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Abstract

The mirror (or bipartite complement) mir(B) of a bipartite graph B =
(X,Y,E) has the same color classes X and Y as B, and two vertices x ∈ X
and y ∈ Y are adjacent in mir(B) if and only if xy /∈ E. A bipartite graph
is chordal bipartite if none of its induced subgraphs is a chordless cycle
with at least six vertices. In this paper, we deal with chordal bipartite
graphs whose mirror is chordal bipartite as well; we call these graphs
auto-chordal bipartite graphs (ACB graphs for short). We describe the
relationship to some known graph classes such as interval and strongly
chordal graphs and we present several characterizations of ACB graphs.
We show that ACB graphs have unbounded Dilworth number, and we
characterize ACB graphs with Dilworth number k.

1 Introduction

Given a finite relation R between two sets X and Y , a corresponding graph can
classically be defined in several ways; X and Y are often considered either as
stable sets or as cliques of a graph, and R describes the edges between X and
Y . First, when both X and Y are stable sets, R defines a bipartite graph bip(R)
with edges between X and Y . The maximal bicliques of this bipartite graph can
be organized by inclusion into a lattice, called a concept lattice L(R) [11] (or
Galois lattice [5]). Second, when both X and Y are cliques, the corresponding
graph is co-bipartite. Third, when without loss of generality, X is a clique and
Y is a stable set, the corresponding graph is a split graph. Finally, R defines a
hypergraph where, without loss of generality, X is the vertex set and Y describes
the hyperedges.

Naturally, there are strong relationships between different realizations of
R. One example of this correspondence, which is central to this paper, is the
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one between chordal bipartite graphs and strongly chordal graphs (see [7] and
Lemma 2 of Section 2): A bipartite graph B = (X,Y,E) is chordal bipartite if
and only if the graph obtained from B by completing X to a clique is strongly
chordal.

In this paper, we will also use the complement relationR, which we called the
mirror relation [2]. The mirror (or bipartite complement) mir(B) of a bipartite
graph B = (X,Y,E) has the same color classes X and Y as B, and two vertices
x ∈ X and y ∈ Y are adjacent in mir(B) if and only if xy /∈ E. Several
papers use this mirror notion, with various names and notations. Most of them
in fact investigate ’auto-mirror ’ relations (i.e., both the relation and its mirror
relation are in the same class). Such relations were used e.g. by [12] to describe
bipartite graphs whose vertex set can be partitioned into a stable set and a
maximal biclique; by [13] to decompose a bipartite graph in a manner similar to
modular decomposition; by [17] to investigate the chain dimension of a bipartite
graph, remarking the (obvious) fact that a bipartite graph is a chain graph (i.e.,
is 2K2-free) if and only if its mirror is also a chain graph; by [1] and [10] to
characterize split graphs of Dilworth number 2 (the Dilworth number of a graph
is the maximum number of its vertices such that the neighborhood of one vertex
is not contained in the closed neighborhood of another [20]; see Section 3); by
[18] to characterize split graphs of Dilworth number 3; by [2] to characterize
lattices with an articulation point.

Recently, [3] characterized concept lattices which are planar and whose mir-
ror lattice is also planar: this is the case if and only if the corresponding bi-
partite graph as well as its mirror is chordal bipartite. We call these graphs
auto-chordal-bipartite graphs (ACB graphs for short); these are the main topic
of this paper. Though chordal bipartite graphs have given rise to a wealth of
publications, to the best of our knowledge ACB graphs have not been studied.

By Lemma 2, ACB graphs correspond to split graphs which are strongly
chordal and whose mirror is strongly chordal as well (auto-strongly-chordal
graphs). One special class of auto-strongly-chordal graphs which is well-known
is that of interval graphs whose complement is an interval graph as well (auto-
interval graphs); this special class of split graphs was characterized by [1] using
results from [10] as those having Dilworth number at most 2.

This paper is organized as follows: In Sections 2 and 3, we give some nec-
essary notations, definitions and previous results. In Section 4, we show that
the Dilworth number of ACB graphs is unbounded. We address the question of
determining both the Dilworth number with respect to X and to Y , and show
that both numbers can be arbitrarily large and that the gap between the two
numbers can also be arbitrarily large. In Section 5, the main result of this paper
is a characterization of ACB graphs with Dilworth number at most k in terms of
forbidden induced subgraphs. Finally, in Section 6, we discuss some algorithmic
aspects of ACB graphs.
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2 Notions and Preliminary Results

2.1 Some Basic Graph and Hypergraph Notions

Throughout this paper, all graphs are finite, simple (i.e., without loops and
multiple edges) and undirected. For a graph G = (V,E), let G = (V,E) denote
the complement graph with E = {xy : x 6= y, xy /∈ E}. Isomorphism of graphs
G1, G2 will be denoted by G1 ∼ G2. As usual, N(x) = {y ∈ V : xy ∈ E} is the
open neighborhood of x, and N [x] = N(x) ∪ {x} is the closed neighborhood of x

ForX ⊆ V , G[X ] denotes the subgraph induced by X . For a set F of graphs,
G is F-free if none of the induced subgraphs of G is in F . A clique is a set of
pairwise adjacent vertices. A stable set or independent set is a set of pairwise
non-adjacent vertices.

For two vertex-disjoint graphsG1 and G2, G1+G2 denotes the disjoint union
of them; iK2 denotes the disjoint union of i edges, i ≥ 2.

