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1 Introduction

Let G be a finite simple undirected graph. An edge coloring of G is a map α 
from the edge set E(G) of G to a finite set of colors C. The coloring α is proper if 
α(e1) 6= α(e2) whenever edges e1, e2 are adjacent. One of the most studied graph 
invariants, the chromatic index of G, is the minimum number of colors χ′(G) in a 
proper edge coloring of G. By the well-known Vizing’s Theorem χ′(G) is either 
∆(G), the maximum degree of G (G is Class 1), or ∆(G) + 1 (G is Class 2). Note 
that deciding whether a graph G is Class 1 is an NP-complete problem even for 
cubic graphs (Holyer [7]).

The color set of a vertex u ∈ V (G) with respect to the coloring α is the set 
Cα(u) := {α(uv) : uv ∈ E(G)} of colors assigned by α to edges incident to u. The 
coloring α is adjacent vertex distinguishing (avd for short) if uv ∈ E(G) implies 
Sα(u) 6= Sα(v). The adjacent vertex distinguishing chromatic index of the graph 
G is the minimum number χ′a(G) of colors in a proper avd edge coloring of G. 
Since χ′a(K1) = 0 and the graph K2 does not admit an avd
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coloring at all, when analyzing the invariant χ′a(G) it is sufficient to restrict
our attention to connected graphs of order at least 3. This is justified by the
obvious fact that if G is a disconnected graph with (non-K2) components Gi,
1 ≤ i ≤ q, then χ′a(G) = max(χ′a(Gi) : 1 ≤ i ≤ q).

The invariant χ′a(G) was introduced and treated for classes of graphs with
simple structure (trees, cycles, complete graphs, complete bipartite graphs) by
Zhang et al. in [12]. Among other things, it is easy to see that χ′a(C5) = 5.
However, the other results led the authors of the introductory paper to formulate

Conjecture 1. If a connected graph G 6= C5 has at least 3 vertices, then
χ′a(G) ≤ ∆(G) + 2.

Conjecture 1 is known to be true for

• subcubic graphs, bipartite graphs (Balister et al. [1]),
• graphs G with mad(G) < 3 (Wang and Wang [11]), where mad(G) (the

parameter called the maximum average degree of the graph G) is defined by
mad(G) := max(2|E(H)|/|V (H)| : H ⊆ G),
• planar graphs G with ∆(G) ≥ 12 (Horňák et al. [8]).

There are classes of graphs for which χ′a(G) can be upper bounded even by
∆(G) + 1:

• graphs satisfying either mad(G) < 5
2 and ∆(G) ≥ 4 or mad(G) < 7

3 and
∆(G) = 3 [11],
• bipartite planar graphs with ∆(G) ≥ 12 (Edwards et al. [4]).

The best general bound so far is given by Hatami [6] who proved that χ′a(G) ≤
∆(G) + 300 if ∆(G) > 1020.

The avd chromatic index was discussed also for graphs resulting from binary 
graph operations. (A good information about such operations can be found in a 
monograph [9] by Imrich and Klavžar.) One can mention the Cartesian product 
(Baril et al. [2, 3]), the direct product (Frigerio et al. [5], Munarini et al. [10],
[3]), the strong product [3] and the lexicographic product [3].

The direct product of graphs G and H is the graph G×H with V (G×H) := 
V (G) × V (H) and E(G × H) := {(u, x)(v, y) : uv ∈ E(G), xy ∈ E(H)} (where 
(u, x)(v, y) is a simplified notation for the undirected edge {(u, x), (v, y)}). This 
product is commutative and associative (up to isomorphisms). If at least one 
of the graphs G, H is bipartite, so is the graph G × H. Let NG(u) be the set 
of all neighbors and dG(u) = |NG(u)| the degree of a vertex u ∈ V (G); then 
NG×H(u, x) = NG(u) × NH(x) and dG×H(u, x) = dG(u)dH(x).

For p, q ∈ Z we denote by [p, q] the (finite) integer interval bounded by p, q, 
i.e., the set {z ∈ Z : p ≤ z ≤ q}. Similarly, [p, ∞) is the (infinite) integer interval 
lower bounded by p, i.e., the set {z ∈ Z : p ≤ z}. If k ∈ [2, ∞) and z ∈ Z, we 
use the notation (z)k for the (unique) i ∈ [1, k] satisfying i ≡ z (mod k).

For a finite sequence A we denote by l(A) the length of A. The concatenation 
of finite sequences A and B is the sequence AB of length l(A) + l(B), in which 
the terms of A are followed by the terms of B. The unique sequence of length 0,
the empty sequence ( ), is both left- and right-concatenation-neutral. If p, q ∈ Z



and Ai is a finite sequence for i ∈ [p, q], then
∏q
i=pAi denotes the sequence of

length
∑q
i=p l(Ai), in which the terms of Ai are followed by the terms of Ai+1

for each i ∈ [p, q − 1]; thus, if q < p, then
∏q
i=pAi = ( ). The sequence

∏q
i=1A

will be for simplicity denoted by Aq. The support of a finite sequence
∏k
i=1(ai)

is the set σ(A) :=
⋃k
i=1{ai}. A finite sequence A is simple if |σ(A)| = l(A). A

finite sequence A is a left factor of a finite sequence B, in symbols A ≤ B, if
there is a finite sequence A′ with AA′ = B.

As usual, Pk and Ck is a path and a cycle of order k, respectively. Further,
we assume that V (Pk) = [1, k], E(Pk) = {{i, i+1} : i ∈ [1, k−1]} for k ∈ [1,∞)
and V (Ck) = [1, k], E(Ck) = {{i, (i+ 1)k} : i ∈ [1, k]} for k ∈ [3,∞).

Consider a set D ⊆ [1,∆(G)]; the graph G is said to be D-neighbor irregular,
if for any d ∈ D the set Vd(G) := {u ∈ V (G) : dG(u) = d} is independent. In
other words, if an edge uv in a D-neighbor irregular graph joins vertices of the
same degree d, then d ∈ [1,∆(G)] \D.

In the remaining text we shall suppose that G is a connected graph of order
at least 2 (or at least 3 if the avd chromatic index is involved) and of maximum
degree ∆. When working with the avd chromatic index, there are several useful
observations following directly from the definitions and from the fact that the
color set of a vertex of degree d is of cardinality d.

Proposition 2. ∆ ≤ χ′(G) ≤ χ′a(G) for any graph G.

Proposition 3. If a graph G has adjacent vertices of degree ∆, then χ′a(G) ≥
∆ + 1.

