On three-color Ramsey number of paths

L. Maherani^a, G.R. Omidi^{a,b,1}, G. Raeisi^a, M. Shahsiah^a

^a Department of Mathematical Sciences, Isfahan University of Technology,

Isfahan, 84156-83111, Iran

^bSchool of Mathematics, Institute for Research in Fundamental Sciences (IPM),

P.O.Box: 19395-5746, Tehran, Iran

l.maherani@math.iut.ac.ir, romidi@cc.iut.ac.ir, g.raeisi@math.iut.ac.ir, m.shahsiah@math.iut.ac.ir

Abstract

Let G_1, G_2, \ldots, G_t be graphs. The multicolor Ramsey number $R(G_1, G_2, \ldots, G_t)$ is the smallest positive integer n such that if the edges of complete graph K_n are partitioned into t disjoint color classes giving t graphs H_1, H_2, \ldots, H_t , then at least one H_i has a subgraph isomorphic to G_i . In this paper, we prove that if $(n, m) \neq (3, 3), (3, 4)$ and $m \geq n$, then $R(P_3, P_n, P_m) = R(P_n, P_m) = m + \lfloor \frac{n}{2} \rfloor - 1$. Consequently $R(P_3, mK_2, nK_2) = 2m + n - 1$ for $m \geq n \geq 3$.

Keywords: Ramsey Number, Path.

AMS Subject Classification: 05C55.

1 Introduction

In this paper, we only concerned with undirected simple finite graphs and we follow [1] for terminology and notations not defined here. For a graph G, the vertex set, edge set, maximum degree and minimum degree of G are denoted by V(G), E(G), $\Delta(G)$ and $\delta(G)$ (or simply V, E, Δ, δ), respectively. As usual, the complete graph of order p is denoted by K_p and a complete bipartite graph with partite set (X, Y) such that |X| = m and |Y| = n is denoted by $K_{m,n}$. For two disjoint subsets X and Y of the vertices of a graph G, we use E(X, Y) to denote the set of all edges with one end point in X and the other in Y. For a vertex v and an induced subgraph Hof G the set of all neighbors of v in H are denoted by $N_H(v)$. Throughout this paper, we denote a cycle and a path on m vertices by C_m and P_m , respectively. Also for a 3-edge coloring (say green, red and blue) of a graph G, we denote by G^g (resp. G^r and G^b) the induced subgraph by the edges of color green (resp. red and blue).

For given graphs G_1, G_2, \ldots, G_t the multicolor Ramsey number $R(G_1, G_2, \ldots, G_t)$, is the smallest positive integer n such that if the edges of complete graph K_n are partitioned into

¹The author was in part supported by a grant from IPM (No. 90050049)

t disjoint color classes giving t graphs H_1, H_2, \ldots, H_t , then at least one H_i has a subgraph isomorphic to G_i . The existence of such a positive integer is guaranteed by Ramsey's classical result [12]. Since 1970's, Ramsey theory has grown into one of the most active areas of research within combinatorics, overlapping variously with graph theory, number theory, geometry and logic. For $t \ge 3$, there is a few results about multicolor Ramsey number $R(G_1, G_2, \ldots, G_t)$. A survey including some results on Ramsey number of graphs, can be found in [11].

The multicolor Ramsey number $R(P_{n_1}, P_{n_2}, \ldots, P_{n_t})$ is not known for $t \ge 3$. In the case t = 2, a well-known theorem of Gerencsér and Gyárfás [7] states that $R(P_n, P_m) = m + \lfloor \frac{n}{2} \rfloor - 1$, where $m \ge n \ge 2$. Faudree and Schelp in [5] determined $R(P_{n_1}, P_{2n_2+\delta}, \ldots, P_{2n_t})$ where $\delta \in \{0, 1\}$ and n_1 is sufficiently large. As an improvement of this result in [10] the authors determined $R(C_{n_1}, P_{2n_2+\delta}, \ldots, P_{2n_t})$ where $\delta \in \{0, 1\}$ and n_1 is sufficiently large. In addition, in [5] the authors determined $R(P_{n_1}, P_{n_2}, P_{n_3})$ for the case $n_1 \ge 6(n_2 + n_3)^2$ and they conjectured that

$$R(P_n, P_n, P_n) = \begin{cases} 2n-1 & \text{if } n \text{ is odd,} \\ \\ 2n-2 & \text{if } n \text{ is even.} \end{cases}$$

This conjecture was established by Gyárfás et al. [8] for sufficiently large n. In asymptotic form, this was proved by Figaj and Luczak in [6] as a corollary of more general results about the asymptotic results on the Ramsey number for three long even cycles.

It is a natural question to ask whether similar conclusion is true if $K_{R(P_m,P_n)}$ is replaced by some weaker structures. One such result was obtained in [9] where it was proved that in every 2-coloring of the edges of the complete 3-partite graph $K_{n,n,n}$ there is a monochromatic $P_{(1-o(1))2n}$. The following conjecture involving the minimum degree, was formulated by Schelp [13].