Ck, k ≥ 4, denotes the chordless cycle on k vertices. A graph is chordal

if it is Ck-free for every k ≥ 4. Pk, k ≥ 4, denotes the chordless path on k
vertices. For k ≥ 3, a (complete) k-sun, denoted Sk, consists of a clique with
k vertices, say q0, . . . , qk−1, and another k vertices, say s0, . . . , sk−1, such that
s0, . . . , sk−1 form a stable set and every si is adjacent to exactly qi and qi+1

(index arithmetic modulo k). Later on, S3, S4 and S3 (also called net) play
a special role. A chordal graph is strongly chordal [8] if it is Sk-free for every
k ≥ 3.

A bipartite graph B is a graph whose vertex set can be partitioned into two
stable sets X and Y , which we refer to as its color classes. We use the notation
B = (X,Y,E). A biclique in B = (X,Y,E) is a subgraph induced by sets
X ′ ⊆ X and Y ′ ⊆ Y having all possible edges between elements of X ′ and Y ′.
In a bipartite graph B = (X,Y,E), vertices of a path Pk alternate between X
and Y ; a P7 with its end-vertices in X (with its end-vertices in Y , respectively)
is called an X-P7 (a Y -P7, respectively).

A bipartite graph B is a chordal bipartite graph if B is C2k-free for all k ≥ 3
[14]. A chain graph is a 2K2-free bipartite graph; obviously, every chain graph is
chordal bipartite. A co-bipartite graph is the complement of a bipartite graph,
i.e., a graph whose vertex set can be partitioned into two cliques X and Y . A
graph G is a split graph if its vertex set can be partitioned into a clique K and
a stable set I, also denoted as G = (K, I,E). The following is well-known:

Lemma 1 ([9]). The following are equivalent:

(i) G is a split graph.

(ii) G and G are chordal.

(iii) G is (2K2, C4, C5)-free.

For a given bipartite graph B = (X,Y,E), let splitX(B) (splitY (B), re-
spectively) denote the split graph resulting from B by completing X (Y , re-
spectively) to a clique. For example, if B = C2k then splitX(B) = Sk and if
B = 3K2 then splitX(B) = S3, k ≥ 3.

The following fact is well-known ([7], see also [4]):
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Lemma 2 ([7]). A bipartite graph B = (X,Y,E) is chordal bipartite if and only

if splitX(B) (splitY (B), respectively) is strongly chordal.

For a split graph G = (K, I,E) with split partition into a clique K and a
stable set I, let bip(G) = (K, I,E′) denote the corresponding bipartite graph
with edge set E′ = {xy : x ∈ K, y ∈ I, xy ∈ E}.

The reader is referred to [4] and [20] for further graph notions.

2.2 Mirror of Relations, Hypergraphs, Bipartite Graphs

and Split Graphs

The notion of mirror of relations, hypergraphs, bipartite graphs and split graphs
is closely related to the complement and is defined as follows:

(1) Let R ⊆ X × Y be a relation between sets X and Y . The mirror relation

of R, denoted mir(R) = R, is the complement relation R ⊆ X × Y such
that (x, y) ∈ R if and only if (x, y) 6∈ R.

(2) Let H = (V, E) be a hypergraph. The mirror of H is the complement
hypergraph mir(H) = H = (V, {e : e ∈ E}).

(3) Let B = (X,Y,E) be a bipartite graph. The mirror (or bipartite com-

plement) of B is the bipartite graph mir(B) = (X,Y,E′) such that for
all x ∈ X , y ∈ Y , xy ∈ E′ if and only if xy 6∈ E. Thus, for example,
mir(C6) = 3K2, mir(C8) = C8, and mir(P7) = P7.

(4) Let G = (K, I,E) be a split graph with split partition into a clique K
and stable set I. The mirror of G is the split graph mir(G) = (K, I,E′)
where for all x ∈ K and for all y ∈ I, xy ∈ E′ if and only if xy 6∈ E.

Figure 1 illustrates the mirror of the bipartite graphs C6, C8, 2K2, 3K2 and
their split graphs S3, S4, P4, S3.

Note that mir(S3) = S3 and mir(S4) = S4. Moreover, the following equali-
ties obviously hold:

Proposition 1.

(1) For any bipartite graph B = (X,Y,E), splitX(B) = mir(splitY (B)).

(2) For any split graph G = (K, I,E), mir(bip(G)) = bip(G) as well as G =
splitI(mir(bip(G))).

Recall that a bipartite graph is auto-chordal bipartite (ACB for short) if
B and mir(B) are chordal bipartite. Since for every k ≥ 5, C2k contains an
induced subgraph 3K2, it follows:

Proposition 2. A bipartite graph B is an ACB graph if and only if B is

(3K2, C6, C8)-free.
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bipartite B mir(B) SplitX(B) mir(SplitX(B))

C6 3K2 S3 S3

C8 C8 S4 S4

2K2 2K2 P4 P4

3K2 C6 S3 S3

Figure 1: Correspondences between bipartite graphs, split graphs, and their
mirrors.
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Strongly chordal graphs whose complement graph is strongly chordal as well
are called auto-strongly-chordal in this paper. The next proposition follows
from Lemma 1 and the following three facts: Auto-strongly-chordal graphs are
exactly the Sk-free and Sk-free split graphs; for k ≥ 5, sun Sk contains net S3

as induced subgraph; S4 ∼ S4.

