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On Locally Gabriel Geometric Graphs

Sathish Govindarajah Abhijeet Khopkar'

Abstract

Let P be a set of: points in the plane. A geometric graghon P is said to
belocally Gabrielif for every edge(u, v) in G, the disk withu andv as diameter
does not contain any points @ that are neighbors of or v in G. A locally
Gabriel graph is a generalization of Gabriel graph and isvatad by applications
in wireless networks. Unlike a Gabriel graph, there is nauailocally Gabriel
graph on a given point set since no edge in a locally Gabragblytis necessarily
included or excluded. Thus the edge set of the graph can bencized to optimize
certain network parameters depending on the applicatiothis paper, we show
the following combinatorial bounds on edge complexity amdependent sets of
locally Gabriel graphs:

() For anyn, there exists locally Gabriel graphs with(n/*) edges. This
improves upon the previous best bouncn)m1+ Toglogn ).

(ii) For various subclasses of convex point sets, we sholt tigear bounds on
the maximum edge complexity of locally Gabriel graphs.

(iii) For any locally Gabriel graph on any point set, there exists an independent
set of size(v/nlogn).

1 Introduction

A geometric graptG = (V, F) is an embedding of the s&t as points in the plane
and edges i’ as straight-line segments connecting the pointg.ibelaunay graphs,
Gabriel graphs and Relative Neighborhood graphs (RNG)warddmental geometric
proximity graphs with applications in fields like computeaghics, vision, GIS, wire-
less networks, etc. For a nice survey on these graphs amdff@ications, see [11].
The Gabriel graph introduced by Gabriel and Sokal [9] is @fias follows: Given
a set of pointsP in the plane, an edge exists between poingdv iff the Euclidean
disk with v andv as diameter does not contain any other poinPofGabriel graphs
have been used to model the topology in wireless network4dB, Motivated by
applications in wireless networks, ]14,112] generalizegsthstructures ta-locally
delaunay/gabriel graphs. The edge complexity of thesetsires have been studied in
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[12,[15]. In this paper, we focus on 1-locally Gabriel graphsl call them atocally
Gabriel Graphq LGGS).

A locally gabriel graphis a geometric grapkr with the following property: for
each edgéu, v) in G, the Euclidean disk withy andv as diameter does not contain
any points ofP that are neighbors of or v in G.

Study of these graphs was initially motivated by design afaiyic routing pro-
tocols forad hocwireless networks [13]. An ad-hoc wireless network cossista
collection of wireless transceivers (corresponds to [gdiahd an underlying network
topology (corresponds to edges) that is used for commuaidabuting. Like Gabriel
Graphs,LGG's can be used to design wireless network topology since thatyicathe
interference patterns well. An interesting point to be dagethat there is no unique
LGG on a given point set since no edgelid:G is necessarily included or excluded.
Thus the edge set of the graph (used for wireless commuaimatan be customized to
optimize certain network parameters depending on theegdjin. LGGs also provide
certain advantages over Gabriel Graphs. While a Gabriglghas linear number of
edges (planar graph), we show in this paper that there eiistss with n®/* edges.
A dense network can be desirable for applications like brasting or multicasting
where a large number of pairs of nodes need to communicatesaith other. Another
important parameter in the topology of wireless networkénumber of simultaneous
transmissions that can be performed. A node in a wirelesgankicannot transmit and
receive in the same time slot. Thus, the set of transmittodes at any time slot form
an independent set in the underlying graph. We show thag #isasts an independent
set of size(y/nlogn) in any LGG of anyn pointset.

An interesting combinatorial question, that we addreshkimpgaper, is to bound the
edge complexity of locally gabriel graphs.

It was observed in_[15] that the unit distance graph [7],ddtrced by Erdos, is
also a locally delaunay/gabriel graph. The maximum edgepbexity of unit distance
graphs has been extensively studied [7,(16, 17]. See [4] $oingey on this problem.
There is a significant gap between the lower and upper boumti$ngproving them
is considered a hard open problem in discrete geometry. dge eomplexity of unit
distance graphs on convex point sets have also been stuidiedest lower bound is
2n — 7 [6] and the best upper boundridogn [8}/5]. It has been conjectured in [4] that
the edge complexity of unit distance graphs on convex peitstis2n.