Conjecture 1 Suppose that n is large enough and G is a graph on $R(P_n, P_n)$ vertices with minimum degree larger than $\frac{3}{4}|V(G)|$. Then in any 2-coloring of the edges of G there is a monochromatic P_n .

Schelp also noticed that the condition on the minimum degree is sharp. Indeed, suppose that 3n - 1 = 4m and consider a graph whose vertex set is partitioned into four parts A_1, A_2, A_3, A_4 with $|A_i| = m$. There are no edges from A_1 to A_2 and from A_3 to A_4 . Edges between A_1, A_3 and A_2, A_4 are red, edges between A_1, A_4 and A_2, A_3 are blue and for i = 1, 2, 3, 4 the edges of with two end points in A_i are colored arbitrary. In this coloring the longest monochromatic path has 2m vertices, much smaller then 2n, while the minimum degree is $\frac{3}{4}|V(G)| - 1$. Thus, this makes the conjecture surprising, even a minuscule increase in the minimum degree results in a dramatic increase in the length of the longest monochromatic path. Schelp [14] proved that there exists a c < 1 for which Conjecture 1 holds if the minimum degree is raised to c|V(G)|. The main result of this paper is the following.

Theorem 1.1 If $m \ge n$ and $(n, m) \ne (3, 3), (3, 4)$, then $R(P_3, P_n, P_m) = m + \lfloor \frac{n}{2} \rfloor - 1$. Moreover, $R(P_3, P_3, P_3) = R(P_3, P_3, P_4) = 5$.

In other words, $R(P_3, P_n, P_m) = R(P_n, P_m)$ for $m \ge n$ and $(n, m) \ne (3, 3), (3, 4)$. Clearly $R(P_n, P_m)$ is a lower bound for $R(P_3, P_n, P_m)$ and so we shall always prove just the claimed upper bound for the Ramsey number.

2
$$R(P_3, P_n, P_m)$$
 for $m \ge n$ and $n \le 7$

In this section, we provide the exact values of $R(P_3, P_n, P_m)$ when $3 \le n \le 7$ and $m \ge n$. First, we recall a result of Faudree and Schelp.

Theorem 2.1 ([5]) If G is a graph with |V(G)| = nt + r where $0 \le r < n$ and G contains no path on n + 1 vertices, then $|E(G)| \le t\binom{n}{2} + \binom{r}{2}$ with equality if and only if either $G \cong tK_n \cup K_r$ or if n is odd, t > 0 and $r = (n \pm 1)/2$

$$G \cong lK_n \cup \left(K_{(n-1)/2} + \overline{K}_{((n+1)/2 + (t-l-1)n+r)} \right),$$

for some $0 \leq l < t$.

By Theorem 2.1, it is easy to obtain the following corollary.

Corollary 2.2 For all integer $n \geq 3$,

$$ex(n, P_4) = \begin{cases} n & \text{if } n = 0 \pmod{3}, \\ n-1 & \text{if } n = 1, 2 \pmod{3}. \end{cases}$$

$$ex(n, P_5) = \begin{cases} 3n/2 & \text{if } n = 0 \pmod{4}, \\ 3n/2 - 2 & \text{if } n = 2 \pmod{4}, \\ (3n-3)/2 & \text{if } n = 1, 3 \mod{4}, \\ (3n-3)/2 & \text{if } n = 1, 3 \mod{4}, \end{cases}$$

$$ex(n, P_6) = \begin{cases} 2n & \text{if } n = 0 \pmod{5}, \\ 2n-2 & \text{if } n = 1, 4 \pmod{5}, \\ 2n-3 & \text{if } n = 2, 3 \mod{5}. \end{cases}$$

Theorem 2.3 ([3, 4]) $R(P_3, P_4, P_m) = m + 1$ for $m \ge 6$ and $R(P_3, P_5, P_m) = m + 1$ for $m \ge 8$.

Theorem 2.4 (i) $R(P_3, P_3, P_m) = m$ for $m \ge 5$. (ii) $R(P_3, P_4, P_m) = m + 1$ for $4 \le m \le 5$. (iii) $R(P_3, P_5, P_m) = m + 1$ for $5 \le m \le 7$. **Proof.** (i) Let $G = K_m$ be 3-edge colored green, red and blue such that G does not contain green or red P_3 . It is clear to see that G^b is connected and $\delta(G^b) \ge m - 3$. Thus G^b has a Hamiltonian path(see [1]) and so a P_m .

(ii) Let $G = K_{m+1}$ be 3-edge colored green, red and blue such that $P_3 \notin G^g$ and $P_4 \notin G^r$. First let m = 4. Using corollary 2.2 we may assume that $|E(G^g)| \leq 2$ and $|E(G^r)| \leq 4$. If $|E(G^r)| = 4$, then by Theorem 2.1 $G^r \cong K_3 \cup K_2$ or $G^r \cong K_{1,4}$ which clearly the complement of G^r with respect to G is colored green and blue and so it contains a blue copy of P_4 . Thus we may assume that $|E(G^r)| \leq 3$ and so $|E(G^b)| \geq 5$. Using corollary 2.2 G^b contains P_4 . By a similar argument one can show that $R(P_3, P_4, P_5) = 6$.

