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On Locally Gabriel Geometric Graphs

Sathish Govindarajan∗ Abhijeet Khopkar†

Abstract

Let P be a set ofn points in the plane. A geometric graphG onP is said to
be locally Gabriel if for every edge(u, v) in G, the disk withu andv as diameter
does not contain any points ofP that are neighbors ofu or v in G. A locally
Gabriel graph is a generalization of Gabriel graph and is motivated by applications
in wireless networks. Unlike a Gabriel graph, there is no unique locally Gabriel
graph on a given point set since no edge in a locally Gabriel graph is necessarily
included or excluded. Thus the edge set of the graph can be customized to optimize
certain network parameters depending on the application. In this paper, we show
the following combinatorial bounds on edge complexity and independent sets of
locally Gabriel graphs:

(i) For anyn, there exists locally Gabriel graphs withΩ(n5/4) edges. This

improves upon the previous best bound ofΩ(n1+ 1
log log n ).

(ii) For various subclasses of convex point sets, we show tight linear bounds on
the maximum edge complexity of locally Gabriel graphs.

(iii) For any locally Gabriel graph on anyn point set, there exists an independent
set of sizeΩ(

√

n log n).

1 Introduction

A geometric graphG = (V,E) is an embedding of the setV as points in the plane
and edges inE as straight-line segments connecting the points inV . Delaunay graphs,
Gabriel graphs and Relative Neighborhood graphs (RNG) are fundamental geometric
proximity graphs with applications in fields like computer graphics, vision, GIS, wire-
less networks, etc. For a nice survey on these graphs and their applications, see [11].

The Gabriel graph introduced by Gabriel and Sokal [9] is defined as follows: Given
a set of pointsP in the plane, an edge exists between pointsu andv iff the Euclidean
disk with u andv as diameter does not contain any other point ofP . Gabriel graphs
have been used to model the topology in wireless networks [3,18]. Motivated by
applications in wireless networks, [14, 12] generalized these structures tok-locally
delaunay/gabriel graphs. The edge complexity of these structures have been studied in
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[12, 15]. In this paper, we focus on 1-locally Gabriel graphsand call them asLocally
Gabriel Graphs(LGGs).

A locally gabriel graphis a geometric graphG with the following property: for
each edge(u, v) in G, the Euclidean disk withu andv as diameter does not contain
any points ofP that are neighbors ofu or v in G.

Study of these graphs was initially motivated by design of dynamic routing pro-
tocols forad hocwireless networks [13]. An ad-hoc wireless network consists of a
collection of wireless transceivers (corresponds to points) and an underlying network
topology (corresponds to edges) that is used for communication/routing. Like Gabriel
Graphs,LGGs can be used to design wireless network topology since they capture the
interference patterns well. An interesting point to be noted is that there is no unique
LGG on a given point set since no edge inLGG is necessarily included or excluded.
Thus the edge set of the graph (used for wireless communication) can be customized to
optimize certain network parameters depending on the application.LGGs also provide
certain advantages over Gabriel Graphs. While a Gabriel graph has linear number of
edges (planar graph), we show in this paper that there existsLGGs with n5/4 edges.
A dense network can be desirable for applications like broadcasting or multicasting
where a large number of pairs of nodes need to communicate with each other. Another
important parameter in the topology of wireless network is the number of simultaneous
transmissions that can be performed. A node in a wireless network cannot transmit and
receive in the same time slot. Thus, the set of transmitting nodes at any time slot form
an independent set in the underlying graph. We show that there exists an independent
set of sizeΩ(

√
n logn) in anyLGG of anyn pointset.

An interesting combinatorial question, that we address in this paper, is to bound the
edge complexity of locally gabriel graphs.

It was observed in [15] that the unit distance graph [7], introduced by Erdos, is
also a locally delaunay/gabriel graph. The maximum edge complexity of unit distance
graphs has been extensively studied [7, 16, 17]. See [4] for asurvey on this problem.
There is a significant gap between the lower and upper bounds and improving them
is considered a hard open problem in discrete geometry. The edge complexity of unit
distance graphs on convex point sets have also been studied.The best lower bound is
2n− 7 [6] and the best upper bound isn logn [8, 5]. It has been conjectured in [4] that
the edge complexity of unit distance graphs on convex point sets is2n.