[12] initiated the study of maximum edge complexity of Idgalelaunay/gabriel
graphs by showing non-trivial upper bounds. ][15] showedwenbound o) (n3/2)
and a lower bound of2(n*/?) on the maximum edge complexity of locally delaunay
graphs.

For locally gabriel graphs[[12] showed an upper bound¢f>/2) by proving
that K, 3 is a forbidden subgraph. The best known lower bour(d(izs“W) [7N,
given by Erdos classic lower bound construction for unitatise graphs. While the
gap between the upper and lower bounds for locally delaursphg has been narrowed
significantly, the gap is quite wide for locally gabriel gheg In this paper, we improve
the lower bound significantly.

We show the following results in this paper:

(i) Foranyn, there exists locally gabriel graphs witi{n°/*) edges. This improves



the previous lower bound @t (n'* wte ) [7].

(ii) For various subclasses of convex point sets like momiatoonvex point set, half
convex point set, centrally symmetric convex point set, wave tight linear
bounds on the edge complexity of locally gabriel graphs.

(i) For any LGG on anyn point set, we show that there exists an independent set of
sizeQ(y/nlogn).

The paper is organized as follows: Definitions that will bedisn the paper is
presented in Section 2. We present the lower bound constnuitt Section 3 and
analyze itin Section 4. We prove various upper and lower dedor convex point sets
in Section 5. The independent set construction is presémtgection 6.

2 Preliminaries

Let P be a set of points inR2. For anyp, ¢ € P, we denote by, the disk withp
andgq as diameter.

Definition 2.1 (Locally Gabriel condition)et Gp be a geometric graph o®. An
edge(u, v) of Gp is said to satisfy the locally Gabriel condition if digk, does not
contain neighbors of, or v in Gp.

Definition 2.2 (Locally Gabriel GraphA geometric grapltz» on P is said to be Lo-
cally Gabriel Graph (LGG) if every edge 6fp satisfies the locally Gabriel condition.
Letp = (p®,p¥) be any point ink2.

Definition 2.3 (Upper-right monotonic convex point set¢t P = {p1,p2...,px} be
a set of points in convex position that are ordered in cowttekwise direction.P is
called a upper-right monotonic convex point seifif< p;-”,pf > p?,Vl <i<ji<k

Upper-left

Lower-left cwer right

Figure 1: Four types of monotonic convex sets

Similarly, we define the other three types of monotonic carnpeint sets, i.e.,
upper-left, lower-right and lower-left. Figuré 1 shows thg/pes of monotonic convex
point sets. Note that any convex point set can be decompogethie above 4 types.

Definition 2.4 (Half convex point setl.et P = Q U R be a set of points in convex
position that is ordered in counterclockwise directioR.is called a right (resp. left)
half convex point set if) is upper-right monotonic and is lower-right monotonic
(resp.@ is upper-left monotonic anf is lower-left monotonic).



Definition 2.5 (Centrally symmetric convex point setgt P be a set of points in con-
vex position.P is said to be centrally symmetric with respect to the origifgr every
pointp € P, point—p also belongs ta?

Letp, ¢, r be three points iP.
Lemma 2.1 If ¢ andr are neighbors of in an LGG onP, thenZpqr, Zprq < w/2.

Proof. Since(p, ¢) is an edge of: p, r must lie outside the disk,,. Thus,Zprq < Z.
Since(p, r) is also an edge it/ p, ¢ must lie outside the disk,,. Thus,Zpgr < 7. O

Conversely, if eithet/pgr > 5 or Zprq > 7, then we call the edge®, ¢) and
(p,r) asconflicting Two conflicting edges cannot exist simultaneously in an LGG

3 Lower Bound Construction

In this section, we describe the construction df@G with Q(n°/4) edges. The point
setP for this construction is §/'n x +/n uniform grid. First, we describe the algorithm
that constructs th€ GG G p on the grid point se’. Then, we prove the correctness
of our algorithm. Finally, we analyze the edge complexity:of.