(iii) Let $G = K_{m+1}$ be 3-edge colored green, red and blue such that $P_3 \notin G^g$ and $P_5 \notin G^r$. First let $m \neq 5$. By a result in [11], $R(P_3, C_4, P_m) = m + 1$ for $m \in \{6, 7\}$ and so we may assume that G contains a red C_4 . Set $A = V(C_4)$ and $B = V(G) \setminus A$. Since $P_5 \notin G^r$, all edges between A and B are colored green or blue which clearly G[E(A, B)] contains a blue P_m . Now consider the case m = 5. By a similar argument, we may assume that G^r and G^b don't contain C_4 as subgraph. Since |E(G)| = 15, by Theorem 2.1 we may assume that $|E(G^g)| = 3$, $|E(G^r)| = 6$ and $|E(G^b)| = 6$ and so the green edges form a perfect matching. But $R(P_3, P_4, P_5) = 6$, by part (ii), and so we may assume that G^r contains a copy of P_4 , say $P = v_1 v_2 v_3 v_4$. Set $A = V(G) \setminus V(P) = \{v_5, v_6\}$. Since $P_5 \notin G^r$, all edges in $E(\{v_1, v_4\}, A)$ are colored green or blue. Also since the green edges form a perfect matching, the subgraph of G^g induced by $E(\{v_1, v_4\}, A)$ dose not contain a perfect matching. Thus we may assume that $P' = v_5 v_1 v_6 v_4 \subseteq G^b$ and $v_4 v_5 \in E(G^g)$. Now since $P_5 \notin G^r$, at least one of $v_2 v_5$ or $v_3 v_5$, say $v_2 v_5$, must be blue and so $v_3 v_5 P' v_4$ form a blue P_5 . This observation completes the proof.

Combining Theorems 2.3 and 2.4, we obtain that $R(P_3, P_n, P_m) = R(P_n, P_m)$ if $m \ge n$, $n \in \{3, 4, 5\}$ and $(n, m) \ne (3, 3), (3, 4)$. In the rest of this section we prove that $R(P_3, P_n, P_m) = R(P_n, P_m)$ for $m \ge n$, $n \in \{6, 7\}$. But before that we need some lemmas.

Lemma 2.5 Let G be a graph obtained from the complete bipartite graph $K_{3,4}$ by removing an edge. If each edge of G is colored red or blue, then G^r contains P_3 or G^b contains P_7 .

Proof. Let G = (X, Y), $X = \{x_1, x_2, x_3\}$ and $Y = \{y_1, y_2, y_3, y_4\}$. Also let x_1y_1 be the edge that removed from $K_{3,4}$. If G^r does not contain P_3 , then G^r has at most three edges. Let H be a spanning subgraph of G with $E(H) = E(G^r) \cup \{x_1y_1\}$. It is clear to see that $H \subseteq P_3 \cup 2P_2$ or $H \subseteq P_4 \cup P_2 \cup P_1$ and so the complement of H with respect to $K_{3,4}$ contains a copy of P_7 . This observation completes the proof.

Lemma 2.6 Suppose $m \ge 7$ and the edges of K_{m+2} are colored with colors green, red and blue such that G^b contains a copy of P_{m-1} as a subgraph. Then K_{m+2} contains a green P_3 , a red P_7 or a blue P_m .

Proof. Assume that $G = K_{m+2}$ with $V(G) = \{v_1, v_2, \ldots, v_{m+2}\}$ and $P = v_1v_2 \ldots v_{m-1}$ is the desired copy of P_{m-1} in G^b . We suppose that G^b contains no copy of P_m , then we prove that K_{m+2} contains a green P_3 or a red P_7 . We find two vertices $v, v' \in P_{m-1}$ such that the bipartite graph with parties $X = \{v_m, v_{m+1}, v_{m+2}\}$ and $Y = \{v_1, v, v', v_{m-1}\}$ is a red-green graph with at least 11 edges and then we use Lemma 2.5, which guarantees the existence of a green P_3 or

a red P_7 . Note that we may assume that in G^b , the vertices v_2 and v_{m-2} don't have a common neighbor in X. Otherwise, since $P_m \not\subseteq G^b$, v_3 (also v_{m-3}) is not adjacent to any vertex of X in G^b and so v_3 and v_{m-3} are the desired vertices. Thus we may assume that in G^b one of v_2 or v_{m-2} , say v_{m-2} , has at most one neighbor in X. If $N_{G^b}(v_{m-2}) \cap X = \emptyset$, then we may assume that in G^b each vertex $v_i \in V(P) \setminus \{v_1, v_{m-2}, v_{m-1}\}$ has at least two neighbors in X, otherwise set $v = v_i$ and $v' = v_{m-2}$. Therefore if $N_{G^b}(v_{m-2}) \cap X = \emptyset$ we have $N_{G^b}(v_2) \cap N_{G^b}(v_3) \cap X \neq \emptyset$, and so $P_m \subseteq G^b$, a contradiction. Hence $|N_{G^b}(v_{m-2}) \cap X| = 1$,

