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Abstract

Can a non self-complementary graph have the same chromatic polynomial
as its complement? The answer to this question of Akiyama and Harrary is
positive and was given by J. Xu and Z. Liu. They conjectured that every
such graph has the same degree sequence as its complement. In this paper we
show that there are infinitely many graphs for which this conjecture does not
hold. We then solve a more general variant of the Akiyama-Harary problem by
showing that there exists infinitely many non self-complementary graphs having
the same Tutte polynomial as their complements.
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1 Introduction

Let pG(k) be the chromatic polynomial of a simple graph G that is pG(k) is the
number of proper k-colorings of G. In 1980 Akiyama and Harary [3] raised the
following question ‘Is there a graph G that is not self-complementary and has a
chromatic polynomial that equals to the chromatic polynomial of G?’ Observe that
since pG(k) encodes the number of edges of G a necessary conidition for a graph to
have the posed property is that it has precisely

(|V (G)|
2

)
/2 edges.

The question recived little attention until 1995 when J. Xu and Z. Liu [4] showed
that such a graph indeed exists. They have shown that for any n ≥ 8 congurent to 0
or 1 modulo 4 there exists a graph G of order n such that G is not self-complementary
and pG(k) = pG(k). In their paper they constructed graphs with a specific degree
sequence and then used the degree sequence to compute the chromatic polynomial
of the coresponding graph. Given the nature of their construction they posed
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Conjecture 1 (J. Xu, Z. Liu). If a graph G has the property that pG(k) = pG(k)
then G has the same degree sequence as G.

As it turns out, their conjecture is false. In this paper we present an infinite
family of graphs not adhering to this condition.

Finally we turn our attention to a more general variant of the problem introduced
by Akiyama and Harary. For a subset F ⊆ E(G) we denote by c(F ) the number of
connected components of the graph with edge set F and vertex set V (G). With this
in mind the Tutte polynomial of a graph G is defined as

TG(x, y) =
∑

F⊆E(G)

(x− 1)c(F )−c(E) · (y − 1)c(F )+|F |−|V (G)|. (1)

The Tutte polynomial TG(x, y) contains much more information about the struc-
ture of G than pG(k) does. Indeed, it is well known that

pG(k) = (−1)|V (G)|−k(E)kc(E)TG(1− k, 0).

Among the many other interesting evaluations of the Tutte polynomial are TG(1, 1)
- the number of spanning trees of G and TG(2, 0), TG(0, 2) the number of cyclic and
acycic orientations of G respectively. For a survey of known results about the Tutte
polynomial see [2].

A natural generalization of the Harary-Akiyama question following from these
properties of the Tutte polynomial is, wheter there exists non self-complementary
graphs having the same Tutte polynomial as their complement. In this paper we
shall prove

Theorem 1. There exists infinitely many graphs that are not self-complementary
and have the same Tutte polynomial as their complement.

2 Chromatic polynomials and graph complements

In this section we present a family of graphs having equal chromatic polynomials as
their complements but different degree sequence. We start with the graph depicted
on Figure 1 together with its complement. Its graph6 string [1] is HCpVdZY. First,
we establish that G has the desired properties.

Lemma 2. There exists a graph G of order 9 such that G and G have different
degree sequences but pG(k) = pG(k).

Proof. We observe that the graphG from Figure 1 has degree sequence (5, 5, 5, 4, 4, 4, 4, 3, 2)
while its complement has degree sequence (6, 5, 4, 4, 4, 4, 3, 3, 3). Using the well known
deletion-contraction recurrence for computing the chromatic polynomial of a graph
we can verify that

pG(k) = pG(k) = (k − 2) · (k − 1) · k · (k − 3)2 · (k4 − 9k3 + 35k2 − 69k + 57).
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Figure 1: A graph and its complement.

Alternatively we can verify the stated claim using the Sage program presented in
the Appendix.

Before showing the main claim of this section, we introduce a useful construction.
Given a graph G we form the graph Ĝ by taking a vertex disjoint 4-path P and

joining every vertex of G to both endpoints of P. Conveniently, we have Ĝ = Ĝ.
Using this property it is not difficult to establish the following claim.

