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Abstract

The regular number of a graph G denoted by reg(G) is the minimum number of

subsets into which the edge set ofG can be partitioned so that the subgraph induced by

each subset is regular. In this work we answer to the problem posed as an open problem

in A. Ganesan et al. (2012) [3] about the complexity of determining the regular number

of graphs. We show that computation of the regular number for connected bipartite

graphs is NP-hard. Furthermore, we show that, determining whether reg(G) = 2 for

a given connected 3-colorable graph G is NP-complete. Also, we prove that a new

variant of the Monotone Not-All-Equal 3-Sat problem is NP-complete.

Key words: Regular number; Computational Complexity; Edge-partition problems;

Not-All-Equal 3-Sat.

Subject classification: 05C15, 05C20, 68Q25

1 Introduction

All graphs considered here are finite, undirected and loopless. For every v ∈ V (G), d(v)

denotes the degree of v and for a natural number k, a graph G is called a k-regular graph

if d(v) = k, for each v ∈ V (G). Also, we denote the maximum degree of G by ∆(G). We

follow [13] for terminology and notation where they are not defined here.

In 1981, Holyer [5] considered the computational complexity of edge-partition prob-

lems and proved that for each fixed n ≥ 3 it is NP-complete to determine whether an

∗E-mail addresses: ali dehghan16@aut.ac.ir, msadeghi@aut.ac.ir, arash ahadi@mehr.sharif.edu.

1

http://arxiv.org/abs/1403.1182v1


arbitrary graph can be edge-partitioned into subgraphs isomorphic to the complete graph

Kn. Holyer purposed the following problem and conjectured that for every graph H with

more than two edges the following problem is NP-complete.

The Holyer Problem: Given a fixed graph H, can the edge set of an instance graph G

be partitioned into subsets inducing graphs isomorphic to H?

Afterwards, the complexity of edge-partition problems have been studied extensively

by several authors, for instance see [1, 2, 5, 11]. Dor et al. proved that the Holyer

problem is NP-complete whenever H has a connected component with at least 3 edges

[2]. Afterwards, Bryś et al. in [1] completely solved the Holyer problem; they proved

that, if a graph H does not have a component with at least 3 edges then the problem of

deciding if the edge set of an instance graph G can be partitioned into subsets inducing

graphs isomorphic to H is polynomial time solvable. Nowadays, computational complexity

of edge decomposition problems is a well-studied area of graph theory.

If we consider the Holyer problem for a family Q of graphs instead of H as a fixed graph

then, we can find some interesting problems. For a family Q of graphs, a Q-decomposition

of a graph G is a partition of the edge set of G into subgraphs isomorphic to members

of Q. Problems of Q-decomposition of graphs have received a considerable attention, for

example, Holyer proved that it is NP-hard to edge-partition a graph into the minimum

number of complete subgraphs [5]. For more examples see [9, 10].

Consider the family of regular graphs, the edge set of every graph can be partitioned

such that the subgraph induced by each subset is regular. In 2001, Kulli et al. introduced

an interesting parameter for the edge-partition of a graph [7]. The regular number of a

graph G denoted by reg(G) is the minimum number of subsets into which the edge set of

G can be partitioned so that the subgraph induced by each subset is regular. Nonempty

subsets E1, . . . , Er of E are said to form a regular partition of G if the subgraph induced

by each subset is regular.

Example 1 The zebra Bn is a graph defined recursively. The zebra B0 consists of a copy of

K1. In order to define Bn+1, consider a copy of Bn and call it In, Also consider |V (Bn)| =

3n new isolated vertices and call them Jn. Now put 2n distinct prefect matchings between

In and Jn call the resulting graph B′
n. Let Bn+1 = B′

n ∪ Bn. The set of degrees of Bn is

{0, 1, 2, · · · , 2n − 1} and it is easy to see that reg(Bn) = n.