[12] initiated the study of maximum edge complexity of locally delaunay/gabriel
graphs by showing non-trivial upper bounds. [15] showed an upper bound ofO(n3/2)
and a lower bound ofΩ(n4/3) on the maximum edge complexity of locally delaunay
graphs.

For locally gabriel graphs, [12] showed an upper bound ofO(n3/2) by proving
thatK2,3 is a forbidden subgraph. The best known lower bound isΩ(n1+ 1

log log n ) [7],
given by Erdos classic lower bound construction for unit distance graphs. While the
gap between the upper and lower bounds for locally delaunay graphs has been narrowed
significantly, the gap is quite wide for locally gabriel graphs. In this paper, we improve
the lower bound significantly.

We show the following results in this paper:

(i) For anyn, there exists locally gabriel graphs withΩ(n5/4) edges. This improves
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the previous lower bound ofΩ(n1+ 1
log log n ) [7].

(ii) For various subclasses of convex point sets like monotonic convex point set, half
convex point set, centrally symmetric convex point set, we prove tight linear
bounds on the edge complexity of locally gabriel graphs.

(iii) For anyLGG on anyn point set, we show that there exists an independent set of
sizeΩ(

√
n logn).

The paper is organized as follows: Definitions that will be used in the paper is
presented in Section 2. We present the lower bound construction in Section 3 and
analyze it in Section 4. We prove various upper and lower bounds for convex point sets
in Section 5. The independent set construction is presentedin Section 6.

2 Preliminaries

Let P be a set ofn points inR2. For anyp, q ∈ P , we denote bydpq the disk withp
andq as diameter.

Definition 2.1 (Locally Gabriel condition)Let GP be a geometric graph onP . An
edge(u, v) of GP is said to satisfy the locally Gabriel condition if diskduv does not
contain neighbors ofu or v in GP .

Definition 2.2 (Locally Gabriel Graph)A geometric graphGP onP is said to be Lo-
cally Gabriel Graph (LGG) if every edge ofGP satisfies the locally Gabriel condition.

Let p = (px, py) be any point inR2.

Definition 2.3 (Upper-right monotonic convex point set)LetP = {p1, p2 . . . , pk} be
a set of points in convex position that are ordered in counterclockwise direction.P is
called a upper-right monotonic convex point set ifpxi ≤ pxj , p

y
i ≥ pyj , ∀1 ≤ i < j ≤ k

Upper−left

Upper−right

Lower−rightLower−left

Figure 1: Four types of monotonic convex sets

Similarly, we define the other three types of monotonic convex point sets, i.e.,
upper-left, lower-right and lower-left. Figure 1 shows the4 types of monotonic convex
point sets. Note that any convex point set can be decomposed into the above 4 types.

Definition 2.4 (Half convex point set)Let P = Q ∪ R be a set of points in convex
position that is ordered in counterclockwise direction.P is called a right (resp. left)
half convex point set ifQ is upper-right monotonic andR is lower-right monotonic
(resp.Q is upper-left monotonic andR is lower-left monotonic).
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Definition 2.5 (Centrally symmetric convex point set)LetP be a set of points in con-
vex position.P is said to be centrally symmetric with respect to the origin,if for every
pointp ∈ P , point−p also belongs toP

Let p, q, r be three points inP .

Lemma 2.1 If q andr are neighbors ofp in an LGG onP , then∠pqr,∠prq < π/2.

Proof. Since(p, q) is an edge ofGP , r must lie outside the diskdpq. Thus,∠prq < π
2 .

Since(p, r) is also an edge inGP , q must lie outside the diskdpr. Thus,∠pqr < π
2 . �

Conversely, if either∠pqr ≥ π
2 or ∠prq ≥ π

2 , then we call the edges(p, q) and
(p, r) asconflicting. Two conflicting edges cannot exist simultaneously in an LGG.

3 Lower Bound Construction

In this section, we describe the construction of aLGG with Ω(n5/4) edges. The point
setP for this construction is a

√
n×√

n uniform grid. First, we describe the algorithm
that constructs theLGG GP on the grid point setP . Then, we prove the correctness
of our algorithm. Finally, we analyze the edge complexity ofGP .

