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Abstract

Consider the random set system A = R(n, p) of [n] := {1, 2, . . . n},
whereA = {Aj : Aj ∈ P([n]), and Aj selected with probability p = pn}.
A set H ⊆ [n] is said to be a hitting set for A if ∀Aj ∈ A |Aj ∩H| ≥ 1.
The second moment method is used to exhibit the sharp concentration
of the minimal size of H for a variety of values of p.

1 Introduction and Motivation

A set D of vertices in a graph G = (V,E) forms a dominating set of G if each
v ∈ V is either in D or adjacent to some d ∈ D. The domination number
γ = γ(G) is the size of the smallest dominating set of G. Given a graph of
minimum degree δ, it is proved, e.g., in Alon and Spencer [4] that

γ(G) ≤ 1 + ln(δ + 1)

δ + 1
. (1)

In a result of direct relevence to this paper, Weber [12] proved in 1981 that
the domination number of the random graph G(n, p) is sharply concentrated
w.h.p. if p is fixed. This result was extended in [13] to the case p = pn → 0,
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where a two point concentration was shown to hold for γ(G(n, pn)) provided
pn did not decay too rapidly; specifically, p = 1/ log log n works in the above
result; p = 1/ logn does not.

Given a k-uniform hypergraph H = (V,Ek), a transversal is a collection
T of vertices such that each edge e ∈ Ek intersects T in at least one vertex.
We will denote the transversal number of H by τ(H). A transversal is also
called a hitting set, particularly in the Computer Science literature, where it
is more typical than not for edges to be of different sizes. Accordingly, we
will reserve the terminology “transversal” for k-uniform hypergraphs, and
“hitting set” for the general case. In a result that echoes (1), Alon [2] proved
that for a k-uniform hypergraph with v vertices and e edges,

τ(H) ≤ (1 + o(1))
log k

k
(v + e) (k → ∞).

The Computer Science literature has focused more on complexity issues for
hitting sets; see, e.g., [7], [5], [9], and [8]. The connection between total
domination and transversals has been explored in [11].

If all our edges are of cardinality two, i.e. if we have a graph, let s 6∈ T ,
T a transversal. Then the only edges containing s, must be between s and
t for t ∈ T . Thus T is a minimal hitting set iff TC is maximal independent.
Note that this is also true for arbitrary hypergraphs if independent sets are
defined as collections of vertices for which there is no edge that is a subset
of these vertices. Also, the sharp two point concentration of the maximal
independent set in a random graph has been well understood since the early
work of Bollobás and Erdős [6] and Matula [10], and others. In these results
on finite point concentration, nothing more than the second moment method
was used, though more sophisticated machinery was employed by Alon and
Krivelevich [3], and Achlioptas and Naor [1] to show the sharp concentration
of the chromatic number of G(n, p). It will turn out that elementary methods
will suffice in this paper; we will investigate the sharp concentration of the
size of minimal hitting sets (or hitting number) for non-uniform hypergraphs.

Our model consists of picking each set A ⊆ {1, 2, . . . , n} with probability
p = pn. Let A be the ensemble of picked sets, which we will call a random set
system and denote by R(n, p) (to mirror the G(n, p) notation for a random
graph). The goal is to discover a class of ps for which the hitting number is
close to the intuitive guess of lg(p·2n), where throughout this paper lg = log2.
In Section 2, we set the stage for when a one or two point concentration holds
for the hitting number, and, in Sections 3 and 4, details are provided for two
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canonical cases, namely those corresponding to p = 1/2nβ and p = nα/2n.

2 Setting up the Two-Point Concentration

Define the baseline random variable, Xm, to be the number of hitting sets of
size m. We start by exploring a lower bound on |H|. Clearly

E(Xm) =

(

n

m

)

(1− p)2
n−m ≤

(

n

m

)

exp{−p2n−m},

since a set of size m is hitting iff we do not pick any of the subsets of its
complement to be in the random set system (actually we cannot by definition
hit the empty set, so the correct exponent ought to be 2n−m − 1). Let us set
(with hindsight) m = lg(p · 2n)− ϕ(n).1 Thus

P(Xm ≥ 1) ≤ E(Xm) ≤
(

n

m

)

exp{−2ϕ(n)} → 0 (2)

provided that
(

n
m

)