The edge chromatic number of a graph denoted by χ′(G) is the minimum size of a

partition of the edge set into 1-regular subgraphs. By Vizing’s theorem [12], the edge

chromatic number of a graph G is equal to either ∆(G) or ∆(G) + 1. Therefore the
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regular number problem is a generalization for the edge chromatic number and we have

the following.

reg(G) ≤ χ′(G) ≤ ∆(G) + 1. (1)

In this work we give the answer to the problem posed as an open problem in A. Ganesan

et al. [3] about the complexity of determining the regular number of a graph. Determining

the computational complexity of the regular number for disconnected graphs is a very easy

problem. In the following we first consider disconnected graphs and then we focus on the

complexity boundary of regular number problem for connected graphs.

Remark 1 It was shown that it is NP-hard to determine the edge chromatic number of

an r-regular graph; for any r ≥ 3 [8]. For a given r-regular graph G with r ≥ 3, consider

the new graph G′ = G ∪ K1,r. Clearly, reg(G′) = ∆(G′) if and only if χ′(G) = ∆(G).

Therefore, for every k ≥ 3, it is NP-complete to decide whether reg(G) = k for a given

disconnected graph G.

Corollary 1 For every k ≥ 3, it is NP-complete to decide whether reg(G) = k for a given

disconnected graph G.

In every regular partition of a tree T , each part is 1-regular, so reg(T ) = ∆(T ) = χ′(G)

[3]. Designing an algorithm to decompose a given bipartite graph into the minimum

number of regular subgraphs was posed as a problem in [3]. We show that computation

of the regular number is NP-hard for connected bipartite graphs.

Theorem 1 Computation of the regular number for connected bipartite graphs is NP-

hard.

For a connected graph G, reg(G) = 1, if and only if G is regular. We consider

the complexity of deciding whether reg(G) = 2 for a given graph G. We prove that

if {d(v) : v ∈ V (G)} = {k, k′}, where k and k′ are different natural numbers, then

computation of the regular number is NP-hard even if the graph is 3-colorable.

Theorem 2 Determining whether reg(G) = 2 for a given connected 3-colorable graph G

is NP-complete.

It was asked in [3] to determine whether reg(G) ≤ ∆(G) holds for all connected graphs

G. We show that not only there exists a counterexample for the above bound but also for

a given connected graph G decide whether reg(G) = ∆(G) + 1 is NP-complete.
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Theorem 3 Determining whether reg(G) ≤ ∆(G) for a given connected graph G is NP-

complete.

2 NP-Completeness

First, we show that computation of the regular number is NP-hard for connected bipartite

graphs. It is shown that 3-Partition is NP-complete in the strong sense [4].

3-Partition.

Instance: A positive integer k ∈ Z
+ and 3n positive integers a1, . . . , a3n ∈ Z

+ such that

k/4 < ai < k/2 for each 1 ≤ i ≤ 3n and
∑3n

i=1 ai = nk.

Question: Can {a1, . . . , a3n} be partitioned into n disjoint sets A1, · · · , An such that, for

1 ≤ i ≤ n,
∑

a∈Ai
a = k?

Proof of Theorem 1. We reduce 3-Partition to our problem in polynomial time. For

an instance A =< a1, . . . , a3n > and number k, consider 3n copies of complete bipartite

graph K2k,2k−1 and denote them by K(1), · · · ,K(3n). Also, denote the part of size 2k of

K(i), by X(i). Next, consider three new vertices u, v and w. For every i, 1 ≤ i ≤ 3n,

join 2ai vertices of X(i) to u. From other vertices of X(i), join k − ai vertices of X(i) to

v and finally join k − ai remaining vertices of X(i) to w. Call the set of these 2k edges

E(i). Also, call the resulting graph G = GA,k. We show that reg(G) ≤ n if and only if

3-Partition has a true answer. Since the degrees of u, v and w are 2kn and the degrees of

all other vertices is 2k, so in every regular partition G1, · · · , Gt of G, each Gi is at most

(2k)-regular, therefore, reg(G) ≥ n.