Since $|N_{G^b}(v_{m-2}) \cap X| = 1$, so we may assume that in G^b each vertex $v_i \in V(P) \setminus \{v_1, v_{m-2}, v_{m-1}\}$ has at least one neighbor in X, otherwise set $v = v_i$ and $v' = v_{m-2}$. Since $P_m \notin G^b$, one can easily check that $|N_{G^b}(v_i) \cap X| = 1$, $2 \leq i \leq 5$ and w.l.g $N_{G^b}(v_2) \cap X = \{v_m\}$, $N_{G^b}(v_3) \cap X = \{v_{m+1}\}$, $N_{G^b}(v_4) \cap X = \{v_{m+2}\}$ and $N_{G^b}(v_5) \cap X = \{v_{m+1}\}$. If m = 7 then $v_1v_2v_3v_8v_5v_4v_9$ is a blue P_7 in K_9 , a contradiction. Now let $m \geq 8$. Since $|N_{G^b}(v_{m-2}) \cap X| = 1$, v_{m-2} must be adjacent to a vertex in X by blue and in any case we have a copy of $P_m \subseteq G^b$, a contradiction. This observation completes the proof.

Lemma 2.7 $R(P_3, P_6, P_7) = 9.$

Proof. Let $G = K_9$ be 3-edge colored with colors green, red and blue. By a result in [15], $R(P_3, C_6, C_6) = 9$ and so we may assume that G^b contains a copy of C_6 as subgraph. Set $X = V(K_9) \setminus V(C_6)$. We may assume that all edges between X and C_6 are colored red or green. Therefore by Lemma 2.5, K_9 must contain a green P_3 or a red P_6 , which completes the proof.

Using Lemmas 2.6 and 2.7 we have the following.

Theorem 2.8 $R(P_3, P_7, P_m) = R(P_3, P_6, P_m) = m + 2$ for $m \ge 7$. Moreover $R(P_3, P_6, P_6) = 8$.

Proof. Since $R(P_3, P_6, P_m) \leq R(P_3, P_7, P_m)$ and $m + 2 = R(P_6, P_m) \leq R(P_3, P_6, P_m)$, it is sufficient to show that $R(P_3, P_7, P_m) \leq m + 2$ for $m \geq 7$. Using Lemmas 2.6 and 2.7 we have $R(P_3, P_7, P_7) = 9$ and again using Lemma 2.6 and induction on m we obtain that $R(P_3, P_7, P_m) \leq$ m + 2. On the other hand $8 = R(P_6, P_6) \leq R(P_3, P_6, P_6)$. To complete the proof it is sufficient to show that $R(P_3, P_6, P_6) \leq 8$. Let $G = K_8$ be 3-edge colored with colors green, red and blue. Suppose G have neither a green P_3 nor a blue P_6 . If G has a red P_6 we are done. So suppose that G does not have any red P_6 . Using (*iii*) of Theorem 2.4 we may assume that G has a red P_5 with vertices v_1, v_2, \dots, v_5 as a subgraph. Then we may assume that $v_1v_6, v_1v_7, v_5v_7, v_5v_8$ are blue edges. If $E(\{v_6, v_8\}, \{v_2, v_3, v_4\})$ has a blue edge, combining this edge with the path $v_6v_1v_7v_5v_8$ gives a blue P_6 , a contradiction. So $v_8v_2, v_8v_4, v_6v_2, v_6v_4$ are red edges and v_3v_8 and v_3v_6 are green edges and hence G has a green P_3 , a contradiction.

3 $R(P_3, P_n, P_m)$ for $m \ge n \ge 8$

In this section, we compute the value of $R(P_3, P_n, P_m)$ for $m \ge n \ge 8$. Before that we need some lemmas.

Lemma 3.1 Suppose that $G = K_{m+\lfloor \frac{n}{2} \rfloor -1}$, $m \ge n \ge 8$, is 3-edge colored green, red and blue and $P = v_1 v_2 \cdots v_{m-1}$ is the maximum path in G^b . Let $A = V(G) \setminus V(P)$ and H be the subgraph of G^r induced by the edges in $E(V(P) \setminus \{v_1, v_{m-1}\}, A)$. Then either $P_3 \subseteq G^g$ or $d_H(v_i) \ge 2$ for some $i, 2 \le i \le m-2$.

Proof. We suppose that G^g contains no copy of P_3 . Since $m \ge n \ge 8$, we obtain that $|A| \ge 4$ and so let $X = \{u_1, u_2, u_3, u_4\} \subseteq A$. Again since $m \ge 8$ there is a $v_j \in V(P) \setminus \{v_1, v_{m-1}\}$ such that all edges in $E(X, \{v_j\})$ are red and blue. If $|N_{G^r}(v_j) \cap X| \ge 2$, we have nothing to prove. Otherwise, we may assume that $Y = \{u_1, u_2, u_3\} \subseteq N_{G^b}(v_j) \cap X$. Since $P_m \not\subseteq G^b$, G^r contains at least two edges in $E(Y, \{v\})$ for some $v \in \{v_{j-1}, v_{j+1}\}$ and so $d_H(v) \ge 2$.