Proposition 3. The following are equivalent:

(i) G is auto-strongly-chordal.

(ii) G is a (S3, S3, S4)-free split graph.

(iii) G is (2K2, C4, C5, S3, S3, S4)-free.

Together with Lemma 2 this gives:

Corollary 1. A bipartite graph B = (X,Y,E) is an ACB graph if and only if

splitX(B) (splitY (B), respectively) is auto-strongly-chordal.

Summarizing, we obtain:

Corollary 2. For a bipartite graph B = (X,Y,E), the following are equivalent:

(i) B is an ACB graph.

(ii) B is (3K2, C6, C8)-free.

(iii) B is 3K2-free chordal bipartite.

(iv) splitX(B) and splitX(B) are strongly chordal.

3 Dilworth Number of Hypergraphs, Graphs,

Bipartite Graphs and Split Graphs

3.1 Dilworth Number and Poset Width

The width of a poset is the maximum number of its pairwise incomparable
elements. In [20], Chapter 8.5 deals with the Dilworth number of graphs and
the width of posets. We need the following notions of the Dilworth number:

3.1.1 Dilworth Number of Hypergraphs

Let H = (V, E) be a hypergraph. The Dilworth number dilw(H) of H is the
maximum number of pairwise incomparable hyperedges in E with respect to set
inclusion. Obviously:

dilw(H) = dilw(mir(H)).

Note that hypergraphs with pairwise incomparable hyperedges are also called
Sperner hypergraphs. A Sperner hypergraph H = (V, E) is k-critical if H has
k hyperedges and if for all v ∈ V , deleting v in H leads to a non-Sperner
hypergraph.
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3.1.2 Dilworth Number of Graphs

For graphs, the vicinal preorder � on the vertex set of a graph G is defined as

x � y if N(x) ⊆ N [y].

The Dilworth number dilw(G) of G is the maximum integer k such that there are
k pairwise incomparable nodes with respect to � in G. Obviously, dilw(G) =
dilw(G) holds [10]. In [10], for a subset S ⊆ V , the Dilworth number ∇G(S)
with respect to S is defined as the maximum number of elements of S that are
pairwise incomparable in the vicinal preorder of G.

3.1.3 Dilworth Number of Bipartite Graphs

In a bipartite graph B = (X,Y,E), for every x ∈ X and y ∈ Y , the neigh-
borhoods N(x) and N(y) are incomparable. Thus, it only makes sense to com-
pare neighborhoods of vertices from X (from Y , respectively). Moreover, for
x, x′ ∈ X , N(x) ⊆ N [x′] if and only if N(x) ⊆ N(x′). Thus, the vicinal preorder
for bipartite graphs can be defined as follows:

(i) for x, x′ ∈ X , x � x′ if N(x) ⊆ N(x′) and analogously,

(ii) for y, y′ ∈ Y , y � y′ if N(y) ⊆ N(y′).

Let ∇B(X) (∇B(Y ), respectively) be the Dilworth number of the corresponding
neighborhood hypergraph NX = {N(x) : x ∈ X} (NY = {N(y) : y ∈ Y },
respectively), which we will refer to as the X-Dilworth number (Y -Dilworth

number, respectively). We define the bipartite Dilworth number of B as

bip− dilw(B) := max(∇B(X),∇B(Y )).

Obviously, for a bipartite graph B = (X,Y,E), bip − dilw(B) ≤ ∇B(X) +
∇B(Y ) holds. The Dilworth number dilw(B) of a bipartite graph B can be as
large as the sum of the X- and Y -Dilworth numbers of B, as is the case for the
C2k with k ≥ 3.

3.1.4 Dilworth Number of Split Graphs

For a split graph G = (K, I,E), the Dilworth number can be defined in a very
similar way. Since K is a clique, I is independent, and for every x ∈ K and
y ∈ I, N(y) ⊆ N [x] holds, it is natural to define ∇G(K) (∇G(I), respectively)
as the maximum number of pairwise incomparable neighborhoods of vertices in
K (of vertices in I, respectively). Then, similarly as for bipartite graphs, let

dilw(G) := max(∇G(K),∇G(I)).

Thus, for a split graph G and its bipartite version bip(G), dilw(G) = bip −
dilw(bip(G)) holds and is the same as the maximum of the Dilworth numbers
of the corresponding neighborhood hypergraphs.
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3.2 Related Work on Small Dilworth Numbers

3.2.1 Dilworth Number 1

Recall that a bipartite graph is called a chain graph if it is 2K2-free. Obviously,
the following holds:

Proposition 4. A bipartite graph B = (X,Y,E) is a chain graph if and only

if ∇B(X) = ∇B(Y ) = 1.

The corresponding class for split graphs is the class of threshold graphs; in
[6], it is shown:

Proposition 5. Let G be a split graph. The following are equivalent:

(i) G is a threshold graph.

(ii) dilw(G) = 1.

(iii) G is (2K2, C4, P4)-free.

Note that splitX(2K2) = P4.

3.2.2 Dilworth Number 2 for Split Graphs

Interval graphs form a famous graph class; it is well-known that these graphs
are strongly chordal, and a graph is an interval graph if and only if it is chordal
and its complement graph is a comparability graph (see e.g. [4]). Since a graph
G is a permutation graph if and only if G and G are comparability graphs, it
follows that G and G are interval graphs if and only if G is a split graph and a
permutation graph. Various papers deal with such graphs [1, 15].

