with respect to (di)graphs is then a group where the

group automorphisms of G are the only maps which need to be checked to determine isomorphism.

We now state some of the definitions from permutation group theory that will be required.

Definition 3 Let G be a transitive group acting on a set X. A subset B ⊆ X is a block of G if

whenever g ∈ G, then g(B)∩B ∈ {∅, B}. If B = {x} for some x ∈ X or B = X, then B is a trivial

block. Any other block is nontrivial, and if G admits nontrivial blocks then G is imprimitive.

If G is not imprimitive, we say that G is primitive. Note that if B is a block of G, then g(B) is

also a block of B for every g ∈ G, and is called a conjugate block of B. The set of all blocks

conjugate to B, denoted B, is a partition of X, and B is called a G-invariant partition of X.

Definition 4 Let B be a G-invariant partition. Define fixG(B) = {g ∈ G : g(B) = B for all B ∈

B}. That is, fixG(B) is the group of permutations in G that simultaneously fixes each block of B

set-wise. If C is also a G-invariant partition and for every C ∈ C we have that C ⊂ B for some

B ∈ B, we write C � B. So C is a refinement of B.

Wreath products of both groups and graphs will be crucial.

Definition 5 Let G be a permutation group acting on X and H a permutation group acting on

Y . Define the wreath product of G and H, denoted G ≀ H, to be the set of all permutations

f of X × Y for which there exists g ∈ G, and for every x ∈ X there exists hx ∈ H, such that

f((x, y)) = (g(x), hx(y)).
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We remark that many authors reverse the order of G and H in G ≀H, and/or refer to the wreath

product of graphs (see Definition 8 below) as the lexicographic product.

The following result is certainly known by many readers. It and its proof are included here for

completeness.

Lemma 6 Let G and H be transitive groups and B the (G ≀H)-invariant partition formed by the

orbits of 1G ≀H. If C is a (G ≀H)-invariant partition, then either B � C or C � B. Consequently,

B is the only (G ≀H)-invariant partition with blocks whose length is the degree of H.

Proof. Let C be a (G ≀H)-invariant partition, and B ∈ B. Let K be the point-wise stabilizer of

every point not in B. Then K is transitive on B. Now, either B � C or not. If so, we are finished.

If not, then let C ∈ C such that C ∩B 6= ∅. Then there exists at least one element of B not in C,

and so there exists k ∈ K such that k(C) 6= C. Then k(C) ∩ C = ∅ so that k fixes no point of C.

But k fixes every point not in B, and so C ⊆ B and C � B.

Definition 7 Let Γ1 and Γ2 be digraphs. The wreath product of Γ1 and Γ2, denoted Γ1 ≀Γ2 is

the digraph with vertex set V (Γ1)× V (Γ2) and edge set

{(u, v)(u, v′) : u ∈ V (Γ1) and vv′ ∈ E(Γ2)} ∪ {(u, v)(u′, v′) : uu′ ∈ E(Γ1) and v, v′ ∈ V (Γ2)}.

The following result [3, Theorem 5.7] giving the automorphism group of vertex-transitive wreath

product (di)graphs will be useful. In the statement, for a (di)graph Γ, Γ̄ denotes the complement

of Γ.

Theorem 8 For any finite vertex-transitive (di)graph Γ ∼= Γ1 ≀ Γ2, if Aut(Γ) 6= Aut(Γ1) ≀ Aut(Γ2)

then there are some natural numbers r > 1 and s > 1 and vertex-transitive (di)graphs Γ′

1 and Γ′

2

for which either

1. Γ1
∼= Γ′

1 ≀Kr, Γ2
∼= Ks ≀ Γ

′

2 or

2. Γ1
∼= Γ′

1 ≀ K̄r and Γ2
∼= K̄s ≀ Γ

′

2,

and Aut(Γ) = Aut(Γ′

1) ≀ (Srs ≀ Aut(Γ
′

2)).

