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Abstract Earlier results originating from Bedrossian’s PhD Thesis focus on charac-
terizing pairs of forbidden subgraphs that imply hamiltonian properties. Instead of
forbidding certain induced subgraphs, here we relax the requirements by imposing
Ore-type degree conditions on the induced subgraphs. In particular, adopting the ter-
minology introduced by Čada, for a graphG on n vertices and a fixed graph H , we say
that G is H -o1-heavy if every induced subgraph of G isomorphic to H contains two
nonadjacent vertices with degree sum at least n + 1 in G. For a family H of graphs,
G is called H-o1-heavy if G is H -o1-heavy for every H ∈ H. In this paper we char-
acterize all connected graphs R and S other than P3 (the path on three vertices) such
that every 2-connected {R, S}-o1-heavy graph is either a cycle or pancyclic, thereby
extending previous results on forbidden subgraph conditions for pancyclicity and on
heavy subgraph conditions for hamiltonicity.
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1 Introduction

We use Bondy and Murty [4] for terminology and notation not defined here and
consider finite simple graphs only.

LetG be a graph and letG ′ be a subgraph ofG. IfG ′ contains all edges xy ∈ E(G)

with x, y ∈ V (G ′), then G ′ is called an induced subgraph of G. For a given graph H ,
we say that G is H -free if G does not contain an induced subgraph isomorphic to H .
For a familyH of graphs, G is called H-free if G is H -free for every H ∈ H.

The graph K1,3 is called a claw; its (only) vertex of degree 3 is called the center of
the claw, and the other vertices are called the end vertices of the claw.

Following the terminology of [4], a graph G on n vertices is said to be hamiltonian
if it contains a Hamilton cycle, i.e., a cycle of length n passing through all the vertices
of G. If G contains cycles of length k for every k with 3 ≤ k ≤ n, we say that G
is pancyclic. Note that a pancyclic graph is necessarily hamiltonian. Bedrossian [1]
studied forbidden subgraph conditions for a 2-connected graph to be hamiltonian and
to be pancyclic. In his PhD thesis, he proved the following nice results, characterizing
all pairs of forbidden subgraphs for these properties. We note here that in Bedrossian’s
results and throughout this paper, all graphs are assumed to be nontrivial, i.e., having a
nonempty edge set. As a consequence we do not consider P2-free graphs.We also note
here that a connected P3-free graph is a complete graph, i.e., its vertex set is a clique,
i.e., all its vertices are mutually adjacent, and hence it is hamiltonian and pancyclic if
it has order at least 3. In fact, it is not hard to show that the statement ‘every connected
(nontrivial) H -free graph is hamiltonian (pancyclic)’ only holds if H = P3. The case
with pairs of forbidden subgraphs (different from P3) is much more interesting.

Theorem 1 (Bedrossian [1]) Let R and S be connected graphs with R, S �= P3 and
let G be a 2-connected graph. Then G being {R, S}-free implies G is hamiltonian if
and only if (up to symmetry) R = K1,3 and S = P4, P5, P6,C3, Z1, Z2, B, N or W
(see Figure 1).

Fig. 1 The graphs Pi ,C3, Zi , B, N and W
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Theorem 2 (Bedrossian [1]) Let R and S be connected graphs with R, S �= P3 and
let G be a 2-connected graph which is not a cycle. Then G being {R, S}-free implies
G is pancyclic if and only if (up to symmetry) R = K1,3 and S = P4, P5, Z1 or Z2.

Forbidding pairs of graphs as induced subgraphs might impose such a strong condi-
tion on the graphs under consideration that hamiltonian properties are almost trivially
obtained. As an example, one easily shows that, apart from paths and cycles, con-
nected {K1,3, Z1}-free graphs are only a matching away from complete graphs, i.e.,
their complements consist of isolated vertices and isolated edges. This is one of the
motivations to relax forbidden subgraph conditions to conditions in which the sub-
graphs are allowed, but where additional conditions are imposed on these subgraphs
if they appear. Early examples of this approach in the context of hamiltonicity and
pancyclicity date back to the early 1990s [2,6]. The idea to put a minimum degree
bound on one or two of the end vertices of an induced claw has been explored in [5].
Here we follow the ideas and terminology of [7] by putting an Ore-type degree sum
condition on at least one pair of nonadjacent vertices in certain induced subgraphs.
These degree sum conditions refer to one of the earliest papers in this area, in which
Ore [9] proved that a graph G on n ≥ 3 vertices is hamiltonian if the degree sum of
any two nonadjacent vertices of G is at least n.

Let G be a graph on n vertices and let G ′ be an induced subgraph of G. We say
that G ′ is heavy in G if there are two nonadjacent vertices in V (G ′) with degree sum
at least n in G. For a given graph H , G is called H -heavy if every induced subgraph
of G isomorphic to H is heavy. For a family H of graphs, G is called H-heavy if G
is H -heavy for every H ∈ H. Note that an H -free graph is trivially H -heavy.

The counterpart of Theorem 1 for heavy subgraphs was studied in [8]. For hamil-
tonicity of 2-connected graphs the authors in [8] obtained the following result.

Theorem 3 (Li et al. [8]) Let R and S be connected graphs with R, S �= P3 and let G
be a 2-connected graph. Then G being {R, S}-heavy implies G is hamiltonian if and
only if (up to symmetry) R = K1,3 and S = P4, P5,C3, Z1, Z2, B, N or W.

Note that, apart from P6, the same graphs appear in Theorems 1 and 3. Examples
is [8] show that P6 has to be excluded in Theorem 3.

Is there a natural counterpart of Theorem 2 involving heavy subgraphs? What can
we say about the pancyclicity of graphs when we consider heavy subgraph conditions
instead of forbidden subgraph conditions? To start with a negative observation, let us
first consider the complete bipartite graph Kn/2,n/2. Note that every induced subgraph
of Kn/2,n/2 (other than P1 and P2) is heavy, but Kn/2,n/2 is clearly not pancyclic. This
implies that for any family H of graphs, a 2-connected graph G (not being a cycle)
cannot be guaranteed to be pancyclic by imposing that G is H-heavy. As in existing
degree condition results for pancyclicity, we have to impose a slightly stronger degree
condition in order to exclude the above counterexamples.

Let G be a graph on n vertices and let G ′ be an induced subgraph of G. Following
[7], we say that G ′ is o1-heavy in G if there are two nonadjacent vertices in V (G ′)
with degree sum at least n + 1 in G (Ore’s condition with n + 1 instead of n). For a
given graph H , G is called H -o1-heavy if every induced subgraph of G isomorphic to
H is o1-heavy. For a familyH of graphs, G is calledH-o1-heavy if G is H -o1-heavy
for every H ∈ H.
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Note that an H -free graph is trivially H -o1-heavy, and an H -o1-heavy graph is also
H -heavy. Moreover, if H1 is an induced subgraph of H2, then an H1-free (H1-heavy,
H1-o1-heavy) graph is also H2-free (H2-heavy, H2-o1-heavy).

Imposing this natural, slightly stronger Ore-type degree condition, we obtain the
following counterpart of Theorem 2.

Theorem 4 Let R and S be connected graphs with R, S �= P3 and let G be a 2-
connected graph which is not a cycle. Then G being {R, S}-o1-heavy implies G is
pancyclic if and only if (up to symmetry) R = K1,3 and S = P4, P5, Z1 or Z2.

Note that exactly the same graphs appear in Theorems 2 and 4. The ‘only if’ part
of the theorem follows almost directly from Theorem 2, since H -free graphs are H -
o1-heavy. For the ‘if’ part of the theorem, noting that P4 and Z1 are both induced
subgraphs of Z2, it is sufficient to prove the following result.

Theorem 5 Let G be a 2-connected graph which is not a cycle. If G is {K1,3, P5}-o1-
heavy or {K1,3, Z2}-o1-heavy, then G is pancyclic.