≪ exp{2ϕ(n)}, and, using the inequality 1− p ≥ e−p/(1−p),
with ǫn = lg(1− p)−1 = O(p),

E(Xm) =

(

n

m

)

(1− p)2
n−m ≥

(

n

m

)

exp{−p2n−m+εn} → ∞ (3)

if
(

n
m

)

≫ exp{2ϕ(n)+ǫn}, where the ϕ functions in (2) and (3) are different.
Since zero-one probability thresholds often occur precisely where the asso-
ciated expected value transitions from zero to infinity, we anticipate that
Equations (2) and (3) occur with near-consecutive values of m.

By Chebychev’s inequality, P(Xm = 0) ≤ V(Xm)
E2(Xm)

, so to establish an up-

per bound on |H| it would suffice to show that the variance is an order of
magnitude smaller than the square of the mean whenever m ≥ m0 – for some

m0 to be determined. Since Xm =
∑(n

m
)

j=1 Ij , where the indicator variable Ij
equals one iff the jth m-set hits R(n, p), we have that

1In this paper we will encounter several functions that play a “generic” role. Examples
of these functions are ω(n), ϕ(n), ǫn, and µn. They are each defined differently in various
parts of the paper, but their role is always the same, e.g. ϕ(n) will always denote how
much smaller the hitting set size is than lgp · 2n and ω(n) will always be a function that
tends to infinity at an arbitrarily slow rate.
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V(Xm) = E(X2
m)− E

2(Xm)

=

(n

m
)

∑

j=1

E(I2j )−







(n

m
)

∑

j=1

E(Ij)







2

+
∑

j 6=k

E(IjIk)

= E(Xm)− E
2(Xm) +

∑

j 6=k

E(IjIk),

so that
V(Xm)

λ2
=

1

λ
− 1 +

∑

j 6=k E(IjIk)

λ2
, (4)

where λ = λm = E(Xm). Now two sets A,B of size m that intersect in r
elements both hit A iff we do not pick, as part of A, any set that is a subset
of AC or a subset of BC ; there are 2n−m + 2n−m − 2n−2m+r of these. Thus,
substituting s = m− r and assuming that λ ≥ 1, we have

∑

j 6=k

E(IjIk) =

(

n

m

)2

·
m−1
∑

r=0

(

m
r

)(

n−m
m−r

)

(

n
m

) (1− p)2
n−m+1−2n−2m+r

= λ2
m
∑

s=1

λ−2−s

(

m

s

)(

n−m

s

)(

n

m

)2−s−1

,

≤ λ2
m
∑

s=1

(

m

s

)(

n−m

s

)(

n

m

)2−s−1

. (5)

By (4) and (5) it thus suffices to show that

∑

s≥1

(

m

s

)(

n−m

s

)(

n

m

)2−s−1

= 1 + o(1) (6)

as λ → ∞; this is really a simple statement about the function m = m(n) as
n → ∞. Let us set up what it takes to make (6) occur: We first define, with
s0 = 2(lg(m log n)), the sums

Σ1 =
∑

s≥s0

(

m

s

)(

n−m

s

)(

n

m

)2−s−1

4



and

Σ2 =
∑

1≤s≤s0−1

(

m

s

)(

n−m

s

)(

n

m

)2−s−1

.

In Σ1, we first bound as follows:

(

n

m

)2−s

≤
(ne

m

)m/2s

≤
(ne

m

)
1

m(log n)2

= 1 + o(1),

so that

Σ1 ≤ (1 + o(1))
∑

s≥s0+1

(

m
m−s

)(

n−m
s

)

(

n
m

) = 1 + o(1),

since the sum above represents almost entirely the mass of a hypergeometric
variable with mean ∼ m, provided that s0 ≪ m – which holds if m ≥
Ω(log logn). Turning to Σ2, we have

Σ2 ≤
∑

1≤s≤s0−1

(

m

s

)(

n−m

s

)(

n

m

)−1/2

≤
∑

1≤s≤s0−1

n2s(n/m)−m/2

≤ n2s0−m/2mm/2

= e(2s0−m/2) logn+(m/2) logm. (7)

(where we used the bounds max{
(

m
s

)