First, assume that reg(G) = n and G1, · · · , Gn is a regular partition of G such that Gi

is (ri)-regular. Since in every regular partition G1, · · · , Gt of G, each Gi is at most (2k)-

regular, so r1 = · · · = rn = 2k. Hence, for every i, 1 ≤ i ≤ 3n, all the edges of E(i) and

K(i) are in one of the G1, · · · , Gn. Consequently, for every j, we have
∑

i:K(i)⊆Gj
2ai = 2k.

So {{ai : K
(i) ⊆ Gj} : 1 ≤ j ≤ n} is an appropriate partition for A =< a1, . . . , a3n >. On

the other hand, if A1, · · · , An is a partition for A such that
∑

a∈Ai
a = k, then for every

j, let Gj be the induced subgraph on {u, v, w}
⋃

i:ai∈Aj
K(i). So reg(G) ≤ n. �

Proof of Theorem 2. Our proof consist of two steps. In the first step we prove that a

new variant of the Monotone Not-All-Equal 3-Sat problem is NP-complete, then in the

step 2 we reduce it to our problem in polynomial time.
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Step 1. Let Υ be a 3-SAT formula with the set of clauses C and the set of variables

X. It is shown that the following problem is NP-complete [4].

Monotone Not-All-Equal 3-Sat.

Instance: Set X of variables, collection C of clauses over X such that each clause c ∈ C

has | c |= 3 and there is no negation in the formula.

Question: Is there a truth assignment for X such that each clause in C has at least one

true literal and at least one false literal?

We show that this problem remains NP-complete when every variable has exactly

three occurrences and every clause contains two or three variables.

Cubic Monotone NAE (2,3)-Sat.

Instance: Set X of variables, collection C of clauses over X such that each clause c ∈ C

has | c |∈ {2, 3}, every variable appears in exactly three clauses and there is no negation

in the formula.

Question: Is there a truth assignment for X such that each clause in C has at least one

true literal and at least one false literal?

v v
1 tv2

Figure 1: The chain Cht forces black variables to be equal.

Consider the graph Cht which is shown in Figure 1. Every circle is a variable, every

square is a clause and the clause c contains the variable x if and only if they are connected

in the graph. Also, every variable occurs at most three times and each clause contains two

or three variables. The chain Cht forces black variables to be equal.

Let Ψ be an instance of Monotone NAE 3-Sat. For each variable v that occurs in k > 3

clauses, we replace it with the chain Chk−2. Also, for every variable v that occurs in 2

clauses, create two new variables v1 and v2, next add three clauses (v1 ∨ v2), (v1 ∨ v2) and

(v1 ∨ v2 ∨ v). For every variable v that occurs in one clause, perform a similar method.

Therefore, we obtain a formula Φ which is an instance of Cubic Monotone NAE (2,3)-Sat
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and also Φ has an NAE truth assignment if and only if Ψ has an NAE truth assignment.

Step 2. Now we reduce Cubic Monotone NAE (2,3)-Sat to our problem in polynomial

time. Consider an instance Φ, we transform this into a graph GΦ such that reg(GΦ) = 2

if and only if Φ has an NAE truth assignment. We use two gadgets Hc and Ic which are

shown in Figure 2. The graph GΦ has a copy of Hc for each clause c ∈ C with | c |= 3,

a copy of Ic for each clause c ∈ C with | c |= 2 and an vertex x for each variable x ∈ X.

For each clause c = y ∨ z ∨ w, where y,w, z ∈ X add the edges ucy, ucz and ucw. Also,

for each clause c = y ∨ z, where y,w ∈ X add the edges vcy and vcz. The degree of every

vertex in G is 3 or 6 and GΦ is 3-colorable.

uc v

cz

c

Figure 2: The two gadgets Hc and Ic. Ic is on the right hand side of the figure.