3.1 Construction

Let us denote the points on the grid as(x, y), 0 ≤ x, y <
√
n. The algorithm is an

iterative greedy procedure that assigns neighbors to each grid point. First, we describe
the procedure that assigns neighbors to an arbitrary pointp = (px, py) on the grid. For
technical reasons, we only assign neighbors top that are in the first and third quadrant
w.r.t. p. By applying this procedure to the grid points(x, y),

√
n/3 ≤ x, y < 2

√
n/3

(we choose only these grid points to avoid edge effects), we obtain ourLGG GP .

qi+1

qi

l
p

Figure 2: Feasibility region for the next neighborqi+1

Now, we describe the iterative procedure that assigns neighbors top in a counter-
clockwise direction. Letqi be the current neighbor ofp that is assigned by the proce-
dure andθi be the angle that segmentpqi makes with the positive direction of x-axis.
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First, we describe how to find the next neighborqi+1 in the counter-clockwise direc-
tion. Let us describe the feasibility region forqi+1. Figure 2 shows the pointsp, qi, the
diskdpqi and the tangent linel at qi. Since(p, qi) is an edge inGP , qi+1 must lie out-
sidedpqi . Also, since(p, qi+1) will be an edge inGP , ∠pqiqi+1 < π

2 (by Lemma 2.1).
This implies thatqi+1 must lie below the tangent linel. Thus the feasible region for
qi+1 is outsidedpqi and belowl (shown as the shaded region in Figure 2). We choose
the next neighborqi+1 to be the grid point in the feasible region that is closest (inEu-
clidean distance) toqi (See Figure 2). This greedy choice allows us to pack as many
neighbors as possible.

Now, the procedure that assigns neighbors top is as follows: The first neighbor of
p is set asq0 = (px + s, py + s · tan θ0), wheres =

√
n/3 andθ0, 0 < θ0 < π/4 is a

small constant to be fixed later. Starting with this neighbor, we iteratively find the next
neighbor using the procedure described above. We continue assigning neighbors as
long as the conditionθi ≤ π/4 is satisfied. Note that this procedure assigns neighbors
only in the first quadrant w.r.tp. Similarly, we find neighbors in the third quadrant w.r.t
p by starting with the initial neighbor(px − s, py − s · tan θ0) and proceeding as long
as the conditionθi ≤ 5π/4 is satisfied.

3.2 Correctness

In this section, we show that the geometric graphGP constructed above is a locally
gabriel graph.

Remark 1: Observe that the above procedure that constructsGP assigns neighbors
in a symmetric consistent manner, i.e.,if the procedure assignsqi as thei-th neighbor
(in 1st quadrant) ofp, then it would assignp as thei th neighbor (in 3rd quadrant) of
qi, when the procedure is applied onqi.

By Remark 1, the neighbors ofp in GP are exactly the grid points chosen by the
procedure.

Lemma 3.1 Let p ∈ P be any grid point and letQ = {q0, q1, . . . , qm} be the neigh-
bors ofp in GP (in counter-clockwise order) in the first quadrant. The diskdpqi does
not contain any neighbor ofp ∀i, 0 ≤ i ≤ m.

Proof. First, we show thatdpqi does not contain any neighbor ofp in the first quadrant,
i.e.,dpqi ∩(Q\{qi}) = ∅. Observe thatdpqi does not containqi+1 because the iterative
procedure picksqi+1 outside the diskdpqi . Also observe thatdpqi does not containqi−1

because∠pqi−1qi <
π
2 (qi is picked below tangent line ofdpqi−1

). On the contrary, let
us assume thatdpqi contains someqj , j 6= i−1, i, i+1. There are 2 cases: (i)j > i+1
and (ii) j < i − 1. We will prove case (i) below. Case (ii) can be proved in a similar
manner. Let us assume thatk is the smallest index among the neighborsqj , j > i + 1
that is contained indpqi . Sinceqi, qi+1, . . . qk−1, qk are in counter-clockwise convex
position, all the disksdpqj , i+1 ≤ j ≤ k− 1 also containsqk (see figure 3). Thus, the
diskdpqk−1

also containsqk. This is a contradiction since the iterative procedure picks
qk outside the diskdpqk−1

.
The diskdpqi does not contain any neighbor ofp in the third quadrant w.r.tp,

sincedpqi does not intersect the third quadrant w.r.tp. Thusdpqi does not contain any
neighbor ofp. �
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qi

qk
qj

p

Figure 3: Pointp and its neighborsqi, . . . , qj , . . . , qk

Remark 2: Observe that the grid point setP is a symmetric point set and we
use the same deterministic procedure to assign neighbors toall the grid point. Hence
Lemma 3.1 is true for all the grid pointsp ∈ P .