The proof is by induction on the order n of the graph. Using Theorem 2, we are
done if G is {K1,3, P5}-free or {K1,3, Z2}-free, so we may assume there is at least
one pair of vertices with degree sum at least n + 1. Cycles of length 3, 4 and 5 are
easily obtained from the degree conditions, and cycles of length n and n−1 are easily
obtained by using Theorem 3 directly, and after establishing the existence of a vertex
v whose removal does not affect the 2-connectedness and then using Theorem 3 on
G − v. For the other cases, we are done if we can find a vertex or a pair of vertices
whose removal does not affect the 2-connectedness and the degree sum conditions on
remaining pairs in the smaller graph. Assuming that such vertices or pairs of vertices
do not exist, forces a lot of structure on the vertex cuts S with |S| = 2 of G and on
the components of G − S, enabling us to prove Theorem 5. We postpone the details
of the proof of Theorem 5 to Sect. 3.

Let F = P5 or F = Z2. As we pointed out before, Kn/2,n/2 is a 2-connected
{K1,3, F}-heavy graph which is not pancyclic. Another graph with this property is
Kn/2,n/2 − e (the graph obtained from Kn/2,n/2 by deleting an arbitrary edge). Apart
from the cycles and these two types of graphs, we do not know whether there exist
any other graphs with the above properties, so we raise it as an open problem.

Problem 1 Is there some graph G on n vertices other than Cn , Kn/2,n/2 and Kn/2,n/2
−e such that G is {K1,3, P5}-heavy or {K1,3, Z2}-heavy but not pancyclic?

2 Some Preliminaries

In the next section we will prove Theorem 5. Before we do so, in this section we
introduce some additional terminology, and we will prove some useful lemmas.

Let G be a graph. For a subgraph H of G, when no confusion can arise we also use
H to denote the vertex set of H ; and similarly, for a subset S of V (G), we also use S
to denote the subgraph of G induced by S.

The following useful lemma is an easy exercise that can be found in [4]. It appeared
as Lemma 1 in [3]. We present it here without a proof.
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Lemma 1 Let G be a graph on n ≥ 4 vertices, and let x be a vertex of G. If d(x) ≥ n/2
and G − x is hamiltonian, then G is pancyclic.

Throughout this paper, instead of K1,3-free, K1,3-heavy and K1,3-o1-heavy, we
use the terminology claw-free, claw-heavy and claw-o1-heavy, respectively. Our next
result is a structural lemma on claw-o1-heavy graphs.

Lemma 2 Let G be a claw-o1-heavy graph on n ≥ 4 vertices, and let x and x ′ be two
vertices of G. Then

1. if xx ′ ∈ E(G) and d(x) + d(x ′) ≥ n + 1, then xx ′ is contained in a triangle;
2. if d(x) ≥ (n + 1)/2, then x is contained in a triangle; and
3. if xx ′ /∈ E(G) and d(x) + d(x ′) ≥ n + 1, then

(a) x and x ′ have at least three common neighbors in G, and
(b) x and x ′ are contained in a common quadrangle and a common pentagon.

Proof (1) Since d(x) + d(x ′) ≥ n + 1, x and x ′ have at least one common neighbor
y. Then xyx ′x is a triangle containing xx ′.

(2) Since d(x) ≥ (n + 1)/2 and n ≥ 4, we have d(x) ≥ 3. Let y, y′, y′′ be three
neighbors of x . If yy′ ∈ E(G), then xyy′x is a triangle containing x . Next assume
that yy′ /∈ E(G), and similarly, yy′′, y′y′′ /∈ E(G). Then the subgraph induced
by {x, y, y′, y′′} is a claw. Since G is claw-o1-heavy, there must be a vertex in
{y, y′, y′′} with degree at least (n + 1)/2. Without loss of generality, we assume
that d(y) ≥ (n+1)/2. Then we have d(x)+d(y) ≥ n+1. By (1), xy is contained
in a triangle.

(3) Here we assume xx ′ /∈ E(G) and d(x) + d(x ′) ≥ n + 1. If x and x ′ have at most
two common neighbors, then d(x) + d(x ′) ≤ (n − 2) + 2 = n, a contradiction.
Thus x and x ′ have at least three common neighbors. Wemay assume without loss
of generality that d(x) ≥ (n + 1)/2.
Let y, y′, y′′ be three common neighbors of x and x ′. Then xyx ′y′x is a quadrangle

containing x and x ′. If yy′ ∈ E(G), then xyy′x ′y′′x is a pentagon containing x
and x ′. Next assume that yy′ /∈ E(G), and similarly, yy′′, y′y′′ /∈ E(G). Then the
subgraph induced by {x, y, y′, y′′} is a claw. Without loss of generality, we assume
that d(y) ≥ (n+ 1)/2. Then we have d(x)+ d(y) ≥ n+ 1. By (1), xy is contained in
a triangle xyzx . Noting that z �= x ′, y′, xzyx ′y′x is a pentagon containing x and x ′.

��
Let G be a graph on n vertices. In the following, we call a vertex x a super heavy

vertex ofG if d(x) ≥ (n+1)/2, and we call a pair of vertices {x, y} a super heavy pair
of G if xy /∈ E(G) and d(x) + d(y) ≥ n + 1. Note that a super heavy pair contains at
least one super heavy vertex. The importance of the existence of super heavy vertices
for pancyclicity is already demonstrated by Lemma 1. The next lemma relates the
(non)existence of such vertices to the structure of the neighborhood of a vertex-cut.

Lemma 3 Let G be a2-connected claw-o1-heavy graph, and suppose {r, s} is a vertex-
cut of G. Then

1. G − {r, s} has exactly two components; and
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2. for any distinct neighbors x and x ′ of r: x and x ′ are in a common component of
G − {r, s} if and only if xx ′ ∈ E(G) or {x, x ′} is a super heavy pair of G.

Proof (1) If there are at least three components of G − {r, s}, then let H , H ′ and
H ′′ be three such components. Let x , x ′ and x ′′ be neighbors of r in H , H ′ and H ′′,
respectively. Then the subgraph induced by {r, x, x ′, x ′′} is a claw. Since x and x ′ have
at most the two common neighbors r and s, by Lemma 2, d(x)+d(x ′) ≤ n. Similarly,
d(x) + d(x ′′) ≤ n and d(x ′) + d(x ′′) ≤ n, contradicting that G is claw-o1-heavy.
Thus, G − {r, s} has exactly two components.

(2) If x and x ′ are not in a common component, then clearly xx ′ /∈ E(G), and since x
and x ′ have atmost the two common neighbors r and s, by Lemma 2, d(x)+d(x ′) ≤ n.
Thus {x, x ′} is not a super heavy pair. On the other hand, if x and x ′ are in a common
component, then let x ′′ be a neighbor of r in the component not containing x and x ′. If
xx ′ /∈ E(G), then the subgraph induced by {r, x, x ′, x ′′} is a claw and d(x)+d(x ′′) ≤
n, d(x ′) + d(x ′′) ≤ n. Since G is claw-o1-heavy, we have d(x) + d(x ′) ≥ n + 1, so
{x, x ′} is a super heavy pair, completing the proof of Lemma 3. ��

In the sequel, by the concept cut we always refer to a vertex-cut with 2 vertices.
A pair of vertices {x, y} is called a separable pair of G if x and y are in distinct
components of G − {r, s} for some cut {r, s} of G. So by Lemma 3, a separable pair
cannot be a super heavy pair.

Let G be a 2-connected graph, let {r, s} be a cut of G, and let H be a component
of G − {r, s}. We call the subgraph induced by H ∪ {r, s} a link of G (this is called
an {r, s}-component in [4]). For such a link, {r, s} is called the bolt of the link, H is
called the inside, and H ′ = G − {r, s} − H is called the outside of the link. Let L be
a link of G with bolt {r, s} and inside H . Then if its outside H ′ = G − {r, s} − H is
connected, then the subgraph induced by H ′ ∪ {r, s} is also a link, called the co-link
of L , and denoted by Lc.