Theorem 3. There exists infinitely many graphs G not having the same degree
sequence as G but having the same chromatic polynomial as their complements.

Proof. We compute the chromatic polynomial of Ĝ. Suppose we wish to properly
color Ĝ with k colors. Let x, y be the endpoints of the 4-path P introduced in Ĝ
and let x′, y′ be the respective neighbors of x and y in P. There are essentialy two
different ways to color Ĝ. If we color x, y with equal colors then there are (k − 1)
choices to color x′ and (k−2) colors to color y′ and hence k(k−1)(k−2)pG(k−1) ways
to properly k-color Ĝ. If x, y are colored with different colors then we again have
two cases. If y′ is colored with the same color as x then we have k(k− 1)2pG(k− 2)
total ways to color Ĝ. If however y′ is not colored with the same color as x we end
up having k(k− 1)(k− 2)2pG(k− 2) ways to propery color our graph using k colors.
Summing up the obtained quantities we infer

p
Ĝ
(k) = k(k − 1)(k − 2)pG(k − 1) + k(k − 1)2pG(k − 2) + k(k − 1)(k − 2)2pG(k − 2)

= k(k − 1)((k − 2)pG(k − 1) + (k(k − 3) + 3)pG(k − 2)).

In particular we see from the above expression that Ĝ is in fact a function of pG(k).
The main claim now follows quickly with an inductive argument. By Lemma 2 we
have a graph G of order 9 having a different degree sequence than G but the same
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chromatic polynomial. But then the degree sequences of Ĝ and Ĝ differ while for
their chromatic polynomials the above identity implies

p
Ĝ
(k) = k(k − 1)((k − 2)pG(k − 1) + (k(k − 3) + 3)pG(k − 2))

= k(k − 1)((k − 2)pG(k − 1) + (k(k − 3) + 3)pG(k − 2))

= p̂
G
(k) = p

Ĝ
(k).

Hence by using this construction iteratively we obtain an infinite family of graphs
with the stated property.

Making a computer search it can be seen that there are graphs on 12 vertices
that have the property stated in Theorem 3. Hence it is easy to extend the proof of
Theorem 3 to show that for any n ≥ 9 congurent to 0 or 1 (mod 4) there exist a
graph G not having the same degree sequence as G but sharing the same chromatic
polynomial.

3 The Tutte polynomial

A very useful property of the chromatic polynomial that we exploited in the proof
of Theorem 3 is the fact that the chromatic polynomial of a graph operation is often
a function of the chromatic polynomials of its operands. Unfortunately the same is
not generally true for the Tutte polynomial. Indeed, consider two trees of order 4,
the star graph K1,3 and the path graph P4. Both have the same Tutte polynomial
namely x3. Consider now their cone graph, that is the graph obtained by adding a
new vertex and joining it to all other vertices. The cone of K1,3 has 20 spanning
trees while while the cone of P4 has 21 spanning trees. Hence the Tutte polynomials
of the cones of K1,3 and P4 are different.

In order to apply the construction introduced in the previous section, we need
an additional structure of our graphs that will assure that if two graphs G and H
have equal Tutte polynomials then so do Ĝ and Ĥ.

As it turns out, the following concept is quite useful for this purpose. Let H be a
spanning subgraph of G having connected components of order h1 ≥ h2 ≥ · · · ≥ hk.
We say that (|E(H)|, h1, h2, . . . , hk) is a subgraph description of H. Let now s(G)
be the lexicographically sorted tuple of subgraph descriptions for every subgraph
of G. We call s(G) the subgraph sequence of G. Observe that equation 1 implies
that if two graphs have the same subgraph sequence then they also have the same
Tutte polynomial. The converse is of course not true as witnessed by the above
example with P4 and K1,3. Our next lemma asserts that the property of having the
same subgraph sequence is preserved by the construction introduced in the previous
section.

Lemma 4. If G and H are graphs such that s(G) = s(H) then s(Ĝ) = s(Ĥ).
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Figure 2: A graph with equal Tutte polynomial as its complement.