Lemma 3.2 Edge(p, qi) ofGP satisfies the locally Gabriel condition∀i, 0 ≤ i ≤ m.

Proof. We need to show that the diskdpqi , 0 ≤ i ≤ m, does not contain the neighbors
of p or qi in GP . By Lemma 3.1, diskdpqi does not contain any neighbor ofp.

By Remark 1,p is thei th neighbor (in 3rd quadrant) ofqi. By Remark 2, we apply
Lemma 3.1 for grid pointqi (instead ofp) on the neighbors ofqi in the 3rd quadrant
(instead of 1st quadrant) to show that diskdqip (which is the same asdpqi ) does not
contain any neighbors ofqi. �

Since the procedure assigns neighbors top in the third quadrant in exactly the
same way as the first quadrant, Lemma 3.2 shows that edges fromp to its neighbors
in the third quadrant also satisfy the locally Gabriel condition. Thus, all the edges
from p to neighbors ofp satisfies the locally Gabriel condition. Since we use the same
deterministic procedure to assign neighbors to all the gridpoints, the argument forp
applies to all grid pointsp ∈ P . Hence all the edges inGP satisfy the locally Gabriel
condition proving thatGP is locally Gabriel.

3.3 Analysis

In this section, we analyze the lower bound construction described in the previous
section. We will show thatGP hasΩ(n5/4) edges by proving that the iterative proce-
dure picksΩ(n1/4) neighbors for grid pointp. Let q0, q1, . . . , qm be the neighbors(in
counter-clockwise order) ofp in the first quadrant. Given the current neighborqi, the
procedure picks the next neighborqi+1 “close” to q. We will prove bounds on the
closeness betweenqi andqi+1. Using this, we show bounds onm.

Figure 4 shows the pointsp (denoted as A in the figure), the current neighborqi
(denoted as C), the diskdpqi and the tangent linel at C. Let the next neighborqi+1 lie
at a x-distancedi from the current neighborqi (qi+1 lies on the vertical line passing
through D and E). Let|AB| = qxi − px = xi, |DB| = qxi − qxi+1 = di and|CB| =

6



F

E

D B D

E

G

B

(i) (ii)

xi xi

yi

di di

yi

θi θi

qi = C qi = C

p = A p = A

Figure 4: The vertical gridline that contains the next neighbor intersects (i) the diameter
disk atF , (ii) the tangent line atG

qyi − py = yi (See Figure 4). First, we will prove bounds fordi in terms ofxi. Let the
vertical grid-line passing throughqi+1 intersect the diskdpqi atF (See Figure 4(i)) and
the tangent line atG (See Figure 4(ii)). Let|FE| = hi and|GE| = h′

i. Since△AFC
is right-angled atF (see Figure 4(i)), we have

|AC|2 = |AF |2 + |FC|2

= (|AD|2 + |DF |2) + (|FE|2 + |CE|2)
(xi sec θi)

2
= (xi − di)

2
+ (hi + xi tan θi)

2
+ h2

i + d2i

Simplifying, we get

h2
i + xi tan θi · hi − di(xi − di) = 0 (1)

Similarly, since△ACG is right-angled atC (see Figure 4(ii)), we have

|AG|2 = |AC|2 + |CG|2

(|AD|2 + |DG|2) = |AC|2 + (|GE|2 + |CE|2)
(xi − di)

2
+ (h′

i + xi tan θi)
2
= (xi sec θi)

2
+ h′

i
2
+ d2i

Simplifying, we geth′
i = di cot θi.

The next neighborqi+1 lies on the vertical gridline betweenF andG. To ensure
that a grid point exists betweenF andG, we enforce a stronger condition that the
distance betweenF andG is at least1, i.e., |FG| = h′

i − hi > 1. Solving forhi in
Equation 1, substituting forhi, h

′
i, we get

di cot θi −
√

x2
i tan

2 θi + 4di(xi − di)− xi tan θi
2

> 1 (2)

Simplifying this, we get the inequality

d2i + sin2 θi > xi tan θi sin
2 θi + di sin 2θi

7



By settingdi = c1
√
xi, c1 > 1, the above inequality is satisfied, sinceθi ≤ π/4 (we

assign neighbors top only till θi ≤ π/4). Therefore, inequality 2 is also satisfied. This
gives us a bound ondi (closeness betweenqi+1 andqi) in terms ofxi (x-distance ofqi
from p).