,
(

n−m
s

)

} ≤ ns;
(

n
m

)

≥ (n/m)m in the
second display above.) We wish the estimate in (7) to be of magnitude o(1)
and thus need

logm <

(

1− 8lg(m log n)

m

)

logn. (8)

It is not too hard to check that (8) holds if m is not too small or too large;
specifically one needs

Ω(log log n) ≤ m ≤ n− Ω(log n). (9)

So, for ms satisfying (9), we get that the hitting size is at least m + 1 if
λ = λm → 0, while if λ = λm → ∞, then the hitting size is at most m. We
next note that

λ2
m+1 =

(

n

m+ 1

)2

(1− p)2
n−m

=

(

n

m+ 1

)2(
n

m

)−1

λm ≫ λm,
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certainly for allm ∈ [1, n−3]. This leads to the conclusion that either λm → 0
or λm+1 → ∞. If both these hold, then |H| = m + 1 w.h.p.; on the other
hand if λm−1 → 0;λm → K;λm+1 → ∞, or λm → 0;λm+1 → K;λm+2 → ∞
for some K ∈ R

+, then we have a two point concentration. We summarize
the findings of this section in the following result:

Theorem 1. Consider the random set system A = R(n, p), where p is un-
specified. Let F denote the interval [Ω(log log n), n − Ω(log n)], where the
constants in the Ω functions can be readily specified. Let ℓ = sup{m = mn :
limE(Xm) = 0} and h = inf{m : limE(Xm) = ∞}. Then, for suitable
p = pn, ℓ, h ∈ F ; h− ℓ ∈ {1, 2} and |H| = ℓ+ 1 or |H| = h w.h.p.

It remains to solve for m in terms of p. In the next two sections, we
consider the “dense” case, where the hitting size is comparable to n and
the “sparse” case, where we will seek to hit a system A of size satisfying
|A|1/n → 1. For specificity we use the values p = 1/2nβ; 0 < β < 1 and
p = nα/2n;α > 0 respectively, even though other choices could have been
made, with the analysis being quite similar. In both sections, we seek to
find a value of m = m(p) for which E(Xm) → 0 and E(Xm+1) → ∞ (or
E(Xm+2) → ∞).

3 A Dense Case, p = 1/2nβ, 0 < β < 1.

With p = 1/2nβ and m = (1− β)n− ϕ(n), where we restrict ϕ(n) ≤ lgn,

E(Xm) ≤
(

n

m

)

exp{−2ϕ(n)} ≤
(

n

βn

)(

1− β

β

)ϕ(n)

exp{−2ϕ(n)}.

Stirling’s formula next yields

E(Xm) ≤ C√
n
(β−β(1− β)−(1−β))n

(

1− β

β

)ϕ(n)

exp{−2ϕ(n)}

≤ C√
n
γlgnδn exp{−2ϕ(n)},

where C is a universal constant, γ = max{1, 1−β
β
}, and δ := β−β(1−β)β−1 ≤

2. We thus see that
P(Xm ≥ 1) ≤ E(Xm) → 0
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if

2ϕ(n) = n ln δ − 1

2
lnn+ (ln γ)(lgn) + lnω(n) + lnC,

or if

ϕ(n) = lg

(

n ln δ − 1

2
lnn+ (ln γ)(lgn) + lnω(n)

)

= lg(n ln δ) + o(1).

This yields
|H| ≥ ⌊(1− β)n− lg(n ln δ)− o(1)⌋+ 1, (10)

where in (10), ϕ(n) ≍ lg(n ln δ) ≤ lgn as stipulated.
For the lower bound, we argue as follows:

E(Xm) =

(

n

m

)

(1− p)2
n−m ≥

(

n

m

)

exp{−p2n−m+εn},

where ǫn = lg(1 − p)−1 = O(p). Setting m = (1 − β)n − ϕ(n) (we are in
search of a different ϕ(n) than in (10)) yields

E(Xm) ≥
(

n

βn

)

exp{−p2n−m+εn}

if β < 1/2, and

E(Xm) ≥
(

n

βn

)(

1− β

2β

)lgn

exp{−p2n−m+εn}

if β ≥ 1/2. Simplifying as before we get E(Xm) → ∞ if

ϕ(n) = lg

(

n ln δ − 1

2
lnn+ (ln η)(lgn)− lnω(n)

)

−εn

= lg(n ln δ)− o∗(1),

where η = min{1−β
2β

, 1}, and thus

|H| ≤ ⌈(1− β)n− lg(n ln δ) + o∗(1)⌉. (11)

It is easy to verify that the ϕ(n) functions in (10) and (11) differ by o(1).
Thus the worst case scenario is when these quantities straddle an integer,
when we have a two point concentration. In the other case, we have that |H|
is a constant w.h.p.