Proposition 4. χ′a(G) = χ′(G) for any [1,∆]-neighbor irregular graph (G).

2 Chromatic index

A vertex (u, i) of a graph G×K2 = G× P2 is said to be of type i. Let the
partner of the vertex (u, i) be the vertex (u, 3− i). Clearly,

dG×K2(u, i) = dG(u) = dG×K2(u, 3− i), u ∈ V (G), i = 1, 2.

An edge coloring β of the graph G×K2 is said to be symmetric provided that
Sβ(u, 1) = Sβ(u, 2) for every u ∈ V (G).

An edge coloring α : E(G) → C induces in a natural way the edge coloring
α× : E(G×K2)→ C defined so that

α×((u, 1)(v, 2)) := α(uv) =: α×((u, 2)(v, 1)), uv ∈ E(G).

From the definition it immediately follows:

Proposition 5. Let α be an edge coloring of a graph G. Then
1. α× is a symmetric edge coloring of the graph G×K2;
2. α× is proper if α is proper;
3. α× is avd if α is avd.



Proposition 5.2 yields the inequality χ′(G×K2) ≤ χ′(G). However, we are
able to prove more:

Theorem 6. For any graph G there is a symmetric proper edge coloring of the
graph G×K2 that uses ∆ colors.

Proof. First observe that if G is Class 1, the statement follows from Proposi-
tion 5.2. Therefore, for a proof by induction on the number of edges of G we
may suppose that G is Class 2 and if G′ is a graph with |E(G′)| < |E(G)|, there
is a symmetric proper edge coloring of the graph G′ ×K2 using ∆(G′) colors.

Since G is Class 2, it has a subgraph H isomorphic to a cycle. Choose an
edge uv ∈ E(H) so that dG(u) minimizes degrees (in G) of vertices of H and
dG(v) minimizes degrees of (the two) neighbors of u in H. By the induction
hypothesis for the graph G′ := G − uv there exists a symmetric proper edge
coloring α′ : E(G′ ×K2)→ C with |C| = ∆(G′) = ∆.

For a vertex w ∈ {u, v} let M(w) be the (nonempty) set of colors missing at
both (w, 1) and (w, 2) with respect to α′. If a ∈ M(u) ∩M(v) 6= ∅, define the
coloring α : E(G×K2)→ C as the extension of α′ with

α((u, 1)(v, 2)) := a =: α((u, 2)(v, 1))

to obtain a required symmetric proper edge coloring of G×K2 with ∆ colors.
In the sequel suppose that M(u) ∩M(v) = ∅. Then there are colors a ∈

M(v)\M(u) and b ∈M(u)\M(v). Consider the subgraph of G′×K2 induced by
the colors a and b. It consists of alternating {a, b}-cycles and alternating {a, b}-
paths. Let ~π1 be the oriented alternating {a, b}-path with the first vertex (u, 1);
the first edge of ~π1 is colored a. Form the non-extendable sequence

∏q
i=1(~πi)

of distinct (and hence pairwise vertex disjoint) oriented alternating {a, b}-paths
such that

• the first vertex of ~πi+1 is the partner of the last vertex of ~πi and the first
edge of ~πi+1 has the same color as the last edge of ~πi for each i ∈ [1, q − 1],
• if the last vertex of ~πj is (v, 1), then j = q;

so,
∏q
i=1(~πi) is the longest sequence having the above properties. The correct-

ness of the definition follows from the fact that α′ is a symmetric edge coloring 
of G′ × K2 and from the finiteness of the graph G′ × K2.

Interchange the colors a and b in all paths ~πi, i ∈ [1, q], to get the proper 
edge coloring α′′ : E(G′ × K2) → C with the following structure of color sets of 
vertices of affected paths: color sets of internal vertices remain unchanged and 
in color sets of leaves the colors a and b are interchanged. Now we are ready 
to color the edges (u, 1)(v, 2) and (u, 2)(v, 1) to create a symmetric proper edge 
coloring α : E(G × K2) → C as an extension of the coloring α′′.

If the last vertex of ~πq is (v, 1), then in the coloring α′′ the color a is missing 
at both vertices (u, 1), (v, 2) and the color b at both vertices (u, 2), (v, 1). Thus, 
we can define

α((u, 1)(v, 2)) := a, α((u, 2)(v, 1)) := b;



the common color set of (u, 1) and (u, 2) is extended (when compared to α′) by
the color b and the common color set of (v, 1) and (v, 2) by the color a.

If the last vertex of ~πq is distinct from (v, 1), then for each i ∈ [1, q] the last
vertex of ~πi is distinct from (v, 1) (see the second part of the definition of the
sequence

∏q
i=1(~πi)) as well as from (v, 2) (this follows from the fact that all edges

of the paths ~πi, i ∈ [1, q], colored b end in a vertex of type 1). Consequently,
the first vertex of ~πi is distinct from both (v, 1) and (v, 2) for every i ∈ [1, q].
Finally, since the sequence

∏q
i=1(~πi) is non-extendable, the partner of the last

vertex of ~πq must be (u, 1), and so the last edge of ~πq is colored a. Having all
this in mind we conclude that in the coloring α′′ the color a is missing at each
of the vertices (u, 1), (u, 2), (v, 1), (v, 2) and we can define

α((u, 1)(v, 2)) := a =: α((u, 2)(v, 1));

the color sets of the mentioned four vertices are changed in the same way as
above.

By help of Theorem 6 we can prove a general result.

Theorem 7. If at least one of graphs G,H is Class 1, so is the graph G×H.

Proof. As the graphs G×H and H×G are isomorphic, without loss of generality
we may suppose thatH is Class 1 and there is a proper edge coloring β : E(H)→
[1,∆(H)]. Further, because of Theorem 6 we can construct a (symmetric) proper
edge coloring of the graph G×K2 using ∆ colors.

For every i ∈ [1,∆(H)] each component of the graph Hi induced by the
color class i of the coloring β is K2. So, each component of the graph G ×Hi

is isomorphic to G ×K2 and there is a (component-wise defined) proper edge
coloring αi : E(G×Hi)→ [1,∆]× {i}. The edge coloring of the graph G×H
defined as the common extension of the colorings αi, i ∈ [1,∆(H)], is evidently
proper and the number of involved colors is equal to |[1,∆] × [1,∆(H)]| =
∆(G)∆(H) = ∆(G×H).