Now, we will obtain bounds onm, the number of neighbors assigned top. Note
that the procedure assigns neighbors top as long asθi ≤ π/4, i.e., ym ≤ xm. We
will now obtain bounds onxi andyi. Thexi are related by the following recurrence
relation

xi+1 = xi − di

= xi − c1
√
xi

≥ xi − c1

√√
n

3

(

xi ≤
√
n

3

)

Expanding this recurrence withx0 =
√
n/3 , we get

xk ≥
√
n

3
− k · c1n1/4

√
3

, 0 < k ≤ m (3)

Next, we obtain bounds onyi. Theyi are related by the recurrence relationyi+1 = yi+
⌊hi +1⌋ (since we pickqi+1 as the closest grid point to F). Expanding this recurrence,
we get

yk = y0 +

k−1
∑

0

⌊hi + 1⌋ (4)

≤ y0 + k +

k−1
∑

0

hi (5)

wherehi is given by the solution to Equation 1

k−1
∑

0

hi =
1

2

k−1
∑

0

√

x2
i tan

2 θi + 4di(xi − di)− xi tan θi

=
1

2

k−1
∑

0

√

x2
i tan

2 θi + 4c1
√
xi(xi − c1

√
xi)− xi tan θi

=
1

2

k−1
∑

0

xi tan θi

(

√

1 +
4c1

√
xi(xi − c1

√
xi)

x2
i tan

2 θi
− 1

)

≤ 1

2

k−1
∑

0

xi tan θi

(

√

1 +
4c1√

xi tan
2 θi

− 1

)

≤ 1

2

k−1
∑

0

xi tan θi

(

(

1 +
2c1√

xi tan
2 θi

)

− 1

)

≤
k−1
∑

0

c1
√
xi

tan θi
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Sinceθi > θ0 andxi ≤
√
n/3, we have

k−1
∑

0

hi ≤
c1 · k · n1/4

√
3 tan θ0

Hence, from Equation 5,yk is given by the following

yk ≤ tan θ0 ·
√
n

3
+

c1 · k · n1/4

√
3 tan θ0

+ k (6)

Settingc1 = 1.01, θ0 = 1.74 × 10−3, it can be verified analytically in Equation 3
and Equation 6 thatyk ≤ xk for all 0 ≤ k ≤ 10−4n1/4. Thus,ym ≤ xm for m =
10−4n1/4. The number of neighbors ofp is at least10−4n1/4. The edge complexity of
GP is thereforeΩ(n · n1/4) = Ω(n5/4).

4 Convex Point Sets

In this section, we show edge complexity for LGG on various classes of convex point
sets. First, we show exact bounds for half convex point sets.Then, we show asymp-
totic tight linear bounds for special subclasses of convex point sets. Finally, we show
O(n logn) bounds for arbitrary convex point sets.

4.1 Exact Bound for Half Convex Point Sets

First, let us consider the special case whenP is a monotonic convex point set. Wlog,
let us assume thatP is of the upper-right type.

Lemma 4.1 Let P = {p1, p2, . . . , pn} be a upper-right monotonic convex point set
and letGP be any locally gabriel graph onP . p1, pn has atmost 1 neighbor inGP

and henceGP has atmostn− 1 edges.

Proof. We show that the first pointp1 has atmost one neighbor. Let if possible,pi
andpj be neighbors ofp1, j > i. p1, pi, pj are in monotonic convex position. Thus
∠p1pipj ≥ 90◦. Sincepi andpj are neighbors ofp1, ∠p1pipj < 90◦ (by Lemma 2.1).
Hence a contradiction. By a similar argument, we can also show thatpn has atmost 1
neighbor inGP .

Removingp1 from P and applying induction on the remaining points, we see that
GP has atmostn− 1 edges. �

Next we consider the special case whenP is a half convex point set. Wlog, let us
assume thatP is a right half convex point set.