Let rising sun denote the graph resulting from S4 by deleting one of its
simplicial vertices, and let co-rising sun denote its complement graph (see Figure
2). Földes and Hammer [10] proved the following property:

Proposition 6 ([10]). A split graph G is an interval graph if and only if G is

(S3, S3, rising sun)-free.

Corollary 3 ([1]). If G is a split graph then G and G are both interval graphs

if and only if G is (S3, S3, rising sun, co-rising sun)-free.

As already mentioned, for split graphs G = (K, I,E), Földes and Hammer
in [10] defined the I-Dilworth number ∇G(I) for the independent set I. They
showed:

Proposition 7 ([10]). Let G = (K, I,E) be a split graph. Then G is an interval

graph if and only if ∇G(I) ≤ 2.

Corollary 4. A graph G and its complement are interval graphs if and only if

the Dilworth number of G is at most 2.

8



X-P7 Y -P7 splitX(X-P7) splitX(Y -P7)
rising sun co-rising sun

Figure 2: Correspondences between the P7s and their split graphs.

Thus, S3, S3, rising sun, and co-rising sun are the minimal split graphs of
Dilworth number 3.

Remark. Surprisingly, both papers [10] and [1] have nearly the same title,
namely “Split graphs of Dilworth number 2”, and in Theorem 5 of [1], the
result of [10] is cited in a wrong way, namely as “G is an interval and split
graph if and only if its Dilworth number is at most 2” (but the results in [1] are
correct).

3.2.3 Dilworth Number 2 for Bipartite Graphs

Recall that splitX(C6) = S3 and splitX(3K2) = S3. Obviously, for an X-P7 P ,
splitX(P ) is the rising sun, and for a Y -P7 P , splitX(P ) is the co-rising sun, as
illustrated by Figure 2.

Split graphs which are interval graphs are characterized in Proposition 6
as being (S3, S3, rising sun)-free and in Proposition 7 as having I-Dilworth
number at most 2. Let us translate Proposition 6 into terms of ACB graphs.

Proposition 8. For a bipartite graph B = (X,Y,E), splitX(B) is an interval

graph if and only if B is (3K2, C6, X-P7)-free.

Since C8 contains P7, it follows:

Corollary 5. For an ACB graph B = (X,Y,E), splitX(B) is an interval graph

if and only if B is X-P7-free.

Corollary 3 corresponds to a more restricted class of ACB graphs:

Proposition 9. Let B = (X,Y,E) be a bipartite graph. The following are

equivalent:

(i) B is (3K2, C6, P7)-free.

(ii) B is a P7-free ACB graph.

(iii) splitX(B) and splitY (B) are both interval graphs.

Recall that for a split graph G = (K, I,E) with clique K and stable set I,
bip(G) denotes the bipartite graph resulting from G by turning K into a stable
set.

Proposition 10. Let G be a split graph. The following are equivalent:

9



(i) G is (S3,S3,rising sun,co-rising sun)-free.

(ii) bip(G) is (3K2, C6, P7)-free.

(iii) bip(G) is a P7-free ACB graph.

In [1], a linear-time recognition algorithm for split graphs of Dilworth number
greater than 2 is given. This approach can easily be adapted to decide whether
a bipartite graph has X-Dilworth number (Y -Dilworth number, respectively)
more than 2.

3.2.4 Dilworth Numbers 3 and 4 for Split Graphs

In [18], Nara characterized split graphs of Dilworth number at most 3 by a list of
forbidden induced subgraphsG1, . . . , G16 which, together with their complement
graphs, represent all 4-critical split graphs; for k ≥ 2, a split graphG = (K, I,E)
is called k-critical (with respect to I) in [18] if ∇G(I) = k and for all v ∈ I,
∇G−v(I − v) ≤ k − 1.

Theorem 1 ([18]). The Dilworth number of a split graph G is at most 3 if and

only if G and G are (G1, . . . , G16)-free.

It should be noted that the graph G11 of Nara’s list in [18] contains the
4-sun S4 as an induced subgraph (which is graph G12 of his list) and thus is
not 4-critical. But we verified Theorem 1 by determining all 4-critical (and 5-
critical) Sperner hypergraphs using a well adapted backtracking. It turned out
that there are 15 4-critical and 178 5-critical Sperner hypergraphs.

Up to G11 all other 15 graphs of Nara’s list are determined by the 4-
critical Sperner hypergraphs and hence are 4-critical. The 4-critical split graphs
H1 −H10 and their mirrors in Figure 3 represent the 15 4-critical Sperner hy-
pergraphs.

Theorem 1 can also be formulated in the following way:

Theorem 2. The Dilworth number of a split graph G is at most 3 if and only

if G and G are (H1, . . . , H10)-free and (mir(H1), . . . ,mir(H10))-free .

4 Arbitrarily large X- and Y -Dilworth Numbers

of ACB Graphs

In the following, we show that for ACB graphs G, both ∇G(X) and ∇G(Y ) can
be arbitrarily large. For k ≥ 2, let Dk = (X,Y,E) be the bipartite graph with
vertex sets X = X3k−4 = {x1, . . . , x3k−4} and Y = Y3k−4 = {y1, . . . , y3k−4}
where xiyj is an edge if and only if

|i− j| ≤ k − 2 and {i, j} ∩ {k − 1, . . . , 2k − 2} 6= ∅.