Lemma 3.2 Suppose that $G = K_n$ is 3-edge colored green, red and blue, $P_3 \notin G^g$ and P is a maximal path in G^b with endpoints x and y. Then for every two vertices z and w of $V(G) \setminus V(P)$ either $xz, yw \in E(G^r)$ or $xw, yz \in E(G^r)$.

Proof. Since $P_3 \not\subseteq G^g$ and P is a maximal path in G^b , each of z and w is adjacent to at least one of x and y in G^r . With no loss of generality, suppose that $xz \in E(G^r)$. If $yw \in E(G^r)$, the proof is completed. Otherwise, $yw \in E(G^g)$ and so $xw, yz \in E(G^r)$, which completes the proof.

Lemma 3.3 $R(P_3, P_8, P_8) = 11$

Proof. Let $G = K_{11}$ be 3-edge colored green, red and blue such that $P_3 \notin G^g$. We find monochromatic copy of P_8 in blue or red color. By Theorem 2.8, $R(P_3, P_7, P_8) = 10$ and so we may assume that P_7 is a maximum path in G^r . Let $P = v_1v_2 \ldots v_7 \subseteq G^r$ and $A = V(G) \setminus V(P) = \{x_1, x_2, x_3, x_4\}$. Using Lemma 3.1, there exists a $v_j \in V(P) \setminus \{v_1, v_7\}$ which is adjacent to at least two vertices of A, say x_1, x_2 , in G^b . By Lemma 3.2, w.l.g we may assume that $\{x_1v_1, x_2v_7, x_3v_1, x_4v_7\} \subseteq E(G^b)$ and so $Q_7 = x_3v_1x_1v_jx_2v_7x_4 \subseteq G^b$. Let $K = V(P) \setminus \{v_1, v_j, v_7\}$. Then |K| = 4 and one can easily check that at least one of x_3 or x_4 is adjacent to a vertex of K, say v_i , in G^b . Therefore $Q_7 \cup \{v_i\}$ is a blue P_8 .

Theorem 3.4 For any $m \ge n \ge 8$, $R(P_3, P_n, P_m) = m + \lfloor \frac{n}{2} \rfloor - 1$.

Proof. Let $t = m + \lfloor \frac{n}{2} \rfloor - 1$ and $G = K_t$ be 3-edge colored green, red and blue such that $P_3 \notin G^g$ and $P_m \notin G^b$. By induction on m + n, we prove that $P_n \subseteq G^r$. By Lemma 3.3 theorem is true for m = n = 8. By the induction hypothesis $R(P_3, P_n, P_{m-1}) \leq m + \lfloor \frac{n}{2} \rfloor - 1$ and so there is a $P_{m-1} \subseteq G^b$. Let $P = P_{m-1} = v_1 v_2 \dots v_{m-1}$, $A = V(G) \setminus V(P)$ and H be the subgraph of G^r induced by the edges in $E(V(P) \setminus \{v_1, v_{m-1}\}, A)$. Suppose Q is a maximal path of H with end points u_1 and u_2 in A, the existence of such a path is guaranteed by Lemma 3.1. Let $K = (V(P) \setminus \{v_1, v_{m-1}\}) \setminus V(Q)$. If all vertices in A are covered by Q, then by Lemma 3.2, we may assume that $u_1v_1, u_2v_{m-1} \in E(G^r)$ and so $R = v_1u_1Qu_2v_{m-1}$ is a red path on $2\lfloor \frac{n}{2} \rfloor + 1$ vertices. Thus we may assume that $A \setminus V(Q) \neq \emptyset$.

Case 1. $|A \setminus V(Q)| = 1$.

Let $A \setminus V(Q) = \{x\}$. By Lemma 3.2, we may assume that $v_1u_1, v_{m-1}u_2 \in E(G^r)$. In the other hand, since P is maximal and $P_3 \notin G^g$, x is adjacent to at least one of v_1 and v_{m-1} in G^r , say v_1 . Thus $R = xv_1u_1Qu_2v_{m-1} \subseteq G^r$ form a path on $2\lfloor \frac{n}{2} \rfloor$ vertices. If n is even, there is nothing to prove and so we may assume that n is odd. Note that $|K| = m - 3 - (\lfloor \frac{n}{2} \rfloor - 2) \ge \lceil \frac{m}{2} \rceil - 1 > \lfloor \frac{n}{2} \rfloor - 1$ and so by the Pigeonhole principle there exist two consecutive vertices v_i, v_{i+1} in K. If $xv_i \in E(G^r)$ (or $xv_{i+1} \in E(G^r)$), then $\{v_i\} \cup V(R)$ (or $\{v_{i+1}\} \cup V(R)$) form a red P_n . Otherwise, since both xv_i and xv_{i+1} are not in $E(G^g)$ or $E(G^b)$, w.l.g we may assume that $xv_i \in E(G^b)$ and $xv_{i+1} \in E(G^g)$ which implies that $xv_{m-1} \in E(G^r)$. Therefore $V(R) \cup \{x\}$ form a copy of C_{n-1} in G^r . It is clear to see that at least one of v_i or v_{i+1} is adjacent to one of u_1 or u_2 by a red edge Thus, we can find a red P_n .

Case 2. $|A \setminus V(Q)| = 2$.