Lemma 4.2 LetP = Q ∪R be a right half convex point set withn points, whereQ is
upper-right monotonic andR is lower-right monotonic. LetGP be any locally gabriel
graph onP . GP has atmost2n− 3 edges.
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Proof. Letp be the point with maximum x-coordinate (rightmost point) inP . Q∪{p}
is upper-right monotonic andR ∪ {p} is lower-right monotonic. By Lemma 4.1,p has
degree atmost two(atmost one neighbor inQ and one inR). Removingp from P and
applying induction on the remaining points, we getP (n) ≤ P (n− 1) + 2;P (2) = 1.
This givesP (n) ≤ 2n− 3. �

The above bounds are tight, i.e., it is easy to construct locally gabriel graphs for
monotonic and half convex sets that match the above bounds. For any monotonic
convex sets, construct a path (of lengthn− 1) connecting all the vertices.

pn−1

pn

p1

C

Figure 5: Portion of circle C centered atpn and pointsp1, . . . , pn−1 placed equidistant
onC

For right half convex sets, we can achieve the exact bound using the following con-
struction:
LetC be a circle with center atpn. We place pointsp1, p2, . . . , pn−1 equidistant along
the first quadrant ofC (See Figure 5). The point set constructed is right half convex.
The edges ofGP are defined as follows:

(i) Add edges(pi, pi+1), 1 ≤ i ≤ n− 2. This forms a path of lengthn− 2.

(ii) Add edges(pn, pi), 1 ≤ i ≤ n− 1. This forms a star of sizen− 1.

It can be verified that these edges satisfy the locally gabriel condition. Thus, the edge
complexity ofGP is 2n− 3.

4.2 Tight Linear Bounds for Various Subclasses

In this section, we prove asymptotic tight linear bounds forsome special subclasses of
convex point sets.

4.2.1 Points on a Circle

First, we consider the special case ofn points lying on a circle.

Lemma 4.3 LetC be any circle andP = {p1, p2, . . . , pn} ben points that lie onC.
LetGP be any locally gabriel graph onP . GP has atmostn edges

10



Proof. Let pi be any point inP andp′i be the point onC that is diametrically opposite
to pi. The diameterpip′i divides the circleC into two halves. We claim thatpi has
atmost 1 neighbor in each half. Let, if possible,pi have two neighborspj andpk in
the same half (see Figure 6(i)). We can see that∠pipjp

′
i = 90◦. Sincepi, pj, pk, p′i

are in convex position, we have∠pipjpk > ∠pipjp
′
i. Thus,∠pipjpk > 90◦ But, since

(pi, pk) is an edge,∠pipjpk < 90◦ (by Lemma 2.1). Hence a contradiction.
Since, each pointpi ∈ P has atmost 2 neighbors (atmost one in each half), the edge

complexity ofGP is atmostn. �

This bound is exact, since we can always construct aGP with n edges.

C
D

(ii)(i)

pi

p′i

pk

pi

−pi

pj

pk

pj

Figure 6: (i) Points on a circleC (ii) Centrally symmetric point set with diameter pair
pi,−pi

4.2.2 Centrally symmetric convex point set

Next, we consider the case ofP being in centrally symmetric convex position. We
prove that any locally gabriel graph onP has atmost2n − 3 edges. Our proof is
an adaptation of [1], where it was proved that the unit distance graph on centrally
symmetric convex point sets has atmost2n− 3 edges.

Lemma 4.4 Let P = {p1,−p1, p2,−p2 . . . , pn/2,−pn/2} be n points in centrally
symmetric convex position. LetGP be any locally gabriel graph onP . GP has atmost
2n− 3 edges

Proof. In [1], it is shown that the diameter pair (pair that is furthest apart) in any
centrally symmetric convex point set must be of the form(pm,−pm), for somem. Let
(pi,−pi) be the diameter pair inP .

If (pi,−pi) is an edge inGP , we can show (by a similar argument as below) that
pi,−pi has atmost 1 neighbors inP . Thus,GP would have atmostn − 1 edges.
Therefore, let us assume that(pi,−pi) is not an edge inGP .