Figure 4 shows graph D5. In order to show the subsequent Theorem 3, we
color the vertices xi and yj green if i, j ∈ {k− 1, . . . , 2k− 2} and red otherwise.

10



H1 mirror of H1 H2 (auto-mirror)

H3 (auto-mirror) H4 mirror of H4

H5 mirror of H5

H6 mirror of H6

H7 mirror of H7

H8 (auto-mirror) H9 (auto-mirror) H10 (auto-mirror)

Figure 3: 4-critical split graphs H1 −H10 and their mirrors.
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x1

y1

x2

y2

x3

y3

x4

y4

x4

y4

x5

y5

x6

y6

x7

y7

x8

y8

x9

y9

x10

y10

x11

y11

Figure 4: Graph D5 having X- and Y -Dilworth number 5: ∇B(X) = ∇B(Y ) =
5.

Note that in Dk, X consists of a green central interval of k vertices surrounded
by two red intervals, each of k − 2 vertices, and the same holds for Y . Note
also that each edge of Dk has at least one green vertex, and subgraphs induced
by one of the red intervals and its green neighbors form chain graphs, i.e., are
2K2-free.

Theorem 3. For every k ≥ 2, Dk is an ACB graph with Dilworth numbers

∇Dk
(X) = ∇Dk

(Y ) = k.

Proof. Obviously, |N(xi)| = 2(k − 2) + 1 if i ∈ {k − 1, . . . , 2k − 2}. Moreover,
N(x1) ⊆ · · · ⊆ N(xk−1) and N(x2k−2) ⊇ · · · ⊇ N(x3k−4). Thus ∇Dk

(X) = k
and by symmetry also ∇Dk

(Y ) = k.
In order to show that Dk is an ACB graph, we need some lemmas:

Lemma 3. Let xi1yj1 , xi2yj2 be edges but xi1yj2 and xi2yj1 not be edges in Dk.

Then i1 < i2 implies j1 < j2.

Proof. Assume to the contrary that

i1 < i2 and j1 > j2. (1)

By symmetry, we may assume that xi1 is green. Since xi1yj1 , xi2yj2 are edges

i1 − (k − 2) ≤ j1 ≤ i1 + (k − 2),

i2 − (k − 2) ≤ j2 ≤ i2 + (k − 2)

and consequently in view of (1)

i1 − (k − 2) < i2 − (k − 2) ≤ j2 < j1 ≤ i1 + (k − 2),

i.e., xi1yj2 is an edge, a contradiction.

Lemma 4. Let xiyj1 , xiyj3 be edges in Dk. Then j1 < j2 < j3 implies that

xiyj2 is an edge in Dk.

Proof. Let j1 < j2 < j3.

Case 1. xi is green. By supposition, the interval {x : |i− x| ≤ k − 2} contains
j1, j3 and hence it contains also j2. But this implies that xiyj2 is an edge.

12



Case 2. xi is red. Then yj1 and yj3 are green and hence also yj2 is green.
By symmetry, we may assume that i < k − 1. By supposition, the interval
{x : k − 1 ≤ x ≤ i + (k − 2)} contains j1, j3 and hence it contains also j2. But
this implies that xiyj2 is an edge.

Lemma 5. The graph Dk is 3K2-free.

Proof. Assume the contrary and let xi1yj1 , xi2yj2 , xi3yj3 be the edges of an
induced 3K2. We may assume that i1 < i2 < i3. Then, by Lemma 3, j1 < j2 <
j3. First we show that xi2 is green. Indeed, assume that it is red. By symmetry
we may assume that i2 < k− 1. But then also i1 < k− 1 which means that xi1

is red. Then yj1 and yj2 have to be green. Since xi1yj1 , xi2yj2 are edges,

k − 1 ≤ j1 ≤ i1 + (k − 2),

k − 1 ≤ j2 ≤ i2 + (k − 2).

With i1 < i2 it follows that

k − 1 ≤ j1 ≤ i1 + (k − 2) < i2 + (k − 2),

i.e., xi2yj1 is an edge, a contradiction.

Thus xi2 and analogously yj2 are green. By symmetry we may assume that
xi1 is green. Then k − 1 ≤ i1 < i2 ≤ 2k − 2 and k − 1 ≤ j2 ≤ 2k − 2.

Case 1. j2 < 2k − 2. Then

−(k − 2) = (k − 1)− (2k − 3) ≤ j2 − i1 ≤ (2k − 3)− (k − 1) = k − 2,

i.e., xi1yj2 is an edge, a contradiction.

Case 2. j2 = 2k − 2. Then yj3 is red because of j2 = 2k − 2 < j3. It follows
that xi3 is green, i.e., k − 1 ≤ i1 < i2 < i3 ≤ 2k − 2, and further

−(k − 2) ≤ (2k − 2)− (2k − 2) ≤ j2 − i3 ≤ (2k − 2)− (k + 1) < k − 2,

i.e., xi3yj2 is an edge, a contradiction.

Now the proof of Theorem 3 is completed by the following:

Lemma 6. The graph Dk is C6-free and C8-free.