3 Adjacent vertex distinguishing chromatic in-
dex

Consider an edge coloring β : E(G × Ck) → C. Clearly, for u ∈ V (G) and 
i ∈ [1, k] the set Sβ (u, i) can be expressed as Sβ (u, i−) ∪ Sβ (u, i+), the union of 
color half-sets

Sβ (u, i−) := {β((v, (i − 1)k)(u, i)) : v ∈ NG(u)},
Sβ (u, i+) := {β((u, i)(v, (i + 1)k)) : v ∈ NG(u)}.

The following auxiliary result can be viewed as a metastatement providing 
a method for constructing proper avd edge colorings of a graph G × Ck.



Lemma 8. Let G be a graph, k ∈ [3,∞) and let β : E(G × Ck) → C be a
proper edge coloring such that, for any uv ∈ E(G) with dG(u) = dG(v) and any
i ∈ [1, k], the following hold:

A1. Sβ(u, i+) = Sβ(v, (i+ 1)k−)⇔ Sβ(v, i+) = Sβ(u, (i+ 1)k−),
A2. Sβ(u, i+) = Sβ(v, (i+ 1)k−)⇔ Sβ(u, (i− 1)k+) = Sβ(v, i−),
A3. Sβ(u, i+) ∩ Sβ(v, (i+ 1)k+) = ∅,
A4. Sβ(u, (i− 1)k+) 6= Sβ(u, (i+ 1)k+).

Then β is an avd coloring and χ′a(G× Ck) ≤ |C|.

Proof. Suppose that β is not avd. Then there is i ∈ [1, k] and an edge uv ∈ E(G)
joining vertices of the same degree d with Sβ(u, i) = Sβ(v, (i+1)k), which means
that

Sβ(u, i−) ∪ Sβ(u, i+) = Sβ(v, (i+ 1)k−) ∪ Sβ(v, (i+ 1)k+). (1)

Since |Sβ(u, i+)| = d = |Sβ(v, (i + 1)k−)|, we have (using successively A3, (1),
A2 and A1)

Sβ(u, i+) = Sβ(v, (i+ 1)k−),
Sβ(u, i−) = Sβ(v, (i+ 1)k+),

Sβ(u, (i− 1)k+) = Sβ(v, i−),
Sβ(v, (i− 1)k+) = Sβ(u, i−).

Thus, we have obtained Sβ(v, (i− 1)k+) = Sβ(v, (i+ 1)k+), which contradicts
the assumption A4.

If we analyze an edge coloring β : E(G× Pk)→ C, color half-sets Sβ(u, i+)
are defined only for i ∈ [1, k− 1] and Sβ(u, i−) only for i ∈ [2, k]. Moreover, we
have Sβ(u, 1) = Sβ(u, 1+), Sβ(u, i) = Sβ(u, i−)∪Sβ(u, i+) for i ∈ [2, k− 1] and
Sβ(u, k) = Sβ(u, k−).

3.1 Graphs without adjacent vertices of maximum degree

Because of Proposition 3, if H is a cycle or a path of order at least 3, then
χ′a(G×H) can be equal to ∆(G×H) = 2∆ only if G×H does not have adjacent
vertices of degree 2∆. Such a condition is fulfilled only if either H = P3 or G
does not have adjacent vertices of degree ∆.

Theorem 9. χ′a(G× P3) = 2∆ = ∆(G× P3).

Proof. From Theorem 6 we know that there exists a (symmetric) proper edge
coloring α : E(G ×K2) → [1,∆]. Let the coloring β : E(G × P3) → [1, 2∆] be
defined so that if uv ∈ E(G), then

β((u, 1)(v, 2)) := α((u, 1)(v, 2)),
β((u, 2)(v, 3)) := α((u, 1)(v, 2)) + ∆.

Clearly, β is proper. Moreover, if vertices (u, i), (v, i + 1) with i ∈ [1, 2] are 
adjacent in G × P3, then Sβ (u, i) 6= Sβ (v, i + 1), because exactly one of those



two color sets is such that it contains elements of both subsets [1,∆] and [∆ +
1, 2∆] of the set [1, 2∆]. Thus β is also avd and the desired result comes from
Proposition 2.

A finite sequence
∏k
i=1(pi) ∈ Zk, is said to be r-distinguishing, r ∈ [1,∞), if

p(i+2)k
− pi ∈ [−r, r] \ {0} for each i ∈ [1, k].

Lemma 10. Suppose that k ∈ [3,∞).
1. If k ≡ 0 (mod 4), there is a 1-distinguishing sequence of length k.
2. There is a 2-distinguishing sequence of length k, for any k.

Proof. The sequence (0, 0, 1, 1)
k
4 with k ≡ 0 (mod 4) is 1-distinguishing (as well

as 2-distinguishing), while the sequences

(0, 0, 1, 1, 2, 2)(0, 0, 1, 1)
k−6
4 , k ≡ 2 (mod 4),

(0, 1, 2, 0, 1, 2, 0)(0, 1, 2)
k−7
3 , k ≡ 1 (mod 6),

(0, 1, 2)
k
3 , k ≡ 3 (mod 6),

(0, 1, 1, 2, 0)(0, 1, 2)
k−5
3 , k ≡ 5 (mod 6)

are 2-distinguishing.

Theorem 11. Suppose that for a graph G and k ∈ [4,∞) one of the following
assumptions is fulfilled:

(i) G is {∆}-neighbor irregular and k ≡ 0 (mod 4);
(ii) ∆ ≡ 1 (mod 2), G is {∆}-neighbor irregular and k ≡ 2 (mod 4);
(iii) ∆ ≡ 0 (mod 2), G is {∆

2 ,∆}-neighbor irregular and k ≡ 2 (mod 4).
Then χ′a(G× Ck) = 2∆ = ∆(G× Ck).

Proof. Let r := 1 if (i) is fulfilled and let r := 2 if either (ii) or (iii) is fulfilled.
By Lemma 10 there is an r-distinguishing sequence

∏k
i=1(pi) ∈ Zk. Further, by

Theorem 6 there is a symmetric proper edge coloring α : G×K2 → [1,∆]. Let
β : E(G × Ck) → [1, 2∆] be the coloring determined as follows: if uv ∈ E(G)
and i ∈ [1, k], then

β((u, i), (v, (i+ 1)k)) := (α(uv) + pi)∆, i ≡ 1 (mod 2),
β((u, i), (v, (i+ 1)k)) := (α(uv) + pi)∆ + ∆, i ≡ 0 (mod 2).