Consider the closed diskD with pi and−pi as diameter. SinceP is centrally
symmetric, all the points inP must lie inD. The diameterpi,−pi divides the diskD
into two halves. We claim thatpi has atmost 1 neighbor in each half. Let, if possible,
pi have two neighborspj andpk in the same half (see Figure 6(ii)). Since,pj lies in
D, ∠pipj − pi ≥ 90◦. Also, sincepi, pj , pk,−pi are in convex position,∠pipjpk >

11



∠pipj − pi. Thus,∠pipjpk > 90◦. Since(pi, pk) is an edge,∠pipjpk < 90◦ (by
Lemma 2.1). Hence a contradiction.

pi has atmost 2 neighbors inGP . By the same argument,−pi also has atmost 2
neighbors. Removingpi and−pi from P and recursing on the remaining point set
(which is also centrally symmetric), we haveP (n) ≤ P (n − 2) + 4;P (2) = 1. This
givesP (n) ≤ 2n− 3. �

We can achieve an almost tight lower bound using the following construction:
Let P be a set ofn points defined byP = {(−1, i) ∪ (1, i),−n/4 ≤ i < n/4}. P
consists of equally spaced integer gridpoints on the vertical linesx = −1 andx = 1
(n/2 points in each line). It is easy to see thatP is centrally symmetric about the ori-
gin. The edges ofGP are defined as follows:

(i) Add n − 4 edges of the form
(

(−1, i), (−1, i + 2)
)

and
(

(1, i), (1, i + 2)
)

for all
−n

4 ≤ i < n
4 − 2.

(ii) Add n − 4 edges of the form
(

(−1, i), (1, i + 1)
)

and
(

(−1, i), (1, i − 1)
)

for
all −n

4 − 1 ≤ i < n
4 − 1.

It can be easily verified that these edges satisfy the locallygabriel condition. Thus,
the edge complexity ofGP is 2n− 8.

4.3 Bounds for Convex Point Sets

In this subsection, we consider an arbitrary convex point set P . We prove that the edge
complexity of any LGG onP is O(n log n). The proof is a straightforward extension
of the argument given in [5], which proved that the unit distance graph on convex point
sets hasO(n log n) edges.

Lemma 4.5 LetP be a set ofn points in convex point set and letGP be any locally
gabriel graph onP . GP hasO(n logn) edges.

Proof. We use the clever recursive method given in [5]. We will describe the method
briefly, for sake of completeness. Refer to [5] for details. We can partitionP into
Q andR using the topmost and bottommost point ofP (antipodal pair). Note that
Q is left half convex andR is right half convex. In fact, we can perform a partition
using any of the antipodal pairs, such that the two parts are half convex sets (for an
appropriate reference axis). The basic idea behind the recursive method in [5] is to use
the above fact to divideP using two such partitions such that we have two subproblems
of size atmost3n/4 and the edges at this level of recursion are edges within the four
half convex sets. The number of such edges isO(n) using Lemma 4.2. The edge
complexity ofGP is thusO(n log n) �

For convex point sets, the best known lower bound is2n− 3.
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5 Independent Sets

In this section, we show that anyLGG on anyn point set contains an independent set
of size at leastΩ(

√
n logn).

We first show an elementary argument that constructs an independent set of size at
least

√
n
2 in a n point set. A set of points ordered by their abscissa is calleda mono-

tonic sequence if the ordinates of the points are either monotonically non-increasing or
monotonically non-decreasing.

Lemma 5.1 LetGP be anyLGG on a monotonic sequenceP with n points.GP has
an independent set of size at leastn

2 .

Proof. Let us denote the first and the last vertices of the monotonicsequenceP as
terminal vertices. We show that in anyLGG on P , a terminal vertex has degree at
most one. On the contrary let us assume that a terminal vertexv is incident to vertices
v1 andv2 and the vertices appear in the sequence asv, v1 andv2. An axis parallel
rectangle withvv2 as diagonal will containv1 inside or on the boundary of it. It implies
that edges(v, v2) and(v, v1) conflict with each other. Thus,v has at most one edge
incident to it. Now, add the terminal vertex to the independent set and remove it along
with its neighbor (if it exists) from the sequence. In each iteration at most two vertices
are removed and one vertex is added to the independent set. Thus, the independent set
has size at leastn2 . �

Erdos and Szekeres [7] showed that a set ofn points will have a monotonic se-
quence of size at least

√
n. One such sequence can be computed inO(n log n) time

by an algorithm proposed by Hunt and Szymanski [10]. By Lemma5.1, any induced
LGG on this monotonic sequence has an independent set of size at least

√
n
2 .

