On the balanced decomposition number

=ncmi

Systems Science and Information Studies
Faculty of Education, Art and Science
Yamagata University
1-4-12 Kojirakawa, Yamagata 990-8560, Japan

Abstract

A balanced coloring of a graph G means a triple $\left\{P_{1}, P_{2}, X\right\}$ of mutually disjoint subsets of the vertex-set $V(G)$ such that $V(G)=$ $P_{1} \uplus P_{2} \uplus X$ and $\left|P_{1}\right|=\left|P_{2}\right|$. A balanced decomposition associated with the balanced coloring $V(G)=P_{1} \uplus P_{2} \uplus X$ of G is defined as a partition of $V(G)=V_{1} \uplus \cdots \uplus V_{r}$ (for some r) such that, for every $i \in\{1, \cdots, r\}$, the subgraph $G\left[V_{i}\right]$ of G is connected and $\left|V_{i} \cap P_{1}\right|=\left|V_{i} \cap P_{2}\right|$. Then the balanced decomposition number of a graph G is defined as the minimum integer s such that, for every balanced coloring $V(G)=P_{1} \uplus P_{2} \uplus X$ of G, there exists a balanced decomposition $V(G)=V_{1} \uplus \cdots \uplus V_{r}$ whose every element $V_{i}(i=1, \cdots, r)$ has at most s vertices. S. Fujita and H. Liu [SIAM J. Discrete Math. 24, (2010), pp. 1597-1616] proved a nice theorem which states that the balanced decomposition number of a graph G is at most 3 if and only if G is $\left\lfloor\frac{\lfloor V(G)\rfloor}{2}\right\rfloor$-connected. Unfortunately, their proof is lengthy (about 10 pages) and complicated. Here we give an immediate proof of the theorem. This proof makes clear a relationship between balanced decomposition number and graph matching.

keywords: graph decomposition, coloring, connectivity, bipartite matching

[^0]
1 Introduction

Throughout this paper, we only consider finite undirected graphs with no multiple edges or loops. For a graph G, let $V(G)$ and $E(G)$ denote the vertex-set of G and the edge-set of G, respectively. For a subset $X \subseteq V(G)$, $G[X]$ denotes the subgraph of G induced by X, and $N_{G}(X)$ denotes the set $\{y \in V(G) \backslash X \mid \exists x \in X,\{x, y\} \in E(G)\}$. This set $N_{G}(X)$ is called the open neighborhood of X in G. A subset $Y \subseteq V(G)$ is called a vertex-cut of G if there is a partition $V(G) \backslash Y=X_{1} \uplus X_{2}$ such that $\left|X_{i}\right| \geqq 1$ and $N_{G[V(G) \backslash Y]}\left(X_{i}\right)=\emptyset(i=1,2)$. For other basic definitions in graph theory, please consult [2].

In 2008, S. Fujita and T. Nakamigawa [4] introduced a new graph invariant, namely the balanced decomposition number of a graph, which was motivated by the estimation of the number of steps for pebble motion on graphs. A balanced coloring of a graph G means a triple $\left\{P_{1}, P_{2}, X\right\}$ of mutually disjoint subsets of $V(G)$ such that $V(G)=P_{1} \uplus P_{2} \uplus X$ and $\left|P_{1}\right|=\left|P_{2}\right|$. Then a balanced decomposition of G associated with its balanced coloring $V(G)=P_{1} \uplus P_{2} \uplus X$ is defined as a partition of $V(G)=V_{1} \uplus \cdots \uplus V_{r}$ (for some r) such that, for every $i \in\{1, \cdots, r\}, G\left[V_{i}\right]$ is connected and $\left|V_{i} \cap P_{1}\right|=\left|V_{i} \cap P_{2}\right|$. Note that every disconnected graph has a balanced coloring which admits no balanced decompositions. Now the balanced decomposition number of a connected graph G is defined as the minimum integer s such that, for every balanced coloring $V(G)=P_{1} \uplus P_{2} \uplus X$ of G, there exists a balanced decomposition $V(G)=V_{1} \uplus \cdots \uplus V_{r}$ whose every element $V_{i}(i=1, \cdots, r)$ has at most s vertices.

The set of the starting and the target arrangements of mutually indistinguishable pebbles on a graph G can be modeled as a balanced coloring $V(G)=P_{1} \uplus P_{2} \uplus X$ of G. Then, as is pointed out in [4], the balanced decom-
position number of G gives us an upper-bound for the minimum number of necessary steps to the pebble motion problem, and, for several graph-classes, this upper bound is sharp.

In addition to the initial motivations and their applications in 4], this newcomer graph invariant turns out to have deep connections to some essential graph theoretical concepts. For example, the following conjecture in [4] indicates a relationship between this invariant and the vertex-connectivity of graphs:

Conjecture 1. (S. Fujita and T. Nakamigawa (2008)) The balanced decomposition number of G is at most $\left\lfloor\frac{|V(G)|}{2}\right\rfloor+1$ if G is 2 -connected.