Note that if a link L has a co-link, then its co-link is unique, and L is the co-link of
its co-link. By Lemma 3, we see that if a graph G has connectivity 2 and is claw-o1-
heavy, then every link of G has a co-link. It is convenient to denote a link L with bolt
{r, s} by L(r, s), and its co-link by Lc(r, s).

The next series of lemmas provides some structural information on cuts and links.

Lemma 4 Let G be a 2-connected graph, let L = L(r, s) be a link of G, and let H
be the inside of L. If {r ′, s′} is a cut of G with r ′, s′ ∈ L, then there is a component of
G − {r ′, s′} contained in H.

Proof If {r ′, s′} = {r, s}, then the result is trivially true. So we assume that {r ′, s′} �=
{r, s}. Without loss of generality, we assume that r �= r ′, s′. Note that r has a neighbor
in every component ofG−{r, s}. Since r ′, s′ ∈ L , every component ofG−{r, s} other
than H is contained in a component of G − {r ′, s′} containing r (and also containing
s if s �= r ′, s′). Thus any other component of G − {r ′, s′} is contained in H . ��

Let L be a link of a graph. A vertex of the inside (outside) of L is called a vertex
inside (outside) L .

Lemma 5 Let G be a 2-connected graph, let L = L(r, s) be a link of G, and let x be
a vertex inside L. If {x, y} is a cut of G for some vertex y outside L, then
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(1) rs /∈ E(G), and r and s are in distinct components of G − {x, y};
(2) x is a cut vertex of L, and r and s are in distinct components of L − x; and
(3) r x ∈ E(G) and x is the only neighbor of r in H, or {r, x} is a cut.
Proof (1) Let u be an arbitrary vertex inside L other than x . By the 2-connectedness
of G, there is a path from u to r or s not passing through x with all internal vertices
inside L . Similarly, for an arbitrary vertex v outside L other than y, there is a path
from v to r or s not passing through y with all internal vertices outside L . Thus if
rs ∈ E(G) or if r and s are in a common component of G − {x, y}, then G − {x, y}
is connected, a contradiction.

(2) Let P be an arbitrary path of L from r to s. Note that P cannot pass through y.
By (1), P passes through x . This implies that x is a cut vertex of L , and that r and s
are in distinct components of L − x .

(3) Suppose that r has a neighbor r ′ in L other than x . By (1), r and s are in distinct
components of G − {x, y}. Clearly r and r ′ are in a common component. Let P be an
arbitrary path of G from r ′ to s. Thus P either passes through x or passes through y.
If P passes through y, then it also passes through r . This implies that {r, x} is a cut.

��
Lemma 6 Let G be a 2-connected claw-o1-heavy graph, let L = L(r, s) be a link
of G, let H be the inside of L, and let x be a vertex in H. Then the following two
statements are equivalent:

(1) r x ∈ E(G) and x is the only neighbor of r in H, or {r, x} is a cut.
(2) sx ∈ E(G) and x is the only neighbor of s in H, or {s, x} is a cut.
Proof First assume that r x ∈ E(G) and x is the only neighbor of r in H . If sx /∈ E(G)

or s has at least two neighbors in H , then there is a neighbor s′ �= x of s in H . Let P
be an arbitrary path of G from s′ to r . If P does not pass through s, then every internal
vertex of P is in H . Noting that r has only one neighbor x in H , this implies that P
then passes through x . Hence {s, x} is a cut.

Suppose now that {r, x} is a cut. Let Hc be the outside of L . Using Lemma 4, let
H ′ be the component of G −{r, x} contained in H . If sx /∈ E(G) or s has at least two
neighbors in H , then let r ′ be a neighbor of r in H ′, let r ′

c be a neighbor of r outside
L , and let s′ be a neighbor of s inside L other than x . Clearly s′ /∈ H ′.

We claim that every neighbor of r is either in H ′ ∪ {x} or in Hc ∪ {s}. Otherwise,
let r ′′ be a neighbor of r in H − x − H ′. Then the subgraph induced by {r, r ′, r ′

c, r
′′}

is a claw. It is easily seen that any pair of vertices from {r ′, r ′
c, r

′′} is separable. By
Lemma 3, the claw induced by {r, r ′, r ′

c, r
′′} is not o1-heavy, a contradiction.

Recall that r ′ and s′ are in distinct components of G − {r, x}. Let P be an arbitrary
path of G from r ′ to s′. Then P passes through either r or x . Also recall that every
neighbor of r not in H ′ ∪ {x} is in Hc ∪ {s}. Thus if P passes through r , then it will
also pass through s. This implies that {s, x} is a cut. This completes the proof of one
direction of the lemma.

The opposite direction follows by symmetry. ��
A link L = L(r, s) is said to be simple if both r and s have at least two neighbors

inside L , and for every vertex x inside L , {r, x} and {s, x} are not cuts. By Lemma 6,
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we can see that if L = L(r, s) is a link of a 2-connected claw-o1-heavy graph, then L
is simple if and only if r has at least two neighbors inside L , and for every vertex x
inside L , {r, x} is not a cut.
Lemma 7 Let G be a 2-connected claw-o1-heavy graph, let L = L(r, s) be a link of
G, and let H be the inside of L. Then L is 2-connected if and only if rs ∈ E(G) or L
is simple.

Proof First we assume that L has a cut vertex x . Clearly r and s are in distinct
components of L − x ; otherwise x is a cut vertex of G. Thus we have rs /∈ E(G).
Moreover, if r has at least two neighbors in H , then let r ′ be a neighbor of r in H
other than x . Let P be an arbitrary path of G from r ′ to s. If P does not pass through
r , then every internal vertex of P is in H . Note that x is a cut vertex of L , and clearly
r ′ and r are in a common component of L − x . P will pass through x . This implies
that {r, x} is a cut and L is not simple.

Suppose now that L is 2-connected. We assume that rs /∈ E(G). If r has only one
neighbor x in H , then clearly x is a cut vertex of L . So we assume that r has at least two
neighbors in H . If {r, x} is a cut of G for some x in H , then let H ′ be the component
of G − {r, x} contained in H , and let Hc be the outside of L . Let P be an arbitrary
path of L from r to s. Similarly as in the proof of Lemma 6, we can prove that every
neighbor of r is either in H ′ ∪ {x} or in Hc. Note that every internal vertex of P is in
H . P must pass through x . This implies x is a cut vertex of G, a contradiction. So we
have that L is simple. ��

Let G be a 2-connected claw-o1-heavy graph, and let r xsr be a triangle such that
d(x) = 2, d(r) ≥ 3, and d(s) ≥ 3. Then by Lemma 7, we get that G − x is 2-
connected. Similarly, let r xysr be a quadrangle such that d(x) = d(y) = 2, d(r) ≥ 3,
and d(s) ≥ 3. Then G − {x, y} is 2-connected.

Note that a simple link is not necessarily aminimal one.Nowweprove the following
lemma.

Lemma 8 Let G be a 2-connected claw-o1-heavy graph, let L = L(r, s) be a simple
link of G, and let H be the inside of L. Suppose that there is a link L ′ contained in H.
Then there is a link L ′′ (possibly equal to L ′) contained in H and containing L ′ such
that its co-link L ′′

c is simple.