For i ∈ [1, k] denote as Fi the subgraph of the graph G×Ck induced by the
vertex set V (G)× {i, (i+ 1)k} and as βi : E(Fi)→ [1, 2∆] the restriction of β.
From the definition it follows that βi is proper and

βi(E(Fi)) ⊆ [1,∆], i ≡ 1 (mod 2), (2)
βi(E(Fi)) ⊆ [∆ + 1, 2∆], i ≡ 0 (mod 2); (3)

as a consequence then β is proper.
Let us show now that we can use Lemma 8 to prove that χ′a(G × Ck) ≤ 

2∆. First, if u, v ∈ V (G), then Sα(u) = Sα(v) is equivalent to Sβ (u, i+) =



Sβ(v, (i+1)k−) as well as to Sβ(v, i+) = Sβ(u, (i+1)k−), which proves that the
assumptions A1 and A2 of Lemma 8 are fulfilled. The validity of the assumption
A3 follows from (2) and (3).

To see A4 suppose that uv ∈ E(G), dG(u) = dG(v) and Sβ(u, (i + 1)k+) =
Sβ(u, (i− 1)k+) for some i ∈ [1, k]. Putting qi := p(i+1)k

− p(i−1)k
we obtain

Sβ(u, (i+ 1)k+) = {(l + qi)∆ : l ∈ Sβ(u, (i− 1)k+)}, i ≡ 0 (mod 2),
Sβ(u, (i+ 1)k+) = {(l + qi)∆ + ∆ : l ∈ Sβ(u, (i− 1)k+)}, i ≡ 1 (mod 2).

If i is even, the set Sβ(u, (i− 1)k+) ⊆ [1,∆] is invariant under the mapping
l 7→ (l + qi)∆. Then, however, Sβ(u, (i − 1)k+) can only be [1,∆] (if either
qi ∈ {−2, 2} and ∆ is odd or qi ∈ {−1, 1}) or one of {2j − 1 : j ∈ [1, ∆

2 ]} and
{2j : j ∈ [1, ∆

2 ]} (if qi ∈ {−2, 2} and ∆ is even, so that k ≡ 2 (mod 4)); in any
case this contradicts the assumptions of our Theorem.

If i is odd, the set Sβ(u, (i − 1)k+) ⊆ [∆ + 1, 2∆] is invariant under the
mapping l 7→ (l+ qi)∆ + ∆. Then we have either Sβ(u, (i− 1)k+) = [∆ + 1, 2∆]
or Sβ(u, (i − 1)k+) ⊆ {{2j − 1 + ∆ : j ∈ [1, ∆

2 ]}, {2j + ∆ : j ∈ [1, ∆
2 ]}} (if

qi ∈ {−2, 2} and ∆ is even), a contradiction again.
Thus, by Lemma 8, χ′a(G×Ck) ≤ 2∆ and we are done by Proposition 2.

Theorem 12. If G is a {∆}-neighbor irregular graph and k ∈ [4,∞), then
χ′a(G× Pk) = 2∆ = ∆(G× Pk).

Proof. Consider a proper avd coloring β : E(G × C2k) → [1, 2∆] constructed
in the proof of Theorem 11. Let γ : E(G × Pk) → [1, 2∆] be the restriction
of β. Suppose that uv ∈ E(G) and dG×Pk

(u, i) = dG×Pk
(v, i + 1) for some

i ∈ [1, k − 1].
If i = 1, then Sγ(u, 1) ⊆ [1,∆] and Sγ(v, 2) ∩ [∆ + 1, 2∆] 6= ∅ so that

Sγ(u, 1) 6= Sγ(v, 2).
If i ∈ [2, k − 2], then Sγ(u, i) = Sβ(u, i) 6= Sβ(v, i+ 1) = Sγ(v, i+ 1).
Finally, with i = k − 1 we have Sγ(u, k − 1) 6= Sγ(v, k), since Sγ(u, k − 1)

has a nonempty intersection with both [1,∆] and [∆ + 1, 2∆], while Sγ(v, k) is
a subset of one of the sets [1,∆] and [∆ + 1, 2∆].

Thus, γ is a proper avd coloring and χ′a(G× Pk) = 2∆.

Theorem 13. Suppose that k ∈ [3,∞) and G is a D-neighbor irregular bipartite
graph, where either ∆ is odd and D = {∆} or ∆ is even and D = {∆

2 ,∆}. Then
χ′a(G× Ck) = 2∆ = ∆(G× Ck).

Proof. Let {U, V } be the bipartition of the graph G. Consider a proper col-
oring α : E(G) → [1,∆] (König’s Theorem) and a 2-distinguishing sequence∏k
i=1(pi) ∈ Zk provided by Lemma 10. Let β : E(G × Ck) → [1, 2∆] be the

coloring determined as follows: if uv ∈ E(G), u ∈ U , v ∈ V and i ∈ [1, k], then

β((u, i)(v, (i+ 1)k) := (α(uv) + pi)∆,

β((u, i)(v, (i− 1)k) := (α(uv) + pi)∆ + ∆.



From the definition it immediately follows that β is proper and

Sβ(u, (i+ 1)k−) = {l + ∆ : l ∈ Sβ(u, i+)},
Sβ(v, (i− 1)k+) = {l + ∆ : l ∈ Sβ(v, i−)}.

Further, for any u ∈ U and any v ∈ V , Sα(u) = Sα(v) is equivalent to
Sβ(u, i+) = Sβ(v, (i+1)k−) as well as to Sβ(v, i+) = Sβ(u, (i+1)k). Therefore,
the assumptions A1 and A2 of Lemma 8 are fulfilled. The assumption A3 follows
from the inclusions Sβ(u, i+) ⊂ [1,∆] and Sβ(v, (i + 1)k+ ⊂ [∆ + 1, 2∆]. The
validity of the assumption A4 can be checked in the same way as in the proof
of Theorem 11. So, Lemma 8 can be used as before.

Theorem 14. Suppose that G is a D-neighbor irregular bipartite graph, where
either ∆ is odd and D = {∆} or ∆ is even and D = {∆

2 ,∆}. Further, let H
be a regular graph having a perfect matching provided that ∆(H) is odd. Then
χ′a(G×H) = ∆(G)∆(H) = ∆(G×H).

Proof. Suppose first that ∆(H) is even, say ∆(H) = 2h. By Petersen’s Theorem
there is a 2-factorization {Hi : i ∈ [, h]} of the graph H. By Theorem 13 there
is a (component-wise constructed) proper avd coloring

γi : E(G×Hi)→ [1,∆]× [2i− 1, 2i], i ∈ [1, h].