Proof. Assume that Dk contains an induced C6 = xi1yj1xi2yj2xi3yj3xi1 . Let
{l1, l2, l3} = {j1, j2, j3} where l1 < l2 < l3, i.e., the “l-set” is the “ordered j-
set”. Since the degrees of the vertices xi1 , xi2 , xi3 in the cycle C6 are exactly
2, by Lemma 4 the neighborhoods of xi1 , xi2 , xi3 have to be either {yl1, yl2} or
{yl2 , yl3}, hence two of these vertices have the same neighborhood in the cycle,
a contradiction. In the same way one can show that Dk does not contain a
C8.

Theorem 3 states that ACB graphs and hence also auto-strongly-chordal
graphs have unbounded Dilworth number.
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Corollary 6. For all k, l ≥ 2, there is an ACB graph G = (X,Y,E) with

Dilworth numbers ∇G(X) = k and ∇G(Y ) = l.

Proof. In the case k = l, the graph Dk fulfills Corollary 6 by Theorem 3. Thus
we may assume that k > l ≥ 2. Let Dk,l be the graph resulting from Dk by
omitting the k− l green vertices yk, . . . , y2k−l−1 (thus, keeping only l green ver-
tices in Y ). As an induced subgraph of an ACB graph it is an ACB graph
as well. As for Dk, we have also in this graph N(x1) ⊆ · · · ⊆ N(xk−1),
N(x2k−2) ⊇ · · · ⊇ N(x3k−4), N(y1) ⊆ · · · ⊆ N(yk−1), N(y2k−2) ⊇ · · · ⊇
N(y3k−4). Moreover, the neighborhoods of xk−1, . . . , x2k−2 are distinct and of
the same size. Hence ∇Dk,l

(X) = k. Similarly, the neighborhoods of the l
vertices yk−1, y2k−l, y2k−l+1, . . . , y2k−2 are distinct and of the same size. Hence
∇Dk,l

(Y ) = l.

In the next section, the following graphs play an essential role: Let Bk denote
the bipartite graph with vertex sets Xk = {x1, . . . , xk} and Yk = {y1, . . . , y2k−2}
such that for every i ∈ {1, . . . , k}, N(xi) = {yi, . . . , yi+k−2}. Note that B2 is the
2K2, B3 is the P7, which is the bipartite counterpart of the rising sun (X-P7)
and of the co-rising sun (Y -P7), and B4 is the bipartite counterpart of graph
G5 from [18]. Figure 5 illustrates the bipartite graphs B3 and B4.

Corollary 7. For every k ≥ 2, Bk is an ACB graph with ∇Bk
(X) = k and

∇Bk
(Y ) = 2.

Proof. Obviously, for all k ≥ 2, Bk is an induced subgraph of Dk, namely
induced by the vertices xk−1, . . . , x2k−2 and y1, . . . , yk−1, y2k−2, . . . , y3k−4. By
Theorem 3, this implies thatBk is an ACB graph. Moreover, clearly,∇Bk

(Xk) ≤
∇Dk

(Xk) = k. In Bk, for every i 6= j, the neighborhoods of N(xi) andN(xj) are
incomparable because they are distinct and of the same size. Thus ∇Bk

(X) = k,
and obviously ∇Bk

(Y ) = 2.

5 Characterization of ACBGraphs with bounded

Dilworth Number

Let k ≥ 2. An ACB graph G = (X,Y,E) is called k-critical (with respect to
Dilworth number) if bip−dilw(G) = k and for all v ∈ X∪Y , bip−dilw(G−v) ≤
k− 1 holds. The main result of this section is Theorem 4 which shows that the
k-critical ACB graphs are the graphs Bk, introduced in the preceding section.

The graphs Bk have the following nice property:

Proposition 11. For every k ≥ 2, Bk−1 is an induced subgraph of Bk.

Proof. For all i ∈ {1, . . . , k − 1}, N(xi) contains yk−1. Thus, if one deletes
yk−1, y2k−2 and xk in Bk, the resulting subgraph is isomorphic to Bk−1.

Now we are ready to state our main theorem:

Theorem 4. The bipartite graph G is a k-critical ACB graph if and only if G
is isomorphic to Bk.
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Figure 5: Critical bipartite graphs B3 and B4 with ∇B3
(X) = 3, ∇B3

(Y ) = 2,
∇B4

(X) = 4, and ∇B4
(X) = 2.

Proof. By Corollary 7, Bk is an ACB graph. It is easy to check that Bk

is k-critical. This proves the if-part. In order to prove the only-if-part let
G = (X,Y,E) be a k-critical ACB graph. Let F = {N(x) : x ∈ X} and let
F∗ = {N(y) : y ∈ Y }. Note that H∗ = (X,F∗) is the dual hypergraph of the
hypergraph H = (Y,F).

Let without loss of generality, dilw(Y,F) = k. Since G is k-critical, |X | = k.
Moreover, F as well as F∗ do not contain multiple members, G does not contain
isolated vertices and the members of F are pairwise incomparable with respect
to inclusion.

Lemma 7. We have dilw(X,F∗) = 2.

Proof. First assume that dilw(X,F∗) = 1. Let F∗ = {X1, . . . , Xl} with Xi =
N(yi), i = 1, . . . , l, and X1 ⊂ · · · ⊂ Xl. Note that Xl = X . For x ∈ X , let
ι(x) = min{i : x ∈ Xi}. Let a, b ∈ X and let, without loss of generality, ι(a) ≤
ι(b). Then {yι(b), yι(b)+1, . . . , yl} = N(b) ⊆ N(a) = {yι(a), yι(a)+1, . . . , yl}, a
contradiction.