First, assume that reg(GΦ) = 2 and G1, G2 is a regular partition of G such that Gi is

(ri)-regular. Since GΦ has vertices with degrees 3 and 6, so r1 = r2 = 3. For every x ∈ X,

since x has degree 3, so all edges incident with x are in one part. For every x ∈ X, if all

edges incident with x are in G1, put Γ(x) = true and if all edges incident with x are in

G2, put Γ(x) = false. According to the construction of Hc and Ic, in each of them the

black edges are in one part and the gray edges are in another part. Therefore, for every

clause c = y ∨ z ∨ w, at most two of the three edges ucy, ucz and ucw are in G1. Also,

at most two of the three edges ucy, ucz and ucw are in G2. By a similar argument, for

every clause c = y ∨ z, exactly one of the two edges vcy and vcz is in G1. Hence, Γ is an

NAE satisfying assignment. On the other hand, suppose that Φ is NAE satisfiable with

the satisfying assignment Γ : X → {true, false}. For every variable x ∈ X, put all edges

incident with x in G1 if and only if Γ(x) = true, also for every subgraph Ic, put the black

edges in G1 and the gray edges in G2. Finally, for every clause c = y ∨ z ∨w, if c has two

true literals, in the subgraph Hc, put the gray edges in G1 and the black edges in G2 and

otherwise put the black edges in G1 and the gray edges in G2. This completes the proof.

�
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A. Ganesan et al. in [3] asked to determine whether reg(G) ≤ ∆(G) holds for all

connected graphs G. We show that not only there exists a counterexample for the above

bound but also for a given connected graph G deciding whether reg(G) = ∆(G) + 1 is

NP-complete.

Proof of Theorem 3. For a cubic graph G, define σ(G) to be the minimum number

such that there exists a 4-edge-coloring of G with σ(G) edges assigned the fourth color.

Kochol et al. proved that for a given cyclically 6-edge-connected 3-regular graph G ap-

proximating σ(G) with an error O(n1−ε) is NP-hard, where n denotes the number of

vertices of the graph G and 0 < ε < 1 is a constant [6]. In other words, they proved that

the problem to decide whether σ(G) ∈ [0, n1−ε] is NP-complete in the class of cyclically

6-edge-connected cubic graphs (note that a graph is cyclically k-edge-connected if deleting

fewer than k edges does not result in a graph having at least two components containing

cycles).

In fact, kochol et al. proved that, the problem to decide whether a cyclically 6-edge-

connected cubic graph has a 3-edge-coloring is NP-complete and for a given cyclically

6-edge-connected cubic graph H with m vertices, in polynomial time they construct a

graph G which is cyclically 6-edge connected cubic graph with n vertices such that:

(i): H has a 3-edge-coloring if and only if G has 3-edge-coloring.

(ii): If G is not 3-edge-colorable, then σ(G) > n1−ε.

Therefore, Kochol et al. construct a family of cubic graphs such that every graph G in

this family has a 3-edge-coloring or σ(G) > n1−ε, where n is the number of vertices of G

[6]. Also, they show that determining the 3-edge-colorability in this family is NP-complete

[6]. Consequently, by this reduction the following promise problem is NP-complete.

Problem Θ.

Instance: A cyclically 6-edge-connected cubic graph G.

Question: Is χ′(G) ≤ 3?

Promise: σ(G) 6= 1.

We reduce Problem Θ to our problem, let G be a given cyclically 6-edge-connected

3-regular graph and e = uv ∈ E(G) be an arbitrary edge, remove e from E(G) and add

three vertices v′, v′′ and v′′′ to V (G); join v′ to v,v′′ and v′′′. Call the resulting graph

G′. Since σ(G) 6= 1, therefore if G is not 3-edge-colorable then, G \ e is also not 3-edge-

colorable, so if G is not 3-edge-colorable, then G′ is not 3-edge-colorable. Consequently,

since d(v′′) = d(v′′′) = 1 and d(v′) = 3 we have reg(G′) = 3 if and only if σ(G) = 0. This
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completes the proof. �
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