3.1 Construction

Let us denote the points on the grid@sy),0 < z,y < /n. The algorithm is an
iterative greedy procedure that assigns neighbors to e&tpgjnt. First, we describe
the procedure that assigns neighbors to an arbitrary pain{p®, p¥) on the grid. For
technical reasons, we only assign neighborstioat are in the first and third quadrant
w.r.t. p. By applying this procedure to the grid poirits y), /n/3 < z,y < 2y/n/3
(we choose only these grid points to avoid edge effects),m@iwourLGG Gp.

/)
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Figure 2: Feasibility region for the next neighbgr

Now, we describe the iterative procedure that assigns beigttop in a counter-
clockwise direction. Let; be the current neighbor gfthat is assigned by the proce-
dure and); be the angle that segmen}; makes with the positive direction of x-axis.



First, we describe how to find the next neighlggg; in the counter-clockwise direc-
tion. Let us describe the feasibility region fgr, ;. Figurd2 shows the points g;, the
diskd,,, and the tangent linkatg;. Since(p, ¢;) is an edge irG p, g;+1 must lie out-
sided,,,, . Also, since(p, ¢;+1) will be an edge irG'p, Zpgiqiv1 < 5 (by Lemmd2.1L).
This implies thaty;,; must lie below the tangent line Thus the feasible region for
gi+1 1S outsided,,, and below! (shown as the shaded region in Figule 2). We choose
the next neighbog;; to be the grid point in the feasible region that is closesE(in
clidean distance) tg; (See Figur€l2). This greedy choice allows us to pack as many
neighbors as possible.

Now, the procedure that assigns neighborg t® as follows: The first neighbor of
pissetasy = (p* + s,p? + s - tanfy), wheres = \/n/3 andfy,0 < 6y < w/4is a
small constant to be fixed later. Starting with this neighlbar iteratively find the next
neighbor using the procedure described above. We contisgsigrang neighbors as
long as the conditiofl; < 7/4 is satisfied. Note that this procedure assigns neighbors
only in the first quadrant w.rit. Similarly, we find neighbors in the third quadrant w.r.t
p by starting with the initial neighbdp® — s, p¥ — s - tan 6,) and proceeding as long
as the conditiod; < 57/4 is satisfied.

3.2 Correctness

In this section, we show that the geometric graph constructed above is a locally
gabriel graph.

Remark 1: Observe that the above procedure that constiGgtassigns neighbors
in a symmetric consistent manner, iiéthe procedure assigng as thei-th neighbor
(in 1st quadrant) op, then it would assigmp as thei th neighbor (in 3rd quadrant) of
¢i, when the procedure is applied gn

By Remark 1, the neighbors efin Gp are exactly the grid points chosen by the
procedure.

Lemma 3.1 Letp € P be any grid point and lef) = {qo,¢1,- - ., ¢mn} be the neigh-
bors ofp in Gp (in counter-clockwise order) in the first quadrant. The digk does
not contain any neighbor gfvi,0 < i < m.

Proof. First, we show thad,,, does not contain any neighbormin the first quadrant,
i.e.,dpg, N(Q\{q:}) = 0. Observe that,,, does not contaip; 1, because the iterative
procedure pickg;, outside the diski,,,, . Also observe thal,,,, does not contaig;_;
because/pg;—19; < % (i is picked below tangent line af,,,_,). On the contrary, let
us assume that,,, contains some;, j # i—1,4,7+ 1. There are 2 cases: (i)> i+1
and (i) j < i — 1. We will prove case (i) below. Case (ii) can be proved in a kimi
manner. Let us assume thats the smallest index among the neighbgysj > i + 1
that is contained ifl,,,. Sinceg;,gi+1,- .. qx—1,qx are in counter-clockwise convex
position, all the diskg,,,,i+ 1 < j < k — 1 also containg;, (see figuréR). Thus, the
diskd,,_, also containgy. This is a contradiction since the iterative procedure pick
gi outside the diskl,,, ;-

The diskd,, does not contain any neighbor pfin the third quadrant w.r.p,
sinced,,, does not intersect the third quadrant war.fThusd,,, does not contain any
neighbor ofp. O



Figure 3: Poinp and its neighbors;, ..., q;, ..., qx

Remark 2: Observe that the grid point sét is a symmetric point set and we
use the same deterministic procedure to assign neighbaikttee grid point. Hence
Lemmd3.1 is true for all the grid pointse P.