Now assume that dilw(X,F∗) ≥ 3. Then there are α, β, γ ∈ Y such that
A = N(α), B = N(β) and C = N(γ) are pairwise incomparable. We study
several cases which are defined depending on the following conditions:

A ⊆ B ∪ C, (2)

B ⊆ A ∪ C, (3)

C ⊆ A ∪B. (4)

Case 1. At least two of the relations (2) – (4) are satisfied. Let, without loss
of generality, (2) and (3) be true. Then A \ B ⊆ C and B \ A ⊆ C. There is
some d ∈ A∩B \C because otherwise A ⊆ C (and B ⊆ C). Since A and B are
incomparable there exist elements a ∈ A \B and b ∈ B \A. Then a, α, d, β, b, γ
form a C6, a contradiction.
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Case 2. Exactly one of the relations (2) – (4) is satisfied. Let, without loss of
generality, (2) be true. Then A \B ⊆ C and there are elements b ∈ B \ (A∪C)
and c ∈ C \ (A ∪ B). Let a ∈ A \ B. Since N(a) and N(c) are incomparable
there is some δ ∈ N(c) \N(a). We have δ 6= α since α ∈ N(a) and δ 6= β since
β /∈ N(c). Moreover, δ 6= γ since γ ∈ N(a) in view of a ∈ A \B ⊆ C.

Case 2.1. δ /∈ N(b). Then aα, bβ, cδ form a 3K2, a contradiction.

Case 2.2. δ ∈ N(b). There is some d ∈ A ∩B \ C because otherwise A ⊆ C.

Case 2.2.1 d /∈ N(δ). Then b, β, d, α, a, γ, c, δ form a C8, a contradiction.

Case 2.2.2 d ∈ N(δ). Then a, γ, c, δ, d, α form a C6, a contradiction.

Case 3. None of the relations (2) – (4) is satisfied. Then there are elements
a ∈ A \ (B ∪ C), b ∈ B \ (A ∪ C) and c ∈ C \ (A ∪ B). But aα, bβ, cγ form a
3K2, a contradiction which finally shows Lemma 7.

Lemma 8. The family F∗ does not have any single maximal element.

Proof. Assume that there is some α ∈ Y such that N(y) ⊆ N(α) for all y ∈ Y .
Then ∇G−α(X) = k, a contradiction.

From Lemmas 7 and 8 it follows that F∗ has exactly two maximal elements,
say A = N(α) and B = N(β).

Lemma 9. There is no γ ∈ Y such that N(γ) ⊆ A ∩B.

Proof. Assume that there is some γ ∈ Y such that C = N(γ) ⊆ A ∩ B. Let
a ∈ A\B, b ∈ B \A and c ∈ C. Note that c 6= a and c 6= b. Let δ ∈ N(a)\N(c)
and ε ∈ N(b) \N(c).
Case 1. ε /∈ N(a) and δ /∈ N(b). Then aδ, cγ, bε form a 3K2, a contradiction.
Case 2. ε ∈ N(a) or δ ∈ N(b). Without loss of generality, we may assume that
ε ∈ N(a). Then a, α, c, β, b, ε form a C6, a contradiction.

Let F∗

A = {C ∈ F∗ : C ⊆ A} and F∗

B = {C ∈ F∗ : C ⊆ B}. Since A and B
are the maximal elements of F∗ and in view of Lemma 9 the families F∗

A and
F∗

B form a partition of F∗.

Lemma 10. The families F∗

A and F∗

B are chains with respect to inclusion.

Proof. Assume e.g. that F∗

A contains two incomparable elements C andD. Since
C * B and D * B the members C,D and B are three pairwise incomparable
elements of F∗, a contradiction to Lemma 7.

Let

F∗

A = {A1, . . . , Ar} where A1 ⊂ · · · ⊂ Ar = A,

F∗

B = {B1, . . . , Bs} where B1 ⊂ · · · ⊂ Bs = B

and let αi, βj be those elements of Y for which N(αi) = Ai and N(βj) = Bj ,
i = 1, . . . , r, j = 1, . . . , s. Note that Y = {α1, . . . , αr, β1, . . . , βs}. For an element
x ∈ X , let

ιA(x) =

{

min{i : x ∈ Ai} if x ∈ A,

∞ otherwise
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and

ιB(x) =

{

min{j : x ∈ Bj} if x ∈ B,

∞ otherwise.

For brevity, we set A0 = B0 = ∅ and Ar+1 = Bs+1 = X .

Lemma 11. We have |Ai \ Ai−1| = |Bj \ Bj−1| = 1, i = 1, . . . , r + 1, j =
1, . . . , s+ 1.

Proof. Assume e.g. that |Ai \ Ai−1| ≥ 2 and let a, a′ be two different elements
of |Ai \Ai−1|. Let, without loss of generality, ιB(a) ≤ ιB(a

′).
Case 1. ιB(a) = ιB(a

′) = ∞, i.e., a, a′ /∈ B. Let, without loss of general-
ity, ιA(a) ≤ ιA(a

′). Obviously, N(a) = {αιA(a), αιA(a)+1, . . . , αr} ⊇ {αιA(a′),
αιA(a′)+1, . . . , αr} = N(a), a contradiction to the incomparability of N(a) and
N(a′).
Case 2. ιB(a) < ∞, i.e., a ∈ B. Then N(a) = {αi, . . . , αr, βιB(a), . . . , βs} ⊇
N(a′), a contradiction.