Consider the common extension γ : E(G×H)→ [1,∆]× [1, 2h] of the colorings
γi, i ∈ [1, h]. If (u, y) ∈ V (G×H), then

Sγ(u, y) =
h⋃
i=1

Sγi(u, y).

Further, if uv ∈ E(G), dG(u) = d = dG(v) and (u, y)(v, z) ∈ E(G×H), there is
l ∈ [1, h] such that (u, y)(v, z) ∈ E(G×Hl), and so Sγl

(u, y) 6= Sγl
(v, z). Both

sets Sγl
(u, y) and Sγl

(v, z) are of the same cardinality 2d, hence

Sγl
(u, y) 6= Sγl

(v, z)⇔ Sγl
(u, y) ∩ Sγl

(v, z) $ Sγl
(u, y).

Then we have

Sγ(u, y) ∩ Sγ(v, z) =

(
h⋃
i=1

Sγi
(u, y)

)
∩

 h⋃
j=1

Sγj
(v, z)


=

h⋃
i=1

h⋃
j=1

(
Sγi

(u, y) ∩ Sγj
(v, z)

)
$

h⋃
i=1

h⋃
j=1

Sγi
(u, y) =

h⋃
i=1

Sγi
(u, y) = Sγ(u, y),



so that γ is an avd coloring and

χ′a(G×H) ≤ |[1,∆]× [1, 2h]| = ∆(G)∆(H) = ∆(G×H).

Now suppose that ∆(H) = 2h+ 1 and the graph H has a perfect matching.
Then by Petersen’s Theorem there is a factorization {Hi : i ∈ [1, h + 1]} of
the graph H, in which Hi, i ∈ [1, h], are 2-factors and Hh+1 is a 1-factor.
Consider proper avd colorings γi, i ∈ [1, h], from the first part of the proof. By
Proposition 5 and by König’s Theorem there is a (component-wise constructed)
proper avd coloring

γh+1 : E(G×Hh+1)→ [1,∆]× {2h+ 1}.

For the common extension γ̄ : E(G×H)→ [1,∆]× [1, 2h+ 1] of the colorings
γi, i ∈ [1, h+ 1], we proceed very similarly as above to show that χ′a(G×H) ≤
∆(G)∆(H) again.

3.2 General graphs

If a graph G has adjacent vertices of degree ∆, Proposition 3 yields χ′a(G×
Ck) ≥ 2∆ + 1. In this section we show among other things that χ′a(G× Ck) ≤
2∆ + 1 whenever k ≥ 2∆ + 1 or k is even, k ≥ 6.

Theorem 15. χ′a(G×K2) ≤ min(χ′a(G),∆ + 2) for every graph G.

Proof. The inequality χ′a(G×K2) ≤ χ′a(G) is known due to [5]; it follows also
immediately from Proposition 5.2,3. Since G ×K2 is bipartite, the inequality
χ′a(G×K2) ≤ ∆ + 2 is true because of [1].

There are graphs G such that χ′a(G×K2) is smaller than χ′a(G), e.g., χ′a(C5×
K2) = 4 < 5 = χ′a(C5).

Let us describe now one possibility how to construct proper edge colorings
of G × Ck appropriate for using Lemma 8. By Theorem 6 there is a proper
symmetric coloring α : E(G × K2) → [1,∆]. Consider a sequence

∏k
i=1(Si),

in which Si =
∏∆
j=1(sji ) is a simple sequence with σ(Si) ⊆ [1, 2∆ + 1] and

σ(Si) ∩ σ(S(i+1)k
) = ∅ for every i ∈ [1, k]. Define the coloring β : E(G×Ck)→

[1, 2∆ + 1] so that for any uv ∈ E(G) and any i ∈ [1, k]

β((u, i), (v, (i+ 1)k)) := s
α((u,1),(v,2))
i . (4)

From the definition it immediately follows that β is proper. Further, for any
u, v ∈ V (G) and any i ∈ [1, k] the assumption A3 of Lemma 8 is fulfilled and

Sβ(u, i+) = Sβ(u, (i+ 1)k−), (5)
Sβ(u, i+) = Sβ(v, (i+ 1)k−)⇔ Sα(u, 1+) = Sα(v, 2−). (6)

The validity of the assumption A1 (A2, respectively) of Lemma 8 is a conse-
quence of (5) (of (5) and (6)).



The possibility of applying Lemma 8 for the coloring β defined above depends
on guaranteeing the assumption A4 for any uv ∈ E(G) with dG(u) = dG(v) and
any i ∈ [1, k]. To understand the idea how to do it consider simple sequences
A =

∏∆
i=1(ai), B =

∏∆
i=1(bi) ⊆ [1, 2∆ + 1]k with |σ(A) ∩ σ(B)| = ∆ − 1

and let G(A,B) be the oriented graph with V (G(A,B)) = σ(A) ∪ σ(B) and
E(G(A,B)) = {(ai, bi) : i ∈ [1,∆]}. Clearly, exactly one component of G(A,B)
is an oriented path, which will be denoted by P (A,B). (Remaining components
– if any – of G(A,B) are oriented cycles.) The pair (A,B) is said to be ∆-
good if |V (P (A,B))| ≥ ∆. Since G(B,A) results from G(A,B) by changing the
orientation of all the edges of G(A,B), the pair (B,A) is ∆-good if and only if
the pair (A,B) is.

Lemma 16. Suppose that ∆ ∈ [2,∞), the pair (A,B) with simple sequences
A =

∏∆
i=1(ai), B =

∏∆
i=1(bi) is ∆-good and the mapping ϕ : σ(A) → σ(B) is

defined by ϕ(ai) := bi for i ∈ [1,∆]. Then ϕ(X) 6= X for any set X ⊆ σ(A)
with |X| ≥ 2.

Proof. Let P (A,B) =
∏k
i=1(vi) so that vk /∈ X. Since |X| ≥ 2, k ≥ ∆,

|V (P (A,B))∩σ(A)| = k−1 ≥ ∆−1 and |σ(A)| = ∆, we have X∩V (P (A,B)) 6=
∅. With j := max(i ∈ [1, k − 1] : vi ∈ X) then vj+1 ∈ ϕ(X) \ X and X 6=
ϕ(X).