Let $A \setminus V(Q) = \{x, y\}$. Using Lemma 3.2 we may assume that $R = xv_1u_1Qu_2v_{m-1}y$ is a red path on $2\lfloor \frac{n}{2} \rfloor - 1$ vertices. (Note that in this case, $|K| = m - 3 - (\lfloor \frac{n}{2} \rfloor - 3) \ge \lceil \frac{m}{2} \rceil \ge \lceil \frac{n}{2} \rceil$). We consider the following subcases.

Subcase 1. n is even:

By the Pigeonhole principle there exists a pair of vertices (v_i, v_{i+1}) in K. If one of x or y is adjacent to one of v_i or v_{i+1} , say v_i , in G^r , then $v_i x R y$ form a red P_n . Otherwise, green and also blue edges in $E(\{v_i, v_{i+1}\}, \{x, y\})$ form a matching and so yv_1 is red and w.l.g we may assume that u_1v_i is red. Thus $R' = v_i u_1 Q u_2 v_{m-1} y v_1 x \subseteq G^r$ is a path on n vertices.

Subcase 2. n is odd:

By the Pigeonhole principle there exist two disjoint pairs of vertices (v_j, v_{j+1}) and (v_k, v_{k+1}) in K. It is easy to see that each of x and y is adjacent to a vertex in $B = \{v_j, v_{j+1}, v_k, v_{k+1}\}$ by red edge. If the mentioned neighbors of x and y are distinct we have a red P_n , otherwise let $v_j \in B$ be the only neighbor of x and y. Therefore, $\{v_j\} \cup V(R)$ form a red C_{n-1} . It is easy to see that there is an edge in G^r between $B \setminus \{v_i\}$ and $\{u_1, u_2\}$ and so a red P_n can be found.

Case 3. $|A \setminus V(Q)| \ge 3$.

Let $x, y, z \in A \setminus V(Q)$.

Claim 3.5 Let H be the subgraph of G^r induced by the edges in $E(A \setminus V(Q), K)$. There is a vertex $v \in H \cap K$ such that $d_H(v) \ge 2$.

Proof. There are at least $\lceil \frac{n}{2} \rceil + 1$ vertices in K. By the Pigeonhole principle, there are two disjoint pairs of vertices (v_i, v_{i+1}) and (v_j, v_{j+1}) in K. We prove the claim by considering the number of red edges from $\{v_i, v_{i+1}\}$ to $\{x, y, z\}$. If there are more than two such edges, then the claim is proved. Thus we may assume that there are at most two such edges. Since $P_3 \not\subseteq G^g$ and $P_m \not\subseteq G^b$, there is at least one such an edge. Therefore, it is sufficient to consider the following cases.

i) W.l.g, G^r contains two edges in $E(\{v_i, v_{i+1}\}, \{x, y, z\})$

ii) W.l.g, G^r contains exactly one edge in $E(\{v_i, v_{i+1}\}, \{x, y, z\})$.

If (i) occurs, we may assume that there are exactly one edge from each of v_i and v_{i+1} to $\{x, y, z\}$ in G^r , otherwise we have nothing to prove. Suppose there is no red edge in $E(\{v_i, v_{i+1}\}, \{z\})$. Since $P_3 \not\subseteq G^g$ and $P_m \not\subseteq G^b$, G^r contains at least one edge in $E(\{z, u_1, u_2\}, \{v_i, v_{i+1}\})$. Whereas Q is maximal, this edge has to be in $E(\{v_i, v_{i+1}\}, \{z\})$, a contradiction.

If (*ii*) occurs, we may assume that $xv_i \in E(G^r)$. Since G^r contains no edge in $E(\{v_i, v_{i+1}\}, \{y, z\})$, green and also blue edges in $E(\{v_i, v_{i+1}\}, \{y, z\})$ form a matching. Thus, clearly there are two red edges in $E(\{v_j, v_{j+1}\}, \{y, z\})$. The reminder of the proof is the same to the case (*i*).

Now, let Q' be a maximal path in the subgraph of G^r induced by the edges in $E(A \setminus V(Q), K)$ with endpoints w_1 and w_2 in $A \setminus V(Q)$ and $K' = K \setminus V(Q')$.

Case 1. $|A \setminus (V(Q) \cup V(Q'))| = 0.$

Using Lemma 3.2, we may assume that G^r contains a cycle $C = w_1 Q' w_2 v_{m-1} u_2 Q u_1 v_1 w_1$ on $2\lfloor \frac{n}{2} \rfloor$ vertices. If n is even, we are done. Otherwise, since $|K'| \ge \lceil \frac{n}{2} \rceil - 1$, there is one pair of vertices (v_i, v_{i+1}) in K'. Since G^r contains at least one edge in $E(\{u_1, u_2, w_1, w_2\}, \{v_i, v_{i+1}\})$, we may suppose that $v_i u_1 \in E(G^r)$ and so $R' = v_i u_1 Q u_2 v_{m-1} w_2 Q' w_1 v_1$ is a red P_n .