Proof We consider a link L ′′ contained in H and containing L ′ with the largest order.
Let {r ′′, s′′} be the bolt, H ′′ the inside, and H ′′

c the outside of L ′′.
By Lemma 6, for each x in H , {r, x} and {s, x} are not cuts. If r ′′ has only one

neighbor x in H ′′
c , then {s′′, x} is a cut and x ∈ H . Then H ′′ ∪ {r ′′} is the component

of G − {s′′, x} contained in H , and the subgraph induced by H ′′ ∪ {r ′′, s′′, x} is a link
contained in H and containing L ′ with larger order than L ′′, a contradiction. Thus we
assume that r ′′ has at least two neighbors in H ′′

c , and similarly, s′′ has at least two
neighbors in H ′′

c .
If {r ′′, x} is a cut of G for some x ∈ H ′′

c , then note that x �= r, s, and by Lemma 5,
x /∈ Hc ∪ {r, s}, where Hc is the outside of L . This implies x is inside H . By Lemma
6, {s′′, x} is a cut. Let H ′′′ be the component of G − {r ′′, x} contained in H . If H ′′ is
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contained in H ′′′, then the subgraph induced by H ′′′ ∪ {r ′′, x} is a link contained in
H and containing L ′ with larger order than L ′′, a contradiction. Thus we assume that
H ′′ is not contained in H ′′′. Note that every neighbor of r ′′ is either in H ′′ ∪ {s′′} or in
H ′′′ ∪ {x}. H ′′ ∪ H ′′′ ∪ {r ′′} is the component of G − {s′′, x} contained in H , and the
subgraph induced by H ′′ ∪ H ′′′ ∪ {r ′′, s′′, x} is a link contained in H and containing
L ′ with larger order than L ′′, a contradiction.

Thus we conclude that L ′′
c is simple. ��

Let G be a 2-connected graph. If G − x is 2-connected for a vertex x of G, then we
call x a c-removable vertex of G (a removable vertex with respect to the connectivity
condition); similarly, if G − {x, y} is 2-connected for a pair of vertices {x, y} of G,
then we call {x, y} a c-removable pair of G. Note that every vertex of a 3-connected
graph is c-removable. Also note that every non-removable vertex of a 2-connected
graph is contained in a cut. The existence of c-removable vertices and pairs plays a
key role in our induction proof of Theorem 5 in the next section. Here we prove a
preliminary lemma on c-removable pairs.

Lemma 9 Let G be a 2-connected graph on at least 5 vertices, and let L = L(r, s)
and L ′ = L ′(r ′, s′) be two 2-connected links of G that are internally disjoint. If x and
x ′ are two c-removable vertices of G inside L and L ′, respectively, then {x, x ′} is a
c-removable pair of G.

Proof Let y be an arbitrary vertex of G − {x, x ′}. We prove that G ′ = G − {x, x ′, y}
is connected.

If y is one of the vertices in {r, s, r ′, s′}, then without loss of generality, we assume
that y = r . Then for every vertex u inside L with u �= x , since x is c-removable and
{r, x} is not a cut, there is a path P of G − {r, x} from u to s. Clearly, P does not pass
through x ′. This implies that u and s are connected by the path P in G ′. Similarly, for
every vertex v outside L with v �= x ′, since x ′ is c-removable and {r, x ′} is not a cut,
there is a path Q of G − {r, x ′} from v to s that does not pass through x . This implies
that v and s are connected by the path Q in G ′. Thus G ′ is connected.

Now we assume that y is not a vertex of {r, s, r ′, s′}. Without loss of generality,
we assume that y is outside L . Then for every vertex u inside L with u �= x , since L
is 2-connected, there is a path P of L − x from u to r . This implies that u and r are
connected by the path P in G ′. In particular, r and s are connected in G ′. Besides, for
every vertex v outside L with v �= x ′, y, since x ′ is c-removable and {x ′, y} is not a
cut, there is a path Q of G−{r, x ′} from v to r or s with all internal vertices outside L .
This implies that v and r or s are connected by the path Q inG ′. ThusG ′ is connected.

��
Let G be a graph and let x be a vertex of G. If every super heavy pair {u, v} of

G, with u, v ∈ V (G)\{x}, is also a super heavy pair of G − x (in terms of the order
of the new graph), then we call x a d-removable vertex of G (a removable vertex
with respect to the degree condition). Let x, y be two distinct vertices of G. If every
super heavy pair {u, v} of G, with u, v ∈ V (G)\{x, y}, is also a super heavy pair of
G − {x, y}, then we call {x, y} a d-removable pair of G. For an induction proof the
existence of vertices or pairs of vertices that are both c-removable and d-removable
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is very favorable, as we will see in the next section. We finish this section with the
following easy observations on d-removable vertices and pairs.

Lemma 10 Let G be a graph, and let x, y be two distinct vertices of G. Then

(1) if N (x) contains no super heavy pair of G, then x is a d-removable vertex of G;
and

(2) if x and y have no common neighbors, then {x, y} is a d-removable pair of G.

Proof We use n to denote the order of G.

(1) Let G ′ = G − x , and let {u, v} be an arbitrary super heavy pair of G with
u, v ∈ V (G)\{x}. If N (x) contains no super heavy pairs of G, then at least one
of u and v is not in N (x). Without loss of generality, we assume that u /∈ N (x).
Then dG ′(u) = d(u) and dG ′(v) ≥ d(v) − 1. Thus dG ′(u) + dG ′(v) ≥ n. Since
the order of G ′ is n − 1, {u, v} is a super heavy pair of G ′. This implies that x is
a d-removable vertex of G.

(2) Let G ′ = G − {x, y}, and let {u, v} be an arbitrary super heavy pair of G with
u, v ∈ V (G)\{x, y}. If x and y have no common neighbors, then at least one of ux
and uy is not in E(G). Then dG ′(u) ≥ d(u)−1, and similarly, dG ′(v) ≥ d(v)−1.
Thus dG ′(u) + dG ′(v) ≥ n − 1. Since the order of G ′ is n − 2, {u, v} is a super
heavy pair of G ′. This implies that {x, y} is a d-removable pair of G. ��

3 Proof of Theorem 5

Let G be a 2-connected {K1,3, P5}-o1-heavy or {K1,3, Z2}-o1-heavy graph that is not
a cycle, and let n = |V (G)|. We are going to prove that G is a pancyclic graph by
induction on n. If G contains only three vertices, then the result is trivially true. So
we assume that n ≥ 4.

If G is {K1,3, P5}-free or {K1,3, Z2}-free, then by Theorem 2, G is pancyclic. So
we assume that G is neither {K1,3, P5}-free nor {K1,3, Z2}-free. This implies that G
contains at least one super heavy pair.

By Lemma 2, G contains a triangle, a quadrangle and a pentagon. Next we are
going to prove a number of claims. Our first claim establishes the existence of long
cycles.

Claim 1 G contains a cycle of length n and a cycle of length n − 1.

Proof Since G is {K1,3, P5}-o1-heavy or {K1,3, Z2}-o1-heavy, by Theorem 3, G is
hamiltonian. So G contains a cycle of length n.

Let C be a Hamilton cycle of G, and let {r, s} be a super heavy pair of G. Clearly
{r, s} dividesC into two subpaths. Recall from the definition of a super heavy pair that
rs �∈ E(G). Let P = r x1x2 · · · xks and Q = r y1y2 · · · y�s be the two subpaths of C ,
where k + � + 2 = n. If r x2 ∈ E(G), then C ′ = C − r x1x2 ∪ r x2 (with the obvious
meaning) is a cycle of length n − 1. Thus we assume that r x2 /∈ E(G) and, similarly
sxk−1, r y2, sy�−1 /∈ E(G). Let S = {u ∈ P | u ∈ N (s)} and R = {u ∈ P | u++ ∈
N (r)}, where u++ denotes the vertex at distance 2 of u on P in the direction from r to
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s. Then r and s are no elements of S ∪ R. Clearly, dP (s) = |S| and dP (r) = |R| + 1,
so dP (s) + dP (r) = |S| + |R| + 1 = |S ∩ R| + |S ∪ R| + 1. If we assume that
S ∩ R = ∅, then we get that dP (s) + dP (r) ≤ |P| − 1. Applying similar assumptions
and counting techniques to Q, this would yield d(r) + d(s) ≤ |P| + |Q| − 2 = n.
Since d(r) + d(s) ≥ n + 1, we conclude that without loss of generality, S ∩ R �= ∅.
Hence, there is a vertex xi , 2 ≤ i ≤ k − 1, such that r xi+1, sxi−1 ∈ E(G). Clearly xi
is a c-removable vertex of G.