A sequence
∏k
i=1(Si) of simple sequences Si with σ(Si) ⊆ [1, 2∆ + 1] and

l(Si) = ∆, i ∈ [1, k], is said to be ∆-appropriate if σ(Si) ∩ σ(S(i+1)k
) = ∅ and

the pair (S(i−1)k
, S(i+1)k

) is ∆-good for every i ∈ [1, k].

Lemma 17. If ∆ ∈ [2,∞), k ∈ [3,∞) and there is a ∆-appropriate sequence
of length k, then χ′a(G× Ck) ≤ 2∆ + 1.

Proof. Let
∏k
i=1(Si) be a ∆-appropriate sequence, α : E(G × K2) → [1,∆] a

symmetric proper coloring (Theorem 6) and let β : E(G×Ck)→ [1, 2∆+1] be a
coloring defined by (4). As we have seen before Lemma 16, β is a proper coloring
such that for any u, v ∈ V (G) and any i ∈ [1, k] the assumptions A1, A2 and A3

of Lemma 8 are fulfilled. Suppose now that i ∈ [1, k] and dG(u) = d = dG(v)
for an edge uv ∈ E(G). From the definition of β it follows that

Sβ(u, (i+ 1)k+) = βi(Sβ(u, (i− 1)k+)),

where βi : σ(S(i−1)k
)→ σ(S(i+1)k

) maps the jth term of S(i−1)k
to the jth term

of S(i+1)k
for each j ∈ [1,∆]. The graph G of maximum degree ∆ is connected,

hence |Sβ(u, (i − 1)k+)| = d ≥ 2, and so, by Lemma 16, Sβ(u, (i + 1)k) 6=
Sβ(u, (i + 1)k). Thus, all assumptions of Lemma 8 are fulfilled, and we have
χ′a(G× Ck) ≤ 2∆ + 1.

Let A =
∏d
i=1(ai), B =

∏d
i=1(bi) be simple sequences of the same length d

with |σ(A) ∩ σ(B)| = d − 1 and let t ∈ Z \ {0}. The sequence B is a t-shift of 
the sequence A provided that there is j ∈ [1, d] such that b(i+t)d = ai for any 
i ∈ [1, k] \ {j}; then, clearly, aj ∈ σ(A) \ σ(B) and b(j+t)d ∈ σ(B) \ σ(A). The



fact that B is a t-shift of A will be denoted by A
t→ B. Evidently, A t→ B is

equivalent to B −t→ A.

Lemma 18. Let A, B be simple sequences of the same length d ∈ [2,∞) with
|σ(A) ∩ σ(B)| = d − 1 and such that A t→ B for some t ∈ {−2,−1, 1, 2}. If
either t ∈ {−2, 2} and d ≡ 1 (mod 2) or t ∈ {−1, 1}, then the pair (A,B) is
d-good.

Proof. Let A =
∏d
i=1(ai) and B =

∏d
i=1(bi). Suppose that there is j ∈ [1, d]

such that b(i+t)d = ai for any i ∈ [1, k] \ {j}. If t = 1, then P (A,B) =[∏d
i=1(a(j+1−i)d)

]
(bj+1). Further, if t = 2 and d is odd, we have P (A,B) =[∏d

i=1(a(j+2−2i)d)
]

(bj+2). In both cases |V (P (A,B))| = d + 1 and the pair

(A,B) is d-good. If either t = −2 and d is odd or t = −1, then B −t→A, the pair
(B,A) is d-good (by what we have just proved), hence so is the pair (A,B).

For the proof of the next theorem we will need the following obvious auxiliary
result.

Lemma 19. If d, k, l ∈ [3,∞) and A =
∏k
i=1(Ai), B =

∏l
i=1(Bi) are d-

appropriate sequences with Ai = Bi, i = 1, 2, then AB is a d-appropriate
sequence (of length k + l).

Theorem 20. Let d ∈ [3,∞). If k ∈ [6,∞) and either k is even or k ≥ 2d+ 1,
there is a d-appropriate sequence of length k.

Proof. The following sequences are important for our constructions:

T2j+1 :=
[∏j

i=1
(2d+ 1− j + i)

]∏d

i=j+1
(−j + i), j ∈ [0, d],

T2j+2 :=
∏d

i=1
(d− j + i), j ∈ [0, d− 1].

Let T j :=
∏j
i=1(Ti) for j ∈ [1, 2d+ 1].

We shall in fact prove a stronger statement, namely the existence of a special
d-appropriate sequence Skd =

∏k
i=1(Ski ) – one satisfying T 4 ≤ Skd if k is even and

T 2d ≤ Skd if k is odd. For some k’s the sequence Skd can be defined independently
of the parity of d; since it can be applied for both parities of d, it will be denoted
Bkd =

∏k
i=1(Bki ). For remaining k’s we will have in the role of Skd either a

sequence Ekd =
∏k
i=1(Eki ) (if d is even, in which case we shall suppose d = 2l)

or Okd =
∏k
i=1(Oki ) (if d is odd).

Suppose first that k is even, k ≥ 6, and proceed by induction on k. We start
with defining Lki := Si for each L ∈ {B,E,O} and i ∈ [1, 4]. As Ti−1

1→ Ti+1,
i = 1, 2, by Lemma 18 we see that (Ski−1, S

k
i+1) is a d-good pair, i = 1, 2, and it

only remains to be proved that (Ski−1, S
k
(i+1)k

) is a d-good pair for each i ∈ [3, k].



With

O6
5 :=

[∏d−2

i=1
(1 + i)

]
(2d, 1),

O6
6 :=

[∏d−2

i=1
(d+ 1 + i)

]
(2d+ 1, d+ 1),

the sequence O6
d is d-appropriate, since O6

3
−2→ O6

5
1→ O6

1 and O6
4
−2→ O6

6
1→ O6

2.
Further, if

E6
5 := (1, d− 1, 2d)

∏d

i=4
(−2 + i), E6

6 := (d+ 1, 2d− 1, 2d+ 1)
∏d

i=4
(d− 2 + i),

the sequence E6
d is d-appropriate, since

P (E6
3 , E

6
5) = (2d+ 1, 1)

[∏d

i=3
(d+ 2− i)

]
(2d),

P (E6
4 , E

6
6) = (d, d+ 1)

[∏d

i=3
(2d+ 2− i)

]
(2d+ 1),

P (E6
5 , E

6
1) = (2d)

[∏l

i=2
(−1 + 2i)

]∏d

i=l+1
(−d+ 2i),

P (E6
6 , E

6
2) = (2d+ 1)

[∏l

i=2
(d− 1 + 2i)

]∏d

i=l+1
(2i).