Case 2. $|A \setminus (V(Q) \cup V(Q'))| = 1.$

Let $A \setminus (V(Q) \cup V(Q')) = \{x\}$. Using Lemma 3.2 we may assume that $u_1v_1, u_2v_{m-1}, w_1v_{m-1}$ and w_2v_1 are red edges. Since $P_3 \notin G^g$, G^r contains at least one edge in $E(\{v_1, v_{m-1}\}, \{x\})$, say xv_1 . Thus $R = xv_1u_1Qu_2v_{m-1}w_1Q'w_2$ is a red $P_{2|\frac{n}{2}|-1}$. We consider the following subcases.

Subcase 1. n is even:

Since $|K'| \geq \lceil \frac{n}{2} \rceil$, there is at least one pair of vertices (v_i, v_{i+1}) in K'. If xv_i (or xv_{i+1}) is red, then $v_i x R w_2$ (or $v_{i+1} x R w_2$) form a red P_n . Otherwise, we may assume that $xv_i \in E(G^b)$ and $xv_{i+1} \in E(G^g)$. Therefore $xv_{m-1} \in E(G^r)$ and $R' = u_1 Q u_2 v_{m-1} x v_1 w_2 Q' w_1$ is a red P_{n-1} . Whereas G^r contains at least one edge of $E(\{v_i, v_{i+1}\}, \{u_1, w_1\})$, we can extend R' to a red P_n .

Subcase 2. n is odd:

Since $|K'| \ge \lceil \frac{n}{2} \rceil = \frac{n+1}{2}$, there are at least two disjoint pairs of vertices (v_j, v_{j+1}) and (v_k, v_{k+1}) in K'. Clearly, each of x and w_2 in G^r has at least one neighbor in $B = \{v_j, v_{j+1}, v_k, v_{k+1}\}$, say s_1 and s_2 respectively. If $s_1 \ne s_2$, $s_1 x R w_2 s_2$ is a red P_n , else $s_1 x R w_2 s_1$ is a red C_{n-1} . One can easily check that G^r contains at least one edge of $E(B \setminus \{s_1\}, \{u_1, u_2, w_1\})$, and so adding this edge to C_{n-1} yields a $P_n \subseteq G^r$.

Case 3. $|A \setminus (V(Q) \cup V(Q'))| \ge 2$.

Let $x, y \in A \setminus (V(Q) \cup V(Q'))$. We show that this case is impossible. Since $|K'| \ge \lfloor \frac{n}{2} \rfloor + 1$ and at most $\lfloor \frac{n}{2} \rfloor - 4$ vertices of $V(P) \setminus \{v_1, v_{m-1}\}$ are covered by Q and Q', by the Pigeonhole principle we have one of the following cases.

i) K' contains four disjoint pairs of vertices $(v_k, v_{k+1}), (v_i, v_{i+1}), (v_j, v_{j+1})$ and (v_l, v_{l+1}) .

ii) K' contains three consecutive vertices v_k, v_{k+1}, v_{k+2} .

If (i) occurs, since $P_3 \not\subseteq G^g$ and $P_m \not\subseteq G^b$ there is a red edge between x and any two pairs of vertices and so w.l.g we may assume that xv_{k+1} , xv_{l+1} , $xv_{i+1} \in E(G^r)$. Since Q and Q'are maximal, G^r contains no edge in $E(\{u_1, u_2, w_1, w_2\}, \{v_{k+1}, v_{l+1}, v_{i+1}\})$. If there is a red edge in $E(\{u_1, u_2\}, \{v_t, v_{t+1}\})$ (resp. in $E(\{w_1, w_2\}, \{v_t, v_{t+1}\})$) for some $t \in \{i, k, l\}$, then the maximality of Q and Q' implies that green and also blue edges in $E(\{w_1, w_2\}, \{v_t, v_{t+1}\})$ (resp. in $E(\{u_1, u_2\}, \{v_t, v_{t+1}\})$) form perfect matchings on four vertices. Now since there is at least one red edge in $E(\{u_1, u_2\}, \{v_t, v_{t+1}\})$ (resp. in $E(\{w_1, w_2\}, \{v_t, v_{t+1}\})$) for some $t \in \{i, k, l\}$, w.l.g we may assume that green and also blue edges in both $E(\{u_1, u_2\}, \{v_k, v_{k+1}\})$ and $E(\{w_1, w_2\}, \{v_l, v_{l+1}\})$ form matchings. Therefore $\{u_1v_{i+1}, u_2v_{i+1}, w_1v_{i+1}, w_2v_{i+1}\} \subseteq E(G^b)$ and consequently $\{u_1v_i, u_2v_i, w_1v_i, w_2v_i\} \subseteq E(G^r)$ which is a contradiction.

If (*ii*) occurs, at least five vertices of $\{u_1, u_2, w_1, w_2, x, y\}$ are adjacent to some vertices of $\{v_k, v_{k+1}, v_{k+2}\}$ in G^r , since $P_3 \notin G^g$ and $P_m \notin G^b$. Let *B* be the set of the vertices in $\{u_1, u_2, w_1, w_2, x, y\}$ that are adjacent to a vertex in $\{v_k, v_{k+1}, v_{k+2}\}$ by a red edge. Since $P_3 \notin G^g$ and $P_m \notin G^b$ then every vertex of *B* has exactly one red neighbor in $\{v_k, v_{k+1}, v_{k+2}\}$. Now, we have the following subcases.