LetG ′ = G−xi . ThenG ′ is 2-connected. Let {u, v} be an arbitrary super heavy pair
ofG. Noting that dG ′(u) ≥ d(u)−1 and dG ′(v) ≥ d(v)−1,we have dG ′(u)+dG ′(v) ≥
n−1. SinceG ′ has n−1 vertices, {u, v} is a heavy pair ofG ′, i.e., u, v are nonadjacent
and with degree sum at least |V (G ′)|. This implies that G ′ is {K1,3, P5}-heavy or
{K1,3, Z2}-heavy. Hence, by Theorem 3, G ′ contains a Hamilton cycle, which is a
cycle of length n − 1. ��

By Lemma 2 and Claim 1, if n ≤ 7, then G is pancyclic. So we assume that n ≥ 8.
It suffices to prove that G contains a cycle of length k for all k ∈ [6, n − 2].

Suppose to the contrary that G does not contain cycles of all these lengths. Our
next claim shows that G has no vertices or vertex pairs that are c-removable and
d-removable at the same time.

Claim 2 G contains no vertices or pairs that are both c-removable and d-removable.

Proof If G contains a vertex x that is both c-removable and d-removable, then
G ′ = G − x is 2-connected and {K1,3, P5}-o1-heavy or {K1,3, Z2}-o1-heavy. By
the induction hypothesis, G ′ contains a cycle of length k for all k ∈ [3, n − 1], a con-
tradiction. Similarly, if G contains a pair of vertices {x, y} that is both c-removable
and d-removable, then G ′ = G − {x, y} is 2-connected and {K1,3, P5}-o1-heavy or
{K1,3, Z2}-o1-heavy. By the induction hypothesis, G ′ contains a cycle of length k for
all k ∈ [3, n − 2], a contradiction. ��

The next claim shows that super heavy vertices must be part of a cut of G.

Claim 3 Every super heavy vertex of G is contained in a cut.

Proof Let r be a super heavy vertex of G. If r is not contained in any cut, then r is
c-removable and G − r is 2-connected. Similarly as in the proof of Claim 1, we can
prove that G − r is {K1,3, P5}-heavy or {K1,3, Z2}-heavy, and hence hamiltonian. By
Lemma 1, G is pancyclic, a contradiction. ��

The following claim provides useful structural properties related to the links of G.

Claim 4 Let L = L(r, s) be a link of G, and let H be the inside of L . Then one of
the following statements holds.

1. H contains a c-removable vertex of G, or
2. L is an induced path from r to s.

Proof We use induction on |V (H)|. If H consists of only one vertex x , then r x, sx ∈
E(G). If rs ∈ E(G), then by Lemma 7, G− x is 2-connected, hence x is c-removable
and (1) holds. If rs /∈ E(G), then L is an induced path r xs and (2) holds. Thus we
assume that H has at least two vertices. Suppose that both statements of the claim do
not hold. We prove a number of subclaims to reach a contradiction. ��
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Claim 4.1 There is a vertex in H with degree at least 3.

Proof Suppose that every vertex of H has degree 2. If rs /∈ E(G), then L is an induced
path and (2) holds. So we assume that rs ∈ E(G). If H consists of two vertices x1 and
x2, then by Lemma 7, G − {x1, x2} is 2-connected, hence {x1, x2} is a c-removable
pair of G. By Lemma 10, {x1, x2} is a d-removable pair of G, a contradiction to Claim
2. Thus we assume that H has k ≥ 3 vertices.

Let r x1x2 · · · xks be the path from r to s, where xi ∈ H , 1 ≤ i ≤ k. Note that xi
cannot be in a super heavy pair of G since d(xi ) = 2. Let y be a neighbor of r outside
L and z be a neighbor of s outside L . Then yrx1x2x3 is an induced P5 which is not o1-
heavy. At the same time, if sy ∈ E(G), then the subgraph induced by {r, s, y, x1, x2}
is a Z2 which is not o1-heavy. Thus G will be neither P5-o1-heavy nor Z2-o1-heavy,
a contradiction. So we assume that sy /∈ E(G) and similarly, r z /∈ E(G). Then the
subgraph induced by {r, s, y, x1} is a claw. Thus we have that d(s) + d(y) ≥ n + 1,
and similarly, d(r) + d(z) ≥ n + 1. This implies that d(r) + d(y) ≥ n + 1 or
d(s)+d(z) ≥ n+1. Without loss of generality, we assume that d(r)+d(y) ≥ n+1.
Then by Lemma 2, r y is contained in a triangle r yy′r . Now the subgraph induced by
{y, y′, r, x1, x2} is a Z2 which is not o1-heavy, a contradiction. ��

Claim 4.2 L is simple.

Proof If r has only one neighbor x in H , then s has a neighbor in H other than x ;
otherwise x would be a cut vertex of G. By Lemma 6, {s, x} is a cut. Let H ′ be the
component of G − {s, x} contained in H . Then L ′ = H ′ ∪ {s, x} is a link contained
in L . Clearly, every vertex in L is either r or in L ′. By the induction hypothesis,
either H ′ contains a c-removable vertex of G or L ′ is an induced path from s to x .
If L ′ is an induced path from s to x , then every vertex in H will have degree 2, a
contradiction. Thus H ′ contains a c-removable vertex of G, and it is also contained in
H , a contradiction.

Thus we next assume that r has at least two neighbors in H , and similarly, that s
has at least two neighbors in H .

If there is a vertex x in H such that {r, x} is a cut, then by Lemma 6, {s, x} is a cut.
Let H ′ be the component of G − {r, x} contained in H , and let H ′′ be the component
of G − {s, x} contained in H . Then L ′ = H ′ ∪ {r, x} and L ′′ = H ′′ ∪ {s, x} are two
links contained in L . Clearly, every vertex in L is either in L ′ or in L ′′. If both L ′ and
L ′′ are induced paths, then every vertex in H will have degree 2, a contradiction. Thus
we assume that L ′ or L ′′ is not an induced path. By the induction hypothesis, H ′ or
H ′′ contains a c-removable vertex of G, and it is also contained in H , a contradiction.

��
Claim 4.3 There is a link contained in H . Moreover, if H contains a super heavy

vertex, then there is a link contained in H and containing a super heavy vertex.

Proof Let x be an arbitrary vertex of H . If x is not c-removable, then x is contained
in a cut {x, y}. By Claim 4.2, {r, x} and {s, x} are not cuts. Thus we have y �= r or
y �= s, and by Lemma 5, y ∈ H . This implies that there is a link L ′ contained in H
(and containing x). In particular, if H contains a super heavy vertex x ′, then there is
a link L ′ contained in H and containing x ′. ��
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Here we continue the proof of Claim 4. By Lemma 8, there is a link contained in H
such that its co-link is simple. Moreover, if H contains a super heavy vertex x , then
by Claim 4.3 there is a link contained in H and containing x . Then by Lemma 8, there
is a link contained in H and containing x such that its co-link is simple. Denote this
link by L ′, let x be a vertex inside L ′ and assume that x is super heavy if H contains
the super heavy vertex x . Let {r ′, s′} be the bolt, H ′ the inside, and H ′

c the outside
of L ′. If H ′ contains a c-removable vertex of G, then it is also a c-removable vertex
contained in H , a contradiction. So by the induction hypothesis, we assume that L ′ is
an induced path.