From Lemma 11 it follows that r = s and that the elements of X can be
numbered in such a way that Ai = {x1, . . . , xi}, i = 1, . . . , r + 1.

Lemma 12. We have Bi = {xr+1, xr, . . . , xr−i+2}, i = 1, . . . , r + 1.

Proof. Assume the contrary and choose i maximal such that Bi 6= {xr+1, xr,
. . . , xr−i+2}. Then i ≤ r since Br+1 = Ar+1 = X . By the maximality of i
we have Bi+1 = {xr+1, xr, . . . , xr−i+1} and by Lemma 11, Bi = {xr+1, xr,
. . . , xr−i+1} \ {xj} for some j ∈ {r − i+ 2, . . . , r + 1}. We have j 6= r + 1 since
otherwise Bi ⊆ Ar. Since xj /∈ Bi, the element xj is not contained in B1, . . . , Bi.
Thus N(xj) = {αj, . . . , αr, βr, . . . , βi+1} ⊆ {αr−i+1, . . . , αr, βr, . . . , βi+1, βi} ⊆
N(xr−i+1), a contradiction.

Now the equalities Ai = {x1, . . . , xi} and Bi = {xr+1, xr, . . . , xr−i+2}, i =
1, . . . , r, imply

N(x1) = {α1, . . . , αr},

N(xi) = {αi, . . . , αr, βr, . . . , βr−i+2}, i = 2, . . . , r,

N(xr+1) = {βr, . . . , β1}.

Thus G ∼ Br. But since G is k-critical, G ∼ Bk follows which finally shows
Theorem 4.

Corollary 8. The Dilworth number of an ACB graph B = (X,Y,E) is at most

k if and only if B is Bk+1-free.

Thus, Theorem 4 yields a characterization by forbidden induced subgraphs
both of the family of ACB graphs with bipartite Dilworth number at most k,
and of the split graph counterpart with Dilworth number at most k. Since by
Proposition 11, Bi is an induced subgraph of Bk for each i ∈ {2, . . . , k}, this
defines a hierarchy of properly included ACB graphs, with Bk as separating
example between the class of Dilworth number k and the class of Dilworth
number k − 1. The corresponding hierarchy of split graphs is easily derived.
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Figure 6: Bipartite graph B = Y -P7, an interval representation of splitX(B),
and its corresponding Γ-free matrix.

6 Conclusion

In this paper, we have studied ACB graphs with respect to their Dilworth
number. One of our open questions is the recognition complexity of ACB graphs.
Chordal bipartite graphs can be recognized in O(min(n logn, n2)) [16, 19, 21],
by computing a doubly lexical ordering of the bipartite adjacency matrix of the
(bipartite) graph G, which is Γ-free if and only if G is chordal bipartite (a Γ
is a submatrix with three 1’s, and one 0 in the bottom-right corner). See [20]
for a detailed discussion of this aspect. A linear-time recognition for chordal
bipartite graphs remains a long-standing open question.

ACB graphs can be recognized in O(n2) time checking whether both the
graph and its mirror are chordal bipartite. In Subsection 3.2.3, we discussed
how to recognize whether a bipartite graph hasX-Dilworth number (Y -Dilworth
number, respectively) more than 2 in linear time. An alternative linear-time
approach for this would be to check whether splitX(B) is an interval graph.

Let us remark that, given this interval realization, we can construct in linear
time a Γ-free matrix of B as follows: order the vertices of Y as they appear
from left to right in the interval representation of splitX(B); order the vertices
of X using the left endpoints of their intervals, and order these from left to
right. Figure 6 gives an example for the P7, which has X-Dilworth number 3
and Y -Dilworth number 2.

This result is noteworthy, as to the best of our knowledge the chordal bipar-
tite graphs for which there is a linear-time algorithm to produce a Γ-free matrix
are the (trivial) chain graphs.

Corollary 9. It can be recognized in linear time if a given bipartite graph is

(3K2, C6, P7)-free, or if it is (3K2, C6, X-P7)-free

Another open question is the complexity of computing the Dilworth number
of an ACB graph: Given a Γ-free matrix for a (chordal) bipartite graph, the
neighborhood order can be computed in linear time [20]. This order in turn
yields the Dilworth number. Thus as discussed above, if the X- or Y - Dilworth
number is 2, the Dilworth number can be determined in linear time; if both the
X- and the Y - Dilworth numbers are > 2, O(n2) time is required to compute
the Dilworth number.
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We conclude this paper with the following open questions:

1. Can one recognize ACB graphs in linear time?

2. Determine all (k, l)-critical ACB graphs G = (X,Y,E), i.e., all ACB
graphs for which∇G(X) = k, ∇G(Y ) = l and∇G−v(X)+∇G−v(Y ) < k+l
for all v ∈ X ∪ Y .
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[6] V. Chvátal, P.L. Hammer. Aggregation of Inequalities in Integer Program-
ming. Annals of Discrete Mathematics, Volume 1, 1977, 145-162.

[7] E. Dahlhaus, Chordale Graphen im besonderen Hinblick auf parallele Al-
gorithmen, Habilitation Thesis, Universität Bonn (1991).

[8] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43
(1983) 173-189.
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