Lemma 3.2 Edge(p, ¢;) of Gp satisfies the locally Gabriel conditiori, 0 < i < m.

Proof. We need to show that the digk,,, 0 < i < m, does not contain the neighbors
of porg; in Gp. By Lemmd3.1L, diski,,, does not contain any neighbor af

By Remark 1p is thei th neighbor (in 3rd quadrant) @f. By Remark 2, we apply
Lemma3.1 for grid poing; (instead ofp) on the neighbors of; in the 3rd quadrant
(instead of 1st quadrant) to show that digk, (which is the same ag,,,) does not
contain any neighbors af. O

Since the procedure assigns neighborg o the third quadrant in exactly the
same way as the first quadrant, Lemimd 3.2 shows that edge%ftorts neighbors
in the third quadrant also satisfy the locally Gabriel caéiodi. Thus, all the edges
from p to neighbors op satisfies the locally Gabriel condition. Since we use theesam
deterministic procedure to assign neighbors to all the goidts, the argument fgr
applies to all grid pointg € P. Hence all the edges i@ p satisfy the locally Gabriel
condition proving tha& p is locally Gabriel.

3.3 Analysis

In this section, we analyze the lower bound constructiorcrdesd in the previous
section. We will show tha p hasQ(n°/*) edges by proving that the iterative proce-
dure picks2(n'/*) neighbors for grid poinp. Letqo, q1,. . ., g be the neighbors(in
counter-clockwise order) of in the first quadrant. Given the current neighbgrthe
procedure picks the next neighbgr, ; “close” to q. We will prove bounds on the
closeness betweep andg; ;. Using this, we show bounds on.

Figure[4 shows the points (denoted as A in the figure), the current neighbor
(denoted as C), the disk,,, and the tangent linkat C. Let the next neighbat_ ; lie
at a x-distancel; from the current neighbay; (¢;+1 lies on the vertical line passing
through D and E). LetAB| = ¢} — p* = x4, |DB| = ¢ — ¢}, = d; and|CB| =



(i) (ii)

Figure 4: The vertical gridline that contains the next neigtintersects (i) the diameter
disk atF, (ii) the tangent line af+

q! — p¥ = y; (See Figurél4). First, we will prove bounds ffrin terms ofz;. Let the
vertical grid-line passing throughy ; intersect the disk,,,, at F' (See Figur€l4(i)) and
the tangent line aff (See Figur€l4(ii)). LetF'E| = h; and|GE| = hl. SinceAAFC
is right-angled af' (see Figur€l4(i)), we have

|AC|? = |AF|* + |FC|?
= (|AD]* + |DF|*) + (|FE* +|CE[)
(zisec0;)® = (x; — di)” + (hi + x; tan 6;)° + b2 + d?
Simplifying, we get
h? 4+ z;tan6; - hy — d;i(x; — d;) =0 (1)

Similarly, sinceA ACG is right-angled at (see FiguréH(ii)), we have
|AG)? = |AC| + |Cca|?
(IAD]” +|DGI*) = |AC|” + (IGE[* + |CE*)
(z; — di)* + (B} + ; tan 91-)2 = (zisect;)’ + h§2 + d?
Simplifying, we geth, = d; cot 6;.
The next neighbog; ;1 lies on the vertical gridline betweefi andG. To ensure
that a grid point exists betweel and GG, we enforce a stronger condition that the

distance betweef andG is at leastl, i.e.,|[FG| = h} — h; > 1. Solving forh; in
Equatiori 1, substituting fof;, k., we get

\/I? tan2 91 + 4dz (Il — dl) — x; tan 91
>1

d; cot 91' —
CO 5

(2)
Simplifying this, we get the inequality

d? + sin2 0; > x;tan0; sin2 0; + d; sin 26,



By settingd; = ¢1+/z;,c1 > 1, the above inequality is satisfied, singe< w/4 (we
assign neighbors teonly till §; < 7/4). Therefore, inequality]2 is also satisfied. This
gives us a bound od; (closeness betweep,; andg;) in terms ofz; (x-distance ofy;
from p).