We have proved
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Theorem 2. Let H = H(n, β) be the size of the minimal hitting set of the
random set system R(n, 1/2nβ) consisting of the ensemble that is generated
when each set in P([n]) is independently picked with probability p = 2−nβ.
Then with probability approaching unity, |H| = h or h+ 1, where

h = ⌊(1− β)n− lg(n ln δ)− o(1)⌋+ 1,

and where the o(1) is as in the argument leading to (10).

The next result follows immediately:

Corollary 3. Let I = I(n, β) be the size of the maximal independent set of
the random set system R(n, 1/2nβ) Then w.h.p., |I| = i or i+ 1, where

i = n− 2− ⌊(1− β)n− lg(n ln δ)− o(1)⌋.

4 A Sparse Case, p = nα/2n, α > 0

We now move on to the case p = nα/2n, α > 0. Notice that as in Theorem
2, the hitting number works out to be a just a little smaller than the value
lgE|A| = lg(p · 2n), which can easily be seen to be the least m such that the
set {1, 2, . . . , m} is expected to hit all the sets in A.

Theorem 4. Let H = H(n, α) be the size of the minimal hitting set of the
random set system R(n, nα/2n), α > 0. Then with high probability, |H| = h
or h+ 1, where

h = ⌊αlgn− lg(αlgn lnn)− o(1)⌋+ 1.

Proof. Let Xm be as before. We have

E(Xm) ≤
(

n

m

)

exp{−p2n−m} ≤
(ne

m

)m

exp{−p2n−m},

so, setting p = nα/2n and m = αlgn − ϕ(n) (where we restrict by seeking
solutions with ϕ(n) ≤ 3lg(lgn)), we get

E(Xm) ≤
(

ne

αlgn− 3lglgn

)αlgn

exp{−2ϕ(n)} → 0
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if

2ϕ(n) = αlgn

(

lnn+ 1− ln(αlgn− 3lglgn)

)

+ lnω(n)

or

ϕ(n) = lg

(

αlgn
(

lnn+ 1− ln(αlgn− 3lglgn)
)

+ lnω(n)

)

= lg(αlgn lnn) + o(1). (12)

Note that ϕ(n) ≤ 3lglgn in (12) if n is sufficiently large. Thus

|H| ≥ ⌊αlgn− lg(αlgn lnn)− o(1)⌋+ 1. (13)

Next, setting ϕ(n) = lg[α(1− µn)lgn lnn]− ǫn, where µn = 5+α
α

lglgn
lgn

, and

m = αlgn− ϕ(n), we see that

E(Xm) =

(

n

m

)

(1− p)2
n−m

≥
(

n

m

)

exp{−2ϕ(n)+ǫn}

=

(

n
m

)

nα(1−µn)lgn

≥ (n−m)m

C
√
m

( e

m

)m 1

nα(1−µn)lgn

≥ exp{−m2/(n−m)} 1

C
√
m

(ne

m

)m 1

nα(1−µn)lgn

≥ 1

2C
√
m

(

ne

αlgn

)αlgn−ϕ(n)
1

nα(1−µn)lgn

≥ 1

2C
√
m

nαµnlgn−ϕ(n)

(αlgn)αlgn−ϕ(n)

≥ 1

2C
√
m

n(5+α)lglgn−3lglgn

(αlgn)αlgn−ϕ(n)

≥ nlglgn

→ ∞.

Together with (13), this completes the proof of Theorem 4.
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5 Open Questions

We feel that deriving similar concentrations for hitting set size of random
uniform hypergraphs would be of value, as would be results in which subsets
of various sizes are picked with (a wide variety of) size-biased probabilities.
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