We define

B8
5 := (2d, 2d+ 1)

∏d

i=3
(−2 + i), B8

6 :=
[∏d−1

i=1
(d+ i)

]
(d− 1),

B8
7 := (d)

[∏d−1

i=2
(−1 + i)

]
(2d), B8

8 := (2d+ 1)
[∏d

i=2
(d− 1 + i)

]
.

The sequence B8
d is d-appropriate, since B8

3
1→ B8

5
−1→ B8

7
−1→ B8

1 and B8
4

1→ B8
6
−1→

B8
8
−1→ B8

2 .
We define

O10
5 :=

[∏d−1

i=1
(i)
]

(2d), O10
6 := (2d+ 1)

[∏d−1

i=2
(d+ i)

]
(d),

O10
7 :=

[∏d−2

i=1
(1 + i)

]
(2d, d+ 1), O10

8 :=
[∏d−2

i=1
(d+ 1 + i)

]
(1, 2d+ 1),

O10
9 :=

[∏d−1

i=1
(2 + i)

]
(2), O10

10 := (2d, 2d+ 1)
∏d

i=3
(d− 1 + i)

to obtain a d-appropriate sequence O10
d : O10

3
−1→ O10

5
−1→ O10

7
−1→ O10

9
2→ O10

1 and
O10

4
−1→ O10

6
−1→ O10

8
2→ O10

10
−1→ O10

2 . Further, with E10
i := O10

i , i ∈ [5, 8], and

E10
9 :=

[∏d−3

i=1
(2 + i)

]
(d+ 1, 2, d),

E10
10 := (2d− 1, 2d+ 1)

[∏d−1

i=3
(d− 1 + i)

]
(2d),



the sequence E10
d is d-appropriate, because (E10

i−1, E
10
i+1) = (O10

i−1, O
10
i+1) is a

d-good pair, i ∈ [4, 7], and

P (E10
7 , E10

9 ) = (2d)
[∏d−1

i=2
(i)
]

(d+ 1, d),

P (E10
8 , E10

10) = (1)
[∏l

i=2
(2d+ 2− 2i)

] [∏d−1

i=l+1
(3d+ 1− 2i)

]
(2d+ 1, 2d),

P (E10
9 , E10

1 ) = (d+ 1)
[∏l

i=2
(d+ 2− 2i)

]∏d

i=l+1
(2d+ 1− 2i),

P (E10
10 , E

10
2 ) = (2d+ 1)

[∏d−1

i=2
(d+ i)

]
(d+ 1).

Now suppose that k ≥ 12 and for every even p ∈ [6, k − 2] there is a d-
appropriate sequence Spd of length p with T 4 ≤ Spd . Then, by Lemma 19, the
sequence Skd := Sk−6

d S6
d of length k is d-appropriate and satisfies T 4 ≤ Skd .

For the rest of the proof k ≥ 2d + 1 will be odd. We start with setting
Lki := Si for each L ∈ {B,E,O} and i ∈ [1, 2d]. Since Ti−1

1→ Ti+1 for every
i ∈ [2, 2d− 1], it suffices to show that (Ski−1, S

k
(i+1)k

) is a d-good pair whenever
i ∈ [2d− 1, k].

If k = 2d + 1, taking B2d+1
2d+1 := S2d+1 leads to a d-appropriate sequence

B2d+1
d ; indeed, we have B2d+1

2d
1→ B2d+1

1 and B2d+1
2d+1

1→ B2d+1
2 .

We define

O2d+3
2d+1 := (1)

[∏d−2

i=2
(d+ 1 + i)

]
(d+ 2, 2d+ 1),

O2d+3
2d+2 :=

[∏d−2

i=1
(2 + i)

]
(2d, 2),

O2d+3
2d+3 :=

[∏d−3

i=1
(d+ 2 + i)

]
(2d+ 1, d+ 1, d+ 2);

then O2d+3
d is a d-appropriate sequence, because O2d+3

2d−1
1→ O2d+3

2d+1,

P (O2d+3
2d+1, O

2d+3
2d+3) = (1)

[∏d−2

i=2
(d+ 1 + i)

]
(2d+ 1, d+ 2, d+ 1),

O2d+3
2d+3

2→ O2d+3
2 and O2d+3

2d
−1→ O2d+3

2d+2
2→ O2d+3

1 .
By defining

E2d+3
2d+1 :=

[∏d−4

i=1
(d+ 3 + i)

]
(d+ 2, 2d+ 1, 1, d+ 3),

E2d+3
2d+2 :=

[∏d−3

i=1
(2 + i)

]
(2d, 2, d),

E2d+3
2d+3 := (d+ 1)

[∏d−2

i=2
(d+ 1 + i)

]
(2d+ 1, d+ 2)



we obtain a d-appropriate sequence E2d+3
d , since E2d+3

2d−1
−1→ E2d+3

2d+1 ,

P (E2d+3
2d , E2d+3

2d+2) = (d+ 1, d)
[∏d

i=3
(−1 + i)

]
(2d),

P (E2d+3
2d+2 , E

2d+3
1 ) = (2d)

[∏l

i=2
(d+ 2− 2i)

]∏d

i=l+1
(2d+ 1− 2i),

P (E2d+3
2d+3 , E

2d+3
2 ) = (2d+ 1)

[∏d−1

i=2
(2d+ 1− i)

]
(2d)

and P (E2d+3
2d+1 , E

2d+3
2d+3) is equal to

(1)
[∏l+1

i=2
(2d+ 5− 2i)

]
(d+ 2)

[∏d

i=l+3
(3d+ 4− 2i)

]
(d+ 1).

In the case k = 2d+ 5 let

B2d+5
2d+1 := (1)

[∏d−1

i=2
(d+ 1 + i)

]
(d+ 2),

B2d+5
2d+2 := (2d+ 1)

∏d−1

i=2
(d+ 1 + i),

B2d+5
2d+3 :=

[∏d−3

i=1
(d+ 2 + i)

]
(d+ 1, d+ 2, 1),

B2d+5
2d+4 :=

[∏d−1

i=1
(1 + i)

]
(2d),

B2d+5
2d+5 := (2d+ 1)

[∏d−2

i=2
(d+ 1 + i)

]
(d+ 1, d+ 2)

to form a d-appropriate set B2d+5
d : we have B2d+5

2d−1
1→ B2d+5

2d+1
−1→ B2d+5

2d+3
1→ B2d+5

2d+5 ,

P (B2d+5
2d+5 , B

2d+5
2 ) = (2d+ 1, d+ 1)

[∏d

i=3
(2d+ 2− i)

]
(2d)

and B2d+5
2d

1→ B2d+5
2d+2

−1→ B2d+5
2d+4

1→ B2d+5
1 .