Now, we will obtain bounds om:, the number of neighbors assignedstoNote
that the procedure assigns neighborg tas long a®);, < 7/4, i.e.,ym < z,,. We
will now obtain bounds omr; andy;. Thex; are related by the following recurrence
relation

Tit+1 = L5 — d;

=z; — 1T
ZTi—C @ (IzS@)
3 3
Expanding this recurrence witly = /n/3 , we get
vno k-cent/*
>Y L 0<k< 3
T = 3 \/g =m ( )

Next, we obtain bounds ay. They; are related by the recurrence relatign; = y; +
|h; + 1] (since we pickg;+1 as the closest grid point to F). Expanding this recurrence,
we get

k—1
Yk :y0+ZULi+1J (4)
0
k—1
Syot+k+ Y hi (5)

0
whereh; is given by the solution to Equatigh 1

k—1 k-1
1
h = - 2tan? 0; + 4d;(x; — d;) — z; tan 6,
XO: 2;\/501 an® 0; + 4d;(x ) — x; tan

k-1
1
D) Z \/xf tan? 0; + 4c1 /@ (v, — c14/2;) — i tan6;
0

k—1
1 461\/171'(561' _Clw/xi)
220 i tan (\/ + z? tan? 6;

15 4c
< —intan&( 1—i—712 —1)
2 0 \/x; tan 91
k—1
1 2¢1
IS (2 )
2 5 \/T; tan® 0;
k—1
C14/T4
<
- g tan@i



Sinced; > 6, andz; < \/n/3, we have

k—1

- ckopl/4
Zhi < ci1-k-n
0 \/gtan%

Hence, from Equatiol] 5y is given by the following

tanfy-/n ¢ -k-nt/4

+k 6
3 \/gtant% ( )

Yk =

Settinge; = 1.01,600 = 1.74 x 1073, it can be verified analytically in Equatidn 3
and Equatiofil6 thag, < z; forall 0 < k < 10~*n'/%. Thus,y,, < z,, form =
10~*n'/4. The number of neighbors pfis at leastl0—*n!/4. The edge complexity of
G p is therefore(n - n'/4) = Q(n®/*).

4 Convex Point Sets

In this section, we show edge complexity for LGG on variowssks of convex point
sets. First, we show exact bounds for half convex point sEt&n, we show asymp-
totic tight linear bounds for special subclasses of conv@rtpsets. Finally, we show
O(nlogn) bounds for arbitrary convex point sets.

4.1 Exact Bound for Half Convex Point Sets

First, let us consider the special case wiieis a monotonic convex point set. Wlog,
let us assume that is of the upper-right type.

Lemma4.lLetP = {p1,p2,...,pn} be a upper-right monotonic convex point set
and letGp be any locally gabriel graph o®. p1, p, has atmost 1 neighbor it p
and hencé&-p has atmosh — 1 edges.

Proof. We show that the first poini; has atmost one neighbor. Let if possible,
andp; be neighbors op1,j > 4. pi1,p;, p; are in monotonic convex position. Thus
Zpipipj > 90°. Sincep; andp; are neighbors b1, Zp1p;p; < 90° (by Lemmd 2.1L).
Hence a contradiction. By a similar argument, we can alswshatp,, has atmost 1
neighbor inGp.

Removingp; from P and applying induction on the remaining points, we see that
G p has atmost — 1 edges. O

Next we consider the special case wheiis a half convex point set. Wlog, let us
assume thaP is a right half convex point set.

Lemma 4.2 Let P = Q U R be aright half convex point set withpoints, wher&) is
upper-right monotonic and is lower-right monotonic. Let p be any locally gabriel
graph onP. Gp has atmos2n — 3 edges.