Subcase 1. $\{x, y\} \subseteq B$:

By the maximality of Q and Q', we may suppose that the edges $xv_t, yv_t, w_1v_{t'}, w_2v_{t'}$ are red for some $t, t' \in \{k, k + 1, k + 2\}, t < t'$ and $u_1v_r \in E(G^r)$ where $r \neq t, t'$. If $t, t' \in \{k, k + 1\}$ (resp. $t, t' \in \{k + 1, k + 2\}$) then green and also blue edges in $E(\{x, y\}, \{v_r, v_{t'}\})$ (resp. $E(\{w_1, w_2\}, \{v_r, v_t\})$) form matchings and so there is a red edge in $E(\{u_1, u_2\}, \{v_t, v_{t'}\})$ (resp. $E(\{u_1, u_2\}, \{v_t, v_{t'}\})$), and this contradicts the maximality of Q and Q'. Finally if $t, t' \in \{k, k+2\}$ then green and also blue edges in $E(\{w_1, w_2\}, \{v_r, v_t\})$ form matchings and so there is a red edge in $E(\{x, y\}, \{v_r, v_{t'}\})$) and again this contradicts the maximality of Q and Q'.

Subcase 2. $\{x, y\} \cap B = \{x\}$:

By a similar argument as in subcase 1, we have a contradiction which completes the proof of the theorem. $\hfill\blacksquare$

Proof of Theorem 1.1. It is clear that $5 \le R(P_3, P_3, P_3) \le R(P_3, P_3, P_4)$. On the other hand by corollary 2.2, $R(P_3, P_3, P_4) \le 5$. Then $R(P_3, P_3, P_3) = R(P_3, P_3, P_4) = 5$. Combining Theorems 2.3, 2.4, 2.8 and 3.4 give a proof for Theorem 1.1.

Corollary 3.6 $R(P_3, nK_2, mK_2) = 2m + n - 1$ for every $m \ge n \ge 3$.

Proof. To see $2m+n-1 \leq R(P_3, nK_2, mK_2)$, let $H = K_{n-1} + \bar{K}_{2m-1}$ and \bar{H} be the complement of H with respect to K_{2m+n-2} . Clearly coloring H by red and \bar{H} by blue yields a 2-edge coloring of K_{2m+n-2} such that $nK_2 \notin G^r$ and $mK_2 \notin G^b$. This means that $2m+n-1 \leq R(P_3, nK_2, mK_2)$. Now we prove the upper bound. It is easy to see that $R(P_3, nK_2, mK_2) \leq R(P_3, P_{2n}, P_{2m})$ and by Theorem 1.1, $R(P_3, P_{2n}, P_{2m}) = 2m + n - 1$. This observation completes the proof.

References

- J. A. Bondy, U. S. R. Murty, Graph Theory With Applications, American Elsevier Publishing Co. INC, 1976.
- [2] E. J. Cockayne, P. J. Lorimer, The Ramsey number for stripes, J. Austral. Math. Soc. 19 (Series A) (1975), 252-256.
- [3] T. Dzido, M. Kubale, K. Piwakowski, On some Ramsey and Turán-type numbers for paths and cycles, *Electron. J. Combin.* #R55 13 (2006).
- [4] T. Dzido, Multicolor Ramsey numbers for paths and cycles, *Discuss. Math. Graph Theory* 25 (2005) 57-65.
- [5] R. J. Faudree, R. H. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory, Ser. B 19 (1975), 150-160.
- [6] A. Figaj, T. Luczak, The Ramsey number for a triple of long even cycles, J. Combin. Theory, Ser. B 97 (2007), 584-596.
- [7] L. Gerencsér, A. Gyárfás, On Ramsey-Type Problems, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967), 167-170.
- [8] A. Gyárfás, M. Ruszinkó, G. Sárközy, E. Szemerédi, Three-color Ramsey numbers for paths, Combinatorica 27 (1) (2007), 35-69.
- [9] A. Gyárfás, M. Ruszinkó, G. Sárközy, E. Szemerédi, Tripartite Ramsey numbers for paths, J. Graph Theory 55 (2007), 164-170.
- [10] G.R. Omidi, G. Raeisi, On multicolor Ramsey number of paths versus cycles, Electron. J. Combin. #P24 18 (2011).
- S. P. Radziszowski, Small Ramsey numbers, *Electron. J. Combin.* 1 (1994), Dynamic Surveys, DS1.12 (August 4, 2009).
- [12] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 2nd Ser. 30 (1930), 264-286.
- [13] R. H. Schelp, Some Ramsey-Turan type problems and related questions, manuscript.
- [14] R. H. Schelp, A minimum degree condition on a Ramsey graph which arrows a path, manuscript.
- [15] Z. Shao, X. Xu, X. Shi, L. Pan, Some three-color Ramsey numbers, $R(P_4, P_5, C_k)$ and $R(P_4, P_6, C_k)$, Europ. J. Combin. 30 (2009), 396-403.