If H ′ consists of only one vertex x , then since L ′
c = G − x is simple, by Lemma

7, x is a c-removable vertex of G, and it is also contained in H , a contradiction. If
H ′ consists of only two vertices x1 and x2, then since L ′

c = G − {x1, x2} is simple,
by Lemma 7, {x1, x2} is a c-removable pair of G and by Lemma 10, {x1, x2} is a
d-removable pair of G, a contradiction to Claim 2. Thus we assume that H ′ contains
k ≥ 3 vertices.

Let r ′x1x2 · · · xks′ be the path of L ′ from r ′ to s′, where xi ∈ H ′, 1 ≤ i ≤ k.
Note that xi cannot be in a super heavy pair of G since d(xi ) = 2. Let y be a

neighbor of r ′ in H ′
c, and let z be a neighbor of s

′ in H ′
c. Then yr ′x1x2x3 is an induced

P5 of G which is not o1-heavy. At the same time, if r ′ is contained in a triangle, then
we assume that r ′yy′r ′ is a triangle. Then the subgraph induced by {y, y′, r ′, x1, x2}
is a Z2 which is not o1-heavy, a contradiction. Thus we assume that r ′ is not contained
in a triangle. By Lemma 2, we have that r ′ is not super heavy. Similarly, we get that
s′ is not contained in a triangle and is not super heavy. This implies that there are no
super heavy vertices in H .

Since L ′
c is simple, r ′ has at least two neighbors in H ′

c. Let y
′ be a neighbor of

r ′ in H ′
c other than y. Note that r ′ is contained in no triangles, yy′ /∈ E(G), and the

subgraph induced by {r ′, y, y′, x1} is a claw. Since d(x1) = 2, we have that either y
or y′ is a super heavy vertex of G. Without loss of generality, we assume that y is
super heavy. Since H contains no super heavy vertex, we have that r ′ has at most one
neighbor in H − H ′, and y = r or y = s. Without loss of generality, we assume that
y = r . Note that r is a super heavy vertex. By Lemma 2, r is contained in a triangle
r tt ′r .

If t ∈ H , then {r ′, t} is not a super heavy pair, since r ′ and t are not super heavy
vertices. If t = s, then {r ′, t} is not a super heavy pair, since r ′ has at most one neighbor
in H − H ′. If t ∈ G − L , then {r ′, t} is not a super heavy pair by Lemma 3. Similarly,
we have that {r ′, t ′} is not a super heavy pair of G. Thus the subgraph induced by
{t, t ′, r, r ′, x1} is a Z2 which is not o1-heavy, a contradiction.

The next claim provides useful information on the existence of c-removable vertices
in the inside of a simple link.

Claim 5 Let L = L(r, s) be a simple link of G, and let H be the inside of L . Then

1. H contains a c-removable vertex of G;
2. if H contains a vertex nonadjacent to r , then H contains a c-removable vertex

nonadjacent to r ; and
3. if H contains a vertex nonadjacent to both r and s, then H contains a c-removable

vertex nonadjacent to both r and s.
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Proof By definition, a simple link cannot be an induced path. Hence, by Claim 4, H
contains a c-removable vertex of G. Thus (1) holds.

In order to prove (2), we assume that H contains a vertex, but no c-removable
vertices, nonadjacent to r . We first prove the following subclaim in order to reach a
contradiction. ��

Claim 5.1 There is a link contained in H . Moreover, if H contains a super heavy
vertex, then there is a link contained in H and containing a super heavy vertex.

Proof Let r ′ be an arbitrary vertex of H nonadjacent to r . By our assumption, r ′ is
contained in a cut {r ′, s′}. Since L is simple, s′ �= r, s, and by Lemma 5, s′ is not
outside L . Now we have that r ′, s′ ∈ H . Let H ′ be the component of G − {r ′, s′}
contained in H . Then the subgraph induced by H ′ ∪ {r ′, s′} is a link contained in H
(and containing r ′). Moreover, if H contains a super heavy vertex r ′′, then by Claim
3, r ′′ is contained in a cut {r ′′, s′′}. Similarly as in the above analysis, we get that there
is a link contained in H and containing r ′′. ��

By Lemma 8, there is a link L ′ contained in H such that its co-link L ′
c is simple.

Moreover, if H contains a super heavy vertex, L ′ can be chosen in such a way that it
contains a super heavy vertex. Let {r ′, s′} be the bolt and H ′ be the inside of L ′. Note
that every vertex in H ′ is nonadjacent to r . If H ′ contains a c-removable vertex of G,
then the assertion is true. Thus, using Claim 4, we assume that L ′ is an induced path
from r ′ to s′. Then similarly as in the proof of Claim 4, we get that G contains a P5
and a Z2 that are not o1-heavy, a contradiction.

The third assertion can be proved similarly. We omit the details.
Let r be a super heavy vertex of G. By Claim 3, G − r is separable, i.e., has a cut

vertex, so we can consider the blocks of G − r , i.e., the maximal subgraphs of G − r
without a cut vertex (these blocks are either 2-connected or isomorphic to K2). An
end-block of G − r is a block containing precisely one cut vertex of G − r . Note that
every end-block of G−r contains an inner vertex (a vertex that is not the cut vertex of
G − r of that end-block) adjacent to r . Using Lemma 2(3) and Lemma 3, we deduce
that there are exactly two end-blocks of G − r . This implies that the blocks of G − r
can be denoted as B0, B1, . . . , Bk with cut vertices si , 1 ≤ i ≤ k, common to Bi−1
and Bi .

Our next claim shows that G − r consists of two or three blocks.

Claim 6 k = 1 or 2.

Proof Suppose that k ≥ 3. We prove the following subclaims in order to reach a
contradiction. The first subclaim shows that all the super heavy vertices �= r are
concentrated in one block. ��

Claim 6.1All the super heavy vertices ofG other than r are contained in a common
end-block of G − r .

Proof Since r is super heavy, every other super heavy vertex is either adjacent to r or
forms a super heavy pair together with r .
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Using Lemma 2(3) and Lemma 3, note that every neighbor of r is either in B0 or
in Bk , and every vertex in

⋃k−1
i=1 Bi − {s1, sk} has at most two neighbors in common

with r . This implies that every super heavy vertex other than r is either in B0 or in Bk .
Note that k ≥ 3. A vertex in B0 and a vertex in Bk have at most two common

neighbors, so they cannot be super heavy at the same time. Thus we have that all the
super heavy vertices of G other than r are contained in a common end-block of G−r .

��
Using Claim 6.1, without loss of generality, we assume that every super heavy

vertex of G other than r is in B0. We reach a contradiction by proving two subclaims,
showing that G has an induced P5 and an induced Z2 that are both not o1-heavy,
respectively.

Claim 6.2 There is an induced P5 in G that is not o1-heavy.

Proof Note that for every vertex s′ in B1 − s1, {r, s′} cannot be a super heavy pair,
and for every vertex r ′ in Bk , {s1, r ′} cannot be a super heavy pair. We have that either
{r, r ′} is not a super heavy pair for all r ′ ∈ Bk or {s1, s′} is not a super heavy pair for
all s′ ∈ B1 − s1. We distinguish two cases.

Case A. {s1, s′} is not a super heavy pair for all s′ ∈ B1 − s1.
In this case, let x be a neighbor of s1 in B0 − s1, let P be a shortest path of B1 from

s1 to s2, let Q be a shortest path of B2 from s2 to s3, and let y be a neighbor of s3 in
B3 − s3. Then xs1Ps2Qs3y is an induced P� with � ≥ 5 that is not o1-heavy.

Case B. There is a vertex s′ ∈ B1 − s1 such that {s1, s′} is a super heavy pair.
In this case, B1 − {s1, s2} �= ∅ and {r, r ′} is not a super heavy pair for all r ′ ∈ Bk .