Proof. Letp be the point with maximum x-coordinate (rightmost pointAnQ U {p}
is upper-right monotonic an U {p} is lower-right monotonic. By Lemn{a4.%,has
degree atmost two(atmost one neighbogimnd one inR). Removingp from P and
applying induction on the remaining points, we g&t) < P(n — 1) + 2; P(2) = 1.
This givesP(n) < 2n — 3. O

The above bounds are tight, i.e., it is easy to constructlipgabriel graphs for
monotonic and half convex sets that match the above bounds.arfy monotonic
convex sets, construct a path (of length- 1) connecting all the vertices.

P1

Pn-1

Figure 5: Portion of circle C centeredm@f and pointe, ..., p,_1 placed equidistant
onC

For right half convex sets, we can achieve the exact boumdjtise following con-
struction:
Let C be a circle with center at,. We place pointg,, ps, . . ., p,—1 €quidistant along
the first quadrant of” (See Figur&]5). The point set constructed is right half cenve
The edges of7 p are defined as follows:

() Add edges(p;, pi+1),1 <i <n — 2. This forms a path of length — 2.
(i) Add edges(pn,p:),1 <i <n — 1. This forms a star of size — 1.

It can be verified that these edges satisfy the locally ghboiedition. Thus, the edge
complexity of Gp is 2n — 3.

4.2 Tight Linear Bounds for Various Subclasses

In this section, we prove asymptotic tight linear boundssfame special subclasses of
convex point sets.

4.2.1 Points on a Circle

First, we consider the special casexgboints lying on a circle.

Lemma 4.3 LetC be any circle andP = {p1,p2,...,pn} ben points that lie onC.
LetGp be any locally gabriel graph o®. Gp has atmost: edges

10



Proof. Letp, be any pointinP andp; be the point orC that is diametrically opposite
to p;. The diametep;p; divides the circleC into two halves. We claim that; has
atmost 1 neighbor in each half. Let, if possible,have two neighborg; andp;, in
the same half (see Figuré 6(i)). We can see thap;p, = 90°. Sincep;, p;, pk, P,
are in convex position, we havép;p,pr, > Zp;p;p;. Thus,Zp;p;pr, > 90° But, since
(ps, pi) is an edgesp;p;pr < 90° (by LemmdZ1l). Hence a contradiction.
Since, each point; € P has atmost 2 neighbors (atmost one in each half), the edge
complexity of G p is atmostn. O

This bound is exact, since we can always constru&pavith n edges.

—Dq

0] (i)

Figure 6: (i) Points on a circl€’ (ii) Centrally symmetric point set with diameter pair
Di, —Pi

4.2.2 Centrally symmetric convex point set

Next, we consider the case &f being in centrally symmetric convex position. We
prove that any locally gabriel graph di has atmosgn — 3 edges. Our proof is
an adaptation of_[1], where it was proved that the unit dis¢agraph on centrally
symmetric convex point sets has atm@st— 3 edges.

Lemma4.4 Let P = {p1, —p1,p2, —P2-..,Pn/2, —Pn/2} DEn points in centrally
symmetric convex position. L6t be any locally gabriel graph o#®. Gp has atmost
2n — 3 edges

Proof. In [1], it is shown that the diameter pair (pair that is fuash apart) in any
centrally symmetric convex point set must be of the f@gm, —p,,, ), for somem. Let
(pi, —p;) be the diameter pair i .

If (p;, —p;) is an edge inGp, we can show (by a similar argument as below) that
pi, —p; has atmost 1 neighbors iR. Thus, Gp would have atmost — 1 edges.
Therefore, let us assume that, —p;) is not an edge - p.