Now, we show that anyLGG on any point set withn points contains an independent
set of size at leastΩ(

√
n logn). In a graphG = (V,E) for anyu ∈ V , let us define

N(u) = {v | (u, v) ∈ E}. A graph is said to have sparse neighborhood if for any
u ∈ V , the chromatic number of the subgraph induced over vertices{u} ∪ N(u) is a
constant. We show that anyLGG with n vertices will have an independent set of size
Ω(

√
n logn) by using Theorem 5.1 where the sparse neighborhood propertyof LGGs

(shown in the Lemma 5.2) is applied.

Theorem 5.1 (Alon [2]) LetG = (V,E) be a graph on n vertices with average degree
t ≥ 1 in which for every vertexv ∈ V the induced subgraph on the set of all neighbors
of v is r-colorable. Then, the independence number ofG is at least c

log(r+1)
n
t log t, for

some absolute positive constant c.

Lemma 5.2 LetGP be anyLGG on any point setP andu be an arbitrary vertex in
G. The induced subgraph over the vertices{u} ∪ {N(u)} is 4-colorable.

Proof. Let vertexu be adjacent tov1, v2, . . . , vk. Let us consider the induced subgraph
over these vertices. We show that any vertex sayv1 has at most one incident edge on
either side of the line passing throughu andv1. On the contrary let us assume that
there are two verticesv2 andv3 adjacent tov1 on the same side of lineuv1. Let us
analyze all the possible cases.

13
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Figure 7: Possible placement of neighborhood inLGG

• All the four vertices (u, v1, v2 andv3) cannot be collinear otherwise at least two
vertices (sayv1 andv2 w.l.o.g.) lie on the same side ofu and the edges(u, v1)
and(u, v2) would conflict with each other.

• Let us consider the case when three vertices are collinear. It can be trivially
verified thatv1, v2 andv3 cannot be collinear due toLGG constraints. Similarly
u, v1 andv2 (or v3) also cannot be collinear due toLGG constraints. Ifv2, v3
andu are collinear thenu must lie in betweenv2 andv3. It contradicts with the
assumption thatv2 andv3 lie on the same side ofuv1.

• Let us consider the case when convex hull of these four vertices is a triangle
and another vertex lies inside this triangle as shown in Figure 7(a). Since it
is assumed thatv2 andv3 lie on the same side ofuv1, u andv1 must be the
vertices of this triangle. Let us assume that vertexv3 lies inside△uv1v2. Since
(u, v1), (u, v2) and (u, v3) do not conflict with each other, both∠uv3v1 and
∠uv3v2 should be less thanπ2 , which is not possible in this configuration.

• The last case is when all the vertices are in convex position and form a quadri-
lateral. Lets assume w.l.o.g. thatuv1v2v3 is a convex quadrilateral as shown
in Figure 7(b). By Lemma 2.1,∠uv1v2 < π

2 (due to edgesuv1 and uv2),
∠v1v2v3 < π

2 (due to edgesv1v3 andv1v2), ∠v2v3u < π
2 (due to edgesuv2

anduv3), ∠v3uv1 < π
2 (due to edgesv1u andv1v3) and . But in a quadrilateral

at least one of the internal angle should be greater than or equal to π
2 . Hence, it

leads to a contradiction.

Hence any vertexvi ∈ N(u) has at most two neighbors apart fromu in the induced
subgraph on neighborhood ofu. Thus, the degree of any vertexvi for 1 ≤ i ≤ k is at
most 3. Therefore, this induced subgraph is 4-colorable. �

Theorem 5.2 LetGP be anyLGG on an point set.GP has an independent set of size
Ω(

√
n logn).

Proof. Since anLGG has a maximum ofO(n
3
2 ) edges [12], the average degree of

a vertex isO(
√
n). Substitutingt = O(

√
n) andr = 4 in Theorem 5.1, the desired

bound is obtained. �
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Conclusion

In this paper, we have shown improved bounds on the maximum edge complexity of
locally gabriel graphs. There is still a gap between our lower bound ofΩ(n5/4) and the
best known upper bound ofO(n3/2). It is an interesting problem to narrow this gap.
We have shown tight linear bounds for various subclasses of convex pointsets. But, for
a general convex point sets, the best lower bound on edge complexity of locally gabriel
graphs is2n − 3, while the upper bound isO(n log n). Can one obtain tight bounds?
Finally, we have shown that any LGG on anyn pointset has an independent set of size
Ω(

√
n logn). There is no known non-trivial upper bound. It is an interesting problem

to improve upon these bounds.
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