Let x be a neighbor of r in B0 − s1, let P be a shortest path of Bk ∪ {r} from r to sk ,
let Q be a shortest path of Bk−1 from sk to sk−1, and let y be a neighbor of sk−1 in
Bk−2 such that y �= s1. Then xr Psk Qsk−1y is an induced P� with � ≥ 5 that is not
o1-heavy. ��

Claim 6.3 There is an induced Z2 in G that is not o1-heavy.

Proof Recalling that n ≥ 8, we have d(r) ≥ 5. This implies that r has at least two
neighbors in B0 − s1 or in Bk − sk . We again distinguish two cases.

Case A. r has at least two neighbors in Bk − sk .
If sk has only one neighbor x in Bk − sk , then by Lemma 6, {r, x} is a cut, a

contradiction. Thus we have that sk has at least two neighbors in Bk − sk . Let x, x ′ be
two neighbors of sk in Bk − sk . Recall that Bk contains no super heavy vertices. By
Lemma 3, xx ′ ∈ E(G). Let P be a shortest path of Bk−1 from sk to sk−1, and let y be
a neighbor of sk−1 in Bk−2. Then the subgraph induced by {x, x ′} ∪ V (P) ∪ {y} is a
Z� with � ≥ 2 that is not o1-heavy.

Case B. r has only one neighbor in Bk − sk .
We claim that r is contained in a triangle such that the two other vertices of the

triangle are in B0 − s0. Note that r has at least two neighbors in B0 − s1. Let x, x ′ be
two neighbors of r in B0 − s1. If xx ′ ∈ E(G), then r xx ′r is the required triangle. So
we assume that xx ′ /∈ E(G). By Lemma 3, {x, x ′} is a super heavy pair. Without loss
of generality, we assume that x is super heavy. Thus d(r) + d(x) ≥ n + 1. Note that

123

Author's personal copy



664 Graphs and Combinatorics (2015) 31:649–667

s2 is nonadjacent to both r and x . So r and x have at least two common neighbors. Let
x ′′ be a common neighbor of r, x other than s1. Then r xx ′′r is the required triangle.

Now let r xx ′r be a triangle such that x, x ′ ∈ B0 − s1. Let P be a shortest path of
Bk ∪ {r} from r to sk , and let y be a neighbor of sk in Bk−1. Note that r has only one
neighbor in Bk . No vertex in P can form a super heavy pair together with r . Thus the
subgraph induced by {x, x ′} ∪ V (P) ∪ {y} is a Z� with � ≥ 2 that is not o1-heavy. ��

By Claims 6.2 and 6.3 , G is neither {K1,3, P5}-o1-heavy nor {K1,3, Z2}-o1-heavy,
a contradiction. This completes the proof of Claim 6.

By Claim 6, G − r has either two or three blocks. Recalling that d(r) ≥ 5, without
loss of generality, we may assume that r has at least two neighbors in B0 − s1. Note
that {r, x} is not a cut for all x ∈ B0 − s1. Thus we have that L(r, s1) = B0 ∪ {r} is a
simple link. We distinguish two cases: k = 2 and k = 1.

Case 1 k = 2.

In this case, G − r has three blocks B0, B1 and B2. We distinguish three subcases,
depending on the order of B1 and the number of neighbors of r in B2.

Case 1.1 B1 − {s1, s2} �= ∅.
We first claim that L ′(s1, s2) = B1 is a simple link. If {s1, x} is a cut for some

x ∈ B1 − {s1, s2}, then by Lemma 6, {r, x} is a cut, a contradiction. Thus we assume
that {s1, x} is not a cut for all x ∈ B1 − {s1, s2}, and similarly, {s2, x} is not a cut for
all x ∈ B1 −{s1, s2}. If s1 has only one neighbor x in B1 −{s1, s2}, then by Lemma 6,
s2 has only one neighbor x in B1 − {s1, s2}. This implies that B1 − {s1, s2} consists of
only one vertex x ; otherwise x is a cut vertex of G. If s1s2 /∈ E(G), then by Lemma
6, {r, x} is a cut, a contradiction. Thus we assume that s1s2 ∈ E(G). By Lemma 7, x
is a c-removable vertex, and by Lemma 10, x is a d-removable vertex, a contradiction
to Claim 2. Thus as we claimed, L ′(s1, s2) = B1 is a simple link.

Secondly, we claim that r has at least two neighbors in B2 − s2. Suppose to the
contrary that r has only one neighbor r ′ in B2 − s2. Suppose first that rs2 ∈ E(G).
If s2 has only one neighbor r ′ in B2 − s2, then B2 − s2 consists of only one vertex
r ′, and r ′ is a c-removable and d-removable vertex, a contradiction. If {s2, r ′} is a cut,
then let H be the component of G − {s2, r ′} contained in B2 − s2, let x be a neighbor
of s2 in B1 − {s1, s2}, and let y be a neighbor of s2 in H . Then the subgraph induced
by {s2, r, x, y} is a claw that is not o1-heavy, a contradiction. Thus we assume that
rs2 /∈ E(G). Note that {r, x} is not a super heavy pair for every x ∈ B2. Let x be a
neighbor of r in B0 − s1, let P be a shortest path of B2 from r ′ to s2, and let y be a
neighbor of s2 in B1 − {s1, s2}. Then xrr ′Ps2y is an induced P� for � ≥ 5 that is not
o1-heavy. At the same time, similarly as in Case B of Claim 6.3, we can prove that
r is contained in a triangle r xx ′r with x, x ′ ∈ B0 − s1. Let y be a neighbor of r ′ in
B2 − r ′. Then the subgraph induced by {x, x ′, r, r ′, y} is a Z2 that is not o1-heavy.
Thus G is neither {K1,3, P5}-o1-heavy nor {K1,3, Z2}-o1-heavy, a contradiction. So
as we claimed, r has at least two neighbors in B2 − s2. Note that {r, x} is not a cut for
all x ∈ B2 − s2. We have that L ′′(s2, r) = B2 ∪ {r} is a simple link.

We conclude that G consists of three simple links L = L(r, s1), L ′ = L ′(s1, s2)
and L ′′ = L ′′(s2, r).
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Suppose that there is a vertex inside L nonadjacent to r . Using Claim 5, let x be
a c-removable vertex inside L nonadjacent to r , and let y be a c-removable vertex in
L ′′. Then by Lemma 9, {x, y} is a c-removable pair, and by Lemma 10, {x, y} is a
d-removable pair, a contradiction. Thus we deduce that r is adjacent to every vertex
inside L . Similarly, we can prove that s1 is adjacent to every vertex inside L ′, and s2
is adjacent to every vertex inside L ′′.

We claim that L contains a path from r to s1 of length k for all k ∈ [2, |V (L)|− 1].
Recall thatG is hamiltonian and that {r, s1} is a cut ofG. There is a Hamilton path of L
from r to s1. Let P = r x1x2 · · · x j s1 be a Hamilton path of L , where j = |V (L)| − 2.
Then r x j−k+2 · · · x j s1 is a path of L from r to s1 of length k.

Thus aswe claimed, L contains a path from r to s1 of length k for all k ∈ [2, |V (L)|−
1]. Similarly, L ′ contains a path from s1 to s2 of length k for all k ∈ [2, |V (L ′)| − 1],
and L ′′ contains a path from s2 to r of length k for all k ∈ [2, |V (L ′′)| − 1]. Thus G
contains a cycle of length k for all k ∈ [6, n].

Case 1.2 B1 − {s1, s2} = ∅ and r has at least two neighbors in B2 − s2.
Note that {r, x} is not a cut for all x ∈ B2 − s2. We have that L ′(r, s2) = B2 ∪ {r}

is a simple link. So G consists of two simple links L = L(r, s1) and L ′ = L ′(r, s2),
and an edge s1s2.