Consider the closed disk with p; and —p; as diameter. Sincé is centrally
symmetric, all the points i® must lie inD. The diametep,, —p; divides the diskD
into two halves. We claim that; has atmost 1 neighbor in each half. Let, if possible,
p; have two neighborg; andp;, in the same half (see Figuré 6(ii)). Singg,lies in
D, Zpip; — pi > 90°. Also, sincep;, p;, pr, —p; are in convex positionyp;p;p, >

11



Zpipj — pi- Thus,Zp;p;pr > 90°. Since(p;,px) is an edgeLp;p;pr < 90° (by
LemmdZ.1). Hence a contradiction.

p; has atmost 2 neighbors Hp. By the same argument;p; also has atmost 2
neighbors. Removing, and —p; from P and recursing on the remaining point set
(which is also centrally symmetric), we havén) < P(n — 2) + 4; P(2) = 1. This
givesP(n) < 2n — 3. O

We can achieve an almost tight lower bound using the follgwionstruction:
Let P be a set of points defined by? = {(—1,47) U (1,4),—n/4 < i < n/4}. P
consists of equally spaced integer gridpoints on the \@rlicesxz = —1 andz = 1
(n/2 points in each line). It is easy to see ttiats centrally symmetric about the ori-
gin. The edges of/p are defined as follows:

(i) Add n — 4 edges of the forn{(—1,4), (—1,i + 2)) and((1,4), (1,7 + 2)) for all
-1 <i< =2,

(i) Add n — 4 edges of the forn((—1,4), (1,7 + 1)) and ((—1,4), (1,i — 1)) for
all -3 —1<i< i -1

It can be easily verified that these edges satisfy the loggllyriel condition. Thus,
the edge complexity off p is 2n — 8.

4.3 Bounds for Convex Point Sets

In this subsection, we consider an arbitrary convex poinPsé\Ve prove that the edge
complexity of any LGG onP is O(nlogn). The proof is a straightforward extension
of the argument given in [5], which proved that the unit distagraph on convex point
sets ha®)(nlogn) edges.

Lemma 4.5 Let P be a set of: points in convex point set and l&tp be any locally
gabriel graph onP. G p hasO(nlogn) edges.

Proof. We use the clever recursive method giveriin [5]. We will discthe method
briefly, for sake of completeness. Refer to [5] for detailse @Wén partitionP into

@ and R using the topmost and bottommost point®f(antipodal pair). Note that

Q is left half convex andr is right half convex. In fact, we can perform a partition
using any of the antipodal pairs, such that the two parts allecbnvex sets (for an
appropriate reference axis). The basic idea behind theseeumethod in([5] is to use
the above fact to dividé using two such partitions such that we have two subproblems
of size atmosBn /4 and the edges at this level of recursion are edges withinahe f
half convex sets. The number of such edge®a) using Lemmd4]2. The edge
complexity of G p is thusO(n logn) O

For convex point sets, the best known lower bourhis- 3.
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5 Independent Sets

In this section, we show that adyGG on anyn point set contains an independent set
of size at leasf2(y/nlogn).

We first show an elementary argument that constructs an @ntkgmt set of size at
Ieast@ in an point set. A set of points ordered by their abscissa is callatbno-
tonic sequence if the ordinates of the points are either toomcally non-increasing or
monotonically non-decreasing.

Lemma 5.1 LetGp be anyLGG on a monotonic sequendewith n points. Gp has
an independent set of size at legst

Proof. Let us denote the first and the last vertices of the monotesitience” as
terminal vertices. We show that in alyGG on P, a terminal vertex has degree at
most one. On the contrary let us assume that a terminal veiiteikcident to vertices
v1 andwvy and the vertices appear in the sequence,as andwv.. An axis parallel
rectangle withvvs as diagonal will contaim, inside or on the boundary of it. It implies
that edgegwv, v2) and (v, v1) conflict with each other. Thus, has at most one edge
incident to it. Now, add the terminal vertex to the indeperidet and remove it along
with its neighbor (if it exists) from the sequence. In eaehdtion at most two vertices
are removed and one vertex is added to the independent e, flile independent set
has size at leas}. O

Erdos and Szekeres|[7] showed that a set goints will have a monotonic se-
quence of size at leagtn. One such sequence can be compute@(nlogn) time
by an algorithm proposed by Hunt and Szymaniski [10]. By LerBida any induced
LGG on this monotonic sequence has an independent set of sk

Now, we show that anf.GG on any point set with points contains an independent
set of size at leas®(\/nlogn). In a graphG = (V, E) for anyu € V, let us define
N(u) = {v | (u,v) € E}. A graph is said to have sparse neighborhood if for any
u € V, the chromatic number of the subgraph induced over ver{iaés) N (u) is a
constant. We show that afyGG with n vertices will have an independent set of size
Q(y/nlogn) by using Theoremn5l1 where the sparse neighborhood propfefif G's
(shown in the Lemm@a$bl 2) is applied.