Finally, suppose that k ≥ 2d+ 7 and for every odd q ∈ [2d+ 1, k − 2] there
is a d-appropriate sequence Sqd of length q with T 2d ≤ Sqd . By Lemma 19 then
Sk−6
d S6

d is a d-appropriate sequence of length k satisfying T 2d ≤ Skd .

Theorem 21. If ∆ ∈ [3, ∞), k ∈ [6, ∞), and either k is even or k ≥ 2∆ + 1, 
then χ′a(G × Ck) ≤ 2∆ + 1.

Proof. The statement follows immediately from Lemma 17 and Theorem 20.

Theorem 22. If ∆ ∈ [3, ∞) and k ∈ [4, ∞), then χ′a(G × Pk) ≤ 2∆ + 1.

Proof. Let β : E(G × C2k) → [1, 2∆ + 1] be a proper avd coloring constructed 
using a ∆-appropriate sequence of length 2k (see Theorem 21) and let γ : E(G× 
Pk) → [1, 2∆+1] be the restriction of β. Since Sγ (u, 1) 6= Sγ (v, 2) and Sγ (u, k− 
1) 6= Sγ (v, k) for arbitrary u, v ∈ V (G), we can proceed similarly as in the proof
of Theorem 12.



Theorem 21 does not cover the case ∆ = 2. However, if G is a connected
graph of maximum degree 2, then G is either a cycle or a path. In the rest of
this section we deal with the direct product of two cycles or of two paths. (The
direct product of a path and a cycle was analyzed in [5].)

Let d ∈ [2,∞), c ∈ [2d + 1,∞) and k ∈ [3,∞). A sequence
∏k
i=1(Ai) of

d-subsets of the set [1, c] is a cyclic avd (d, c)-sequence provided that

Ai ∩A(i+1)k
= ∅, Ai 6= A(i+2)k

, i ∈ [1, k].

Note that a cyclic avd (d, 2d+ 1)-sequence is just a cyclic avd d-sequence in the
terminology of [5]. In that paper it is proved:

Proposition 23. If l ∈ {5, 6} ∪ [8,∞), there exists a cyclic avd (2, 5)-sequence
of length l.

Lemma 24. If G is a [1,∆− 1]-neighbor irregular graph, c ∈ [2∆ + 1,∞), k ∈
[3,∞) and there is a cyclic avd (∆, c)-sequence of length k, then χ′a(G×Ck) ≤ c.

Proof. Let
∏k
i=1(Ai) be a cyclic avd (∆, c)-sequence and for i ∈ [1, k] let Fi

be the subgraph of G × Ck induced by the set V (G) × {i, (i + 1)k}. Since Fi
is isomorphic to G × K2, by Theorem 6 there is a (symmetric) proper edge
coloring αi : E(Fi) → Ai, i ∈ [1, k]. Then, clearly, the common extension
α : E(G × Ck) → [1, c] of the colorings αi, i ∈ [1, k], is proper. Suppose that
uv ∈ E(G) and dG(u) = d = dG(v). Then d = ∆ and

Sα(u, i) = A(i−1)k
∪Ai 6= Ai ∪A(i+1)k

= Sα(v, (i+ 1)k), i ∈ [1, k].

Thus, α is an avd coloring and χ′a(G× Ck) ≤ c.

Note that χ′a(Cm × Cn) is known in the following cases treated in [5]:

• at least one of m,n is even and greater than 4,
• both m,n are odd and greater than 7,
• m = n ∈ [3, 4].

Theorem 25. If (m, n) ∈ [3, ∞)× [3, ∞) and ({m}∪{n})∩([3, ∞)\{3, 4, 7}) 6= 
∅, then χ′a(Cm × Cn) = 5.

Proof. Since Cm × Cn ∼= Cn × Cm, without loss of generality we may suppose 
that n ∈ ([3, ∞) \ {3, 4, 7}). Then, by Proposition 23, there is a cyclic avd 
(2, 5)-sequence of length n. Moreover, the graph Cm is [1, 1]-neighbor irregular, 
and so, by Lemma 24 with c = 5, χ ′a(Cm × Cn) ≤ 5. Thus, we are done using 
Proposition 3.

Theorem 26. If (m, n) ∈ [3, ∞) × [3, ∞), then 5 ≤ χ′a(Cm × Cn) ≤ 6 = 
∆(Cm × Cn) + 2.



Proof. If l ∈ {3, 4, 7}, there is a cyclic avd (2, 6)-sequence C(2, 6, l) of length l,
for example

C(2, 6, 3) := ({1, 2}, {3, 4}, {5, 6}),
C(2, 6, 4) := ({1, 2}, {3, 4}, {1, 5}, {3, 6}),
C(2, 6, 7) := ({1, 2}, {3, 4}, {2, 5}, {1, 3}, {2, 4}, {3, 5}, {4, 6}).

So, having in mind Theorem 25, the statement follows from Proposition 3 and
Lemma 24 with c = 6.

There are pairs (m,n), for which the upper bound in Theorem 26 applies.
Namely, according to [5], χ′a(C3 × C3) = 6 = χ′a(C4 × C4).

Finally, we turn to the direct product of two paths. From [5] it is known that
χ′a(Pm×Pn) = 2 if (m,n) ∈ {(2, 3), (3, 2)} and χ′a(Pm×Pn) = 3 if min(m,n) = 2
and max(m,n) ≥ 4. By Theorem 9 we have χ′a(Pm × Pn) = 4 provided that
min(m,n) = 3.

Theorem 27. If (m,n) ∈ [4,∞)× [4,∞), then χ′a(Pm × Pn) = 5.

Proof. In [5] it is shown that there is a proper avd coloring β : E(Pm×Cn+2)→
[1, 5] satisfying Sβ(u, i+)∩Sβ(v, (i+1)n+2+) = ∅ for any u, v ∈ V (Pm) and any
i ∈ [1, n+ 2]. Therefore, similarly as in the proof of Theorem 12, the restriction
γ : V (Pm × Pn) → [1, 5] of the coloring β is a proper avd coloring. Thus,
Proposition 3 yields χ′a(Pm × Pn) = 5.
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[8] M. Horňák, D. Huang, W. Wang On neighbour-distinguishing index of pla-
nar graphs, submitted.
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