Theorem 9 Let G be a CI-group with respect to (di)graphs and H ⊳ G. Then G/H is a CI-group

with respect to (di)graphs.
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Proof. Let ℓ = |H|, and Cay(G/H,S1) and Cay(G/H,S2) be isomorphic. If Cay(G/H,S1) 6=

Γ1 ≀ Kℓ for some (di)graph Γ1 and ℓ ≥ 2, then Cay(G/H,S2) 6= Γ2 ≀ Kℓ for any (di)graph Γ2

and ℓ ≥ 2. In this case, define T1 = {gh : gH ∈ S1, h ∈ H} ∪ (H − {1G}) and T2 = {gh :

gH ∈ S2, h ∈ H} ∪ (H − {1G}). Then Cay(G,T1) = Cay(G/H,S1) ≀ Kℓ and Cay(G,T2) =

Cay(G/H,S2) ≀ Kℓ are isomorphic Cayley (di)graphs of G. Additionally, by Theorem 8, we have

that Aut(Cay(G,T1)) = Aut(Cay(G/H,S1)) ≀ Sℓ and Aut(Cay(G,T2)) = Aut(Cay(G/H,S2)) ≀ Sℓ.

On the other hand, if Cay(G/H,S1) = Γ1 ≀Kℓ for some Γ1 and ℓ ≥ 2, then Cay(G/H,S2) = Γ2 ≀Kℓ

for some Γ2. In this case, define T1 = {gh : gH ∈ S1, h ∈ H} and T2 = {gh : gH ∈ S2, h ∈ H}.

Then Cay(G,T1) = Cay(G/H,S1) ≀ K̄ℓ and Cay(G,T2) = Cay(G/H,S2) ≀ K̄ℓ are isomorphic Cay-

ley digraphs of G. As before, by Theorem 8, we have that Aut(G,T1) = Aut(Cay(G/H,S1)) ≀

Sℓ and Aut(Cay(G,T2)) = Aut(Cay(G/H,S2)) ≀ Sℓ. In either case, Cay(G,T1) and Cay(G,T2)

are isomorphic Cayley digraphs of G such that Aut(Cay(G,T1)) = Aut(Cay(G/H,S1)) ≀ Sℓ and

Aut(Cay(G,T2)) = Aut(Cay(G/H,S2)) ≀ Sℓ.

AsG is a CI-group with respect to (di)graphs, there exists α ∈ Aut(G) such that α(Cay(G,T1)) =

Cay(G,α(T1)) = Cay(G,T2). Since both Cay(G,T1) and Cay(G,T2) have the form Γ′

1 ≀ Γ
′

2 where

Γ′

2 has order ℓ, Lemma 6 tells us that there is a unique Aut(Cay(G,T1))-invariant partition with

blocks of length ℓ in Cay(G,T1), and a unique Aut(Cay(G,T2))-invariant partition with blocks of

length ℓ in Cay(G,T2), and furthermore that in each case, these block systems are formed by the

orbits of 1Aut(Cay(G/H,Si)) ≀ Sℓ. By inspecting the connection sets of Cay(G,T1) and Cay(G,T2), it

is clear that in both graphs these orbits are the cosets of H in G. Since α is an isomorphism from

Cay(G,T1) to Cay(G,T2), it must take the unique invariant partition with blocks of length ℓ in

Cay(G,T1), to the unique invariant partition with blocks of length ℓ in Cay(G,T2), and hence take

any coset of H to a coset of H. Since α ∈ Aut(G) it takes subgroups of G to subgroups of G, so in

particular, α(H) = H.

Now α induces an automorphism ᾱ of G/H defined by ᾱ(gH) = α(g)H. Since α(H) = H,

this is well-defined. We claim that ᾱ(Cay(G/H,S1)) = Cay(G/H, ᾱ(S1)) = Cay(G/H,S2), and

so G/H is a CI-group with respect to digraphs. To see this, suppose that gH ∈ S1. Then

ᾱ(gH) = α(g)H, and by the definition of T1, gh ∈ T1 for every h ∈ H. Since α(T1) = T2, this

means that α(gh) = α(g)α(h) ∈ T2 for every h ∈ H, and since α(H) = H, this means α(g)h ∈ T2

for every h ∈ H. By definition of T2, this means that ᾱ(gH) = α(g)H ∈ S2. Since gH was an

arbitrary element of S1, this shows that ᾱ(S1) = S2, as claimed.
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