Proof. Let G′ be a spanning subgraph of Ĝ. Observe that G′ is obtained by taking a
spanning subgraph of G with subgraph description d = (|E(G′)|, g1, . . . , gk) adding
the remaining four vertices of Ĝ comming from the introduced 4-path P and finally
adding some of the edges with at least one endpoint in P. That is we add some of
the edges of P and then some of the edges from the endpoints of P to some vertices
of the connected components of G.

By assumption G has the same subgraph sequence as H hence there is a bijective
mapping between their subgraph sequences. Let H ′ be the subgraph of H with
subgraph sequence d that is prescribed by such bijection. Since H ′ and G′ have the
same subgraph description there is bijective way to map every extension of G′ to a
subgraph of Ĝ to an extension of H ′ to a subgraph of Ĥ. Indeed, we may assume
the vertices of G and H to be ordered and then for every edge that is added from
one of the endpoints x of P to the the i’th vertex of the j’th component of G we add
the edge between x and the i’th vertex of the j’th component of H. This is always
well defined since H and G have the same subgraph description.

In order to apply Lemma 4 we need to find a non self-complementary graph
G such that s(G) = s(G). As already noted this immediately implies TG(x, y) =
TG(x, y). One of the smallest graphs with such property has order 8 and is presented
on Figure 2. Its graph6 string is GCRdvK .

Lemma 5. There exist a non self-complementary graph of order 8 such that s(G) =
s(G).

Proof. Consider the graph G from Figure 2. Observe that G and G both have
two vertices of degree 2. In G these two vertices share a common neighbor while
the vertices of degree 2 in G have no common neighbors. Hence G and G are not
isomorphic. To verify the second part of the claim, that is s(G) = s(G), is a tedious
process hence we invite the reader to inspect Appendix A presenting a Sage program
verifying the claim.
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We are now ready to prove the main claim of this section.

Theorem 6. There exist infinitely many graphs G such that G 6∼= G but TG(x, y) =
TG(x, y).

Proof. By Lemma 5 there is a non self-complementary graph on 9 vertices such
that s(G) = s(G) which implies TG(x, y) = TG(x, y). But then, by Lemma 4 the

graph Ĝ again has the same subgraph description as its complement and is not self-
complementary. Hence applying this operation iteratively on G we end up with an
infinite family of graphs possesing the stated property.

Again as with the chromatic polynomial we can find a graph of order 9 having
the properties of Lemma 5. Hence it is possible to show in the same way as we did
in the proof of Theorem 6 that for any n ≥ 8 congurent to 0, 1 modulo 4 there exist
a non self-complementary graph of order n having the same Tutte polynomial as its
complement.

4 Final remarks

We were not able to find an example of a graph G with different degree sequence
from G but same Tutte polynomial. A computer search indicates that such a graph
would have to have at least 16 vertices. Hence we leave the following problem.

Problem 1. Find a graph G with different degree sequence than G but same Tutte
polynomial or show that such a graph does not exists.

Interestingly the equivalent problem for chromatic polynomials motivated this
paper.
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A Sage programs used in the proofs

In this appendix we show how to prove the claims of Lemmas 4, 5 using the open
source mathematical software Sage [5]. All examples can be directly copy-pasted
into Sage’s shell.

In order to prove Lemma 2, we need to verify that the presented graph has a
different degree sequence than its complement but equal chromatic polynomial.
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sage: G = Graph(’HCpVdZY’)

sage: Gc = G.complement()

sage: G.degree sequence() == Gc.degree sequence ()

False

sage: G.chromatic polynomial() == Gc.chromatic polynomial()

True

To check Lemma 4 we need to first define a function computing the subgraph
description of a graph.

def s(Gr):

ds = []

for A in subsets(Gr.edges()):

G = Graph()

G.add vertices(Gr.vertices())

G.add edges(A)

cs = [H.order() for H in G.connected components subgraphs ()]

ds.append ([len(A)] + sorted(cs))

return sorted(ds)

It is now a matter of a few lines to verify Lemma 4.

sage: G = Graph(’GCRdvK’)

sage: Gc = G.complement()

sage: G.is isomorphic (Gc)

False

sage: s(G) == s(Gc)

True
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