Similarly as in the proof of Case 1.1, we get that r is adjacent to every vertex inside
L , and L contains a path from r to s1 of length k for all k ∈ [2, |V (L)|−1]. Similarly,
r is adjacent to every vertex inside L ′, and L ′ contains a path from r to s2 of length k
for all k ∈ [2, |V (L ′)| − 1]. Thus G contains a cycle of length k for all k ∈ [5, n].

Case 1.3 B1 − {s1, s2} = ∅ and r has only one neighbor in B2 − s2.
Let r ′ be the neighbor of r in B2−s2. Suppose first that B2−s2 consists of only one

vertex r ′. If rs2 ∈ E(G), then r ′ is a c-removable vertex and a d-removable vertex,
a contradiction. If rs2 /∈ E(G), then {r ′, s2} is a c-removable pair and a d-removable
pair, also a contradiction. Thus we assume that B2 − s2 has at least two vertices. By
Lemma 6, {r ′, s2} is a cut and L ′(r ′, s2) = B2 is a link. Now we get that G consists of
two links L = L(r, s1) and L ′ = L ′(r ′, s2), and two edges rr ′ and s1s2 (and maybe
an additional edge rs2).

We claim that L ′ is 2-connected. If r ′s2 ∈ E(G), then by Lemma 7, L ′ is 2-
connected. Thus we assume that r ′s /∈ E(G). If s2 has only one neighbor x inside L ′
or {s2, x} is a cut for some x inside L ′, then by Lemma 6, {r, x} is a cut, a contradiction.
Thus we have that L ′ is simple, and by Lemma 7, L ′ is 2-connected.

Note that L ′ is not a path. Using Claim 4, let x be a c-removable vertex inside L ,
and let y be a c-removable vertex inside L ′. Then by Lemma 9, {x, y} is a c-removable
pair, and by Lemma 10, {x, y} is a d-removable pair, a contradiction.

This completes the proof of Case 1.

Case 2 k = 1.

In this case, G − r has only two blocks B0 and B1. We again distinguish three
subcases according to the order and the number of neighbors of r in B1.

Case 2.1 r has at least two neighbors in B1 − s1.
Note that {r, x} is not a cut for all x ∈ B1 − s1. We have that L ′(r, s1) = B1 ∪ {r}

is a simple link. So G consists of two simple links L = L(r, s1) and L ′ = L ′(r, s1).
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If there is a vertex inside L nonadjacent to both r and s1, then using Claim 5, let x be
a c-removable vertex inside L nonadjacent to both r and s1, and let y be a c-removable
vertex inside L ′. Then by Lemma 9, {x, y} is a c-removable pair, and by Lemma 10,
{x, y} is a d-removable pair, a contradiction. Thus we assume that every vertex inside
L is either adjacent to r or to s1, and similarly, every vertex inside L ′ is either adjacent
to r or to s1.

If there is a super heavy vertex r ′ inside L , then by Claim 3, r ′ is contained in a cut
{r ′, s′}. Since L is simple, s′ �= r, s, and by Lemma 5, s′ is inside L . Using Lemma
4, let H be the component of G − {r ′, s′} contained in B0 − s1. Then every vertex in
H is nonadjacent to both r and s1, a contradiction. Thus we assume that there are no
super heavy vertices inside L .

Note that there are at least two vertices inside L . We can divide the inside of L into
two nonempty subsets H and H ′ such that every vertex of H is adjacent to r and every
vertex of H ′ is adjacent to s1. Let xy be an edge connecting H and H ′, where x ∈ H
and y ∈ H ′. Note that there are no super heavy vertices in H . By Lemma 3, H is a
clique. Thus H∪{r} contains a path from r to x of length k for all k ∈ [1, |V (H)|], and
similarly, H ′ ∪ {s1} contains a path from y to s1 of length k for all k ∈ [1, |V (H ′)|].
Hence L contains a path from r to s1 of length k for all k ∈ [3, |V (L)| − 1], and
similarly, L ′ contains a path from r to s1 of length k for all k ∈ [3, |V (L ′)| − 1]. So
G contains a cycle of length k for all k ∈ [6, n].

Case 2.2 B1 − s1 has at least two vertices and r has only one neighbor in B1 − s1.
Let r ′ be the neighbor of r in B1 − s1. By Lemma 6, {r ′, s1} is a cut and L ′ =

L ′(r ′, s1) = B1 is a link. If L ′ is simple, then G consists of two simple links L =
L(r, s1) and L ′(r ′, s1), and an edge rr ′. Then as in Case 1.2, we can prove that G
contains a cycle of length k for all k ∈ [5, n]. Thus we assume that L ′ is not simple.

If {s1, x} is a cut for some x inside L ′, then by Lemma 6, {r, x} is a cut, a contra-
diction. Thus we assume that {s1, x} is not a cut for all x inside L ′. Note that L ′ is not
simple. Now s1 has only one neighbor s′ inside L . If r ′s1 /∈ E(G), then {r, s′} is a cut,
a contradiction. Thus we assume that r ′s1 ∈ E(G). If there is only one vertex r ′ inside
L ′, then by Lemma 7, r ′ is a c-removable vertex, and by Lemma 10, r ′ is a d-removable
vertex, a contradiction. Thus we assume that there are at least two vertices inside L ′.
By Lemma 6, we have that {r ′, s′} is a cut and L ′′(r ′, s′) = B1 − s1 is a link. Thus G
consists of two links L(r, s1) and L ′′ = L ′′(r ′, s′), and three edges rr ′, s1s′ and r ′s1.
Similarly as in Case 1.3, we can prove that L ′′ is 2-connected. Using Claim 4, let x
be a c-removable vertex inside L , and let y be a c-removable vertex inside L ′′. Then
by Lemma 9, {x, y} is a c-removable pair, and by Lemma 10, {x, y} is a d-removable
pair, a contradiction.

Case 2.3 B1 − s1 has only one vertex.
Let y be the vertex of B1 − s1. Recall that L is simple. Now y is a c-removable

vertex. Using Claim 3, we get that y is not a d-removable vertex. By Lemma 10, we
have that {r, s1} is a super heavy pair.

First we assume that there is a vertex inside L nonadjacent to both r and s1. By
Claim 5, let x be a c-removable vertex inside L nonadjacent to both r and s1. Then by
Lemma 10, {x, y} is a d-removable pair.

We claim that {x, y} is a c-removable pair. Let z be an arbitrary vertex ofG−{x, y}.
We prove that G ′ = G − {x, y, z} is connected. If z = r or s1, then without loss of

123

Author's personal copy



Graphs and Combinatorics (2015) 31:649–667 667

generality, we assume that z = r . Then for every vertex v inside L with v �= x , since
x is c-removable and {r, x} is not a cut, there is a path P of G − {r, x} from v to s1.
Clearly, P does not pass through y. This implies that v and s1 are connected by the
path P in G ′. Thus G ′ is connected. So we assume that z �= r, s1 and then z is inside
L . Then for every vertex v inside L with v �= x, z, since x is c-removable and {x, z}
is not a cut, there is a path P of G − {x, z} from v to r or s with all internal vertices
inside L . This implies that v and r or s are connected by the path P in G ′. Recall that
{r, s1} is a super heavy pair. By Lemma 3, r and s1 have a common neighbor t other
than y and z. Thus r and s1 are connected by the path r ts1 in G ′. This implies that
G ′ is connected. Thus as we claimed, {x, y} is a c-removable pair, and recalling that
{x, y} is a d-removable pair too, we obtain a contradiction.

In the remaining case, we assume that every vertex inside L is either adjacent to r
or to s1. Similarly as in Case 2.1, we can prove that there are no super heavy vertices
inside L , and that L contains a path from r to s1 of length k for all k ∈ [3, |V (L)|−1].
Thus G contains a cycle of length k for all k ∈ [5, n].

This completes the proof of Theorem 5.
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