Theorem 5.1 (Alon [2]) Let G = (V, E) be a graph on n vertices with average degree
t > 1inwhich for every vertex € V the induced subgraph on the set of all neighbors
of v is r-colorable. Then, the independence numbet s at least log t, for
some absolute positive constant c.

R R (}
log(r+1) t

Lemma 5.2 Let Gp be anyLGG on any point se” andu be an arbitrary vertex in
G. The induced subgraph over the vertideg U { N (u)} is 4-colorable.

Proof. Letvertexu be adjacentto,, vo, ..., vx. Letus consider the induced subgraph
over these vertices. We show that any vertexsalias at most one incident edge on
either side of the line passing throughandwv;. On the contrary let us assume that
there are two vertices, andvs adjacent tov; on the same side of lingv;. Let us
analyze all the possible cases.

13



u
v3

v vy
vy

Figure 7: Possible placement of neighborhood G

o All the four vertices {;, v1, v2 andvs) cannot be collinear otherwise at least two
vertices (say; andvs w.l.o.g.) lie on the same side afand the edge&u, v;)
and(u, v2) would conflict with each other.

e Let us consider the case when three vertices are collingaranl be trivially
verified thatv;, v, andvs cannot be collinear due tbG'G constraints. Similarly
u,v1 andwvy (or v3) also cannot be collinear due fa7G constraints. Ifvg, v
andu are collinear them must lie in betweemy andwvs. It contradicts with the
assumption that, andvs lie on the same side afoy.

e Let us consider the case when convex hull of these four esrti€ a triangle
and another vertex lies inside this triangle as shown in f€éifi{a). Since it
is assumed that, andvs lie on the same side afovy, v andv; must be the
vertices of this triangle. Let us assume that vertglies insideAuwv,v,. Since
(u,v1), (u,v2) and (u,vs) do not conflict with each other, botHuvsv; and
Zuwzvy should be less thaf, which is not possible in this configuration.

e The last case is when all the vertices are in convex positiahfarm a quadri-
lateral. Lets assume w.l.o.g. that;vovs is a convex quadrilateral as shown
in Figure[T(b). By Lemma&2l1/uviv; < % (due to edgesw; anduwy),
Zvivaug < 5 (due to edges; vz andvivs), Zuvpvzu < 5 (due to edgesivs
anduwvs), Zvsuvy < 5 (due to edges;u andv,v3) and . Butin a quadrilateral
at least one of the internal angle should be greater thanual ég5. Hence, it
leads to a contradiction.

Hence any vertex; € N(u) has at most two neighbors apart framin the induced
subgraph on neighborhood of Thus, the degree of any vertexfor 1 < i < k is at
most 3. Therefore, this induced subgraph is 4-colorable. O

Theorem 5.2 LetG p be anyLGG on an point set.GG p has an independent set of size

Q(y/nlogn).

Proof. Since anLGG has a maximum oO(n%) edgesl[1P], the average degree of
a vertex isO(y/n). Substitutingt = O(y/n) andr = 4 in Theoreni 5L, the desired
bound is obtained. O
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Conclusion

In this paper, we have shown improved bounds on the maximwga edmplexity of
locally gabriel graphs. There is still a gap between our ldverind ofQ2(r%/4) and the
best known upper bound @#(n3/?). Itis an interesting problem to narrow this gap.
We have shown tight linear bounds for various subclassesrmfex pointsets. But, for

a general convex point sets, the best lower bound on edgelexwitymf locally gabriel
graphs i2n — 3, while the upper bound i©(nlogn). Can one obtain tight bounds?
Finally, we have shown that any LGG on amyointset has an independent set of size
Q(y/nlogn). There is no known non-trivial upper bound. It is an interesproblem

to improve upon these bounds.
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