Recently, G. J. Chang and N. Narayanan [1] announced a solution to this conjecture.

Then especially, S. Fujita and H. Liu [3] proved the affirmation of the "high"-connectivity counterpart of the above conjecture, as follows:

Theorem 1. (S. Fujita and H. Liu (2010)) Let G be a connected graph with at least 3 vertices. Then the balanced decomposition number of G is at most 3 if and only if G is $\left\lfloor\frac{|V(G)|}{2}\right\rfloor$-connected.

Thus, there may be a trade-off between the vertex-connectivity and the balanced decomposition number. This interesting relationship should be investigated for its own sake.

Unfortunately, the proof of Theorem 1 in [3] is lengthy (about 10 pages) and complicated.

In this note, we give a new proof of the theorem1. The advantages of our proof is that it is immediate and makes clear a relationship between balanced decomposition number and graph matching.

2 A quick proof of Theorem 1

We show our proof of the theorem 1 here.

Proof of Theorem 1. In order to prove the if part, let us define the following new bipartite graph H from a given balanced coloring $V(G)=P_{1} \uplus P_{2} \uplus X$ of a graph G :

1. The partite sets of H are $V_{1}(H):=P_{1} \uplus X_{1}$ and $V_{2}(H):=P_{2} \uplus X_{2}$, where each $X_{i}:=\{(x, i) \mid x \in X\}(i=1,2)$ is a copy of the set $X(\subseteq V(G))$.
2. The edge set $E(H)$ of H is defined as follows:

$$
\begin{aligned}
E(H):= & \left\{\left\{p_{1}, p_{2}\right\} \mid p_{1} \in P_{1}, p_{2} \in P_{2},\left\{p_{1}, p_{2}\right\} \in E(G)\right\} \\
& \cup\left\{\left\{p_{1},(x, 2)\right\} \mid p_{1} \in P_{1}, x \in X,\left\{p_{1}, x\right\} \in E(G)\right\} \\
& \cup\left\{\left\{(x, 1), p_{2}\right\} \mid x \in X, p_{2} \in P_{2},\left\{x, p_{2}\right\} \in E(G)\right\} \\
& \cup\{\{(x, 1),(x, 2)\} \mid x \in X\} .
\end{aligned}
$$

Then clearly, the balanced coloring $V(G)=P_{1} \uplus P_{2} \uplus X$ of G has a balanced decomposition $V(G)=V_{1} \uplus \cdots \uplus V_{r}$ whose every element $V_{i}(i=1, \ldots, r)$ consists of at most 3 vertices, if and only if the graph H has a perfect matching. Then we use here the famous "Hall's Marriage Theorem" 5], as follows.

Lemma 2. (P. Hall(1935)) Let G be a bipartite graph whose partite sets are $V_{1}(G)$ and $V_{2}(G)$. Suppose that $\left|V_{1}(G)\right|=\left|V_{2}(G)\right|$. Then G has a perfect matching if and only if every subset U of $V_{1}(G)$ satisfies $|U| \leqq\left|N_{G}(U)\right|$.

Now, suppose that H does not have any perfect matching. Then, from lemma2, $\exists A \subseteq P_{1}, \exists B \subseteq X_{1},\left|N_{H}(A \cup B)\right| \leqq|A|+|B|-1$. Let $C:=$ $P_{2} \backslash N_{H}(A \cup B)$ and $D:=X_{2} \backslash N_{H}(A \cup B)$. Then, by symmetry, $\left|N_{H}(C \cup D)\right| \leqq$ $|C|+|D|-1$ also holds. Furthermore, by the definition of $H,|B| \leqq\left|X_{2} \backslash D\right|$
and $|D| \leqq\left|X_{1} \backslash B\right|$ hold, and hence $0 \leqq|X|-|B|-|D| \leqq|A|+|C|-\left|P_{1}\right|-1=$ $|A|+|C|-\left|P_{2}\right|-1$ satisfies. Please see Figure 1 which shows this situation. The vertex-cut of $V(G)$ corresponding to the set $\left(P_{1} \backslash A\right) \cup\left(P_{2} \backslash C\right) \cup\left(X_{1} \backslash B\right)$

Figure 1: The bipartite graph H which has no perfect matching.
separates $G[C]$ from its remainder. By symmetry, the vertex-cut of $V(G)$ corresponding to the set $\left(P_{1} \backslash A\right) \cup\left(P_{2} \backslash C\right) \cup\left(X_{2} \backslash D\right)$ separates $G[A]$ from its remainder. Hence if G is $\left\lfloor\frac{|V(G)|}{2}\right\rfloor$-connected, $|V(G)|-1 \leqq 2\left(\left|P_{1}\right|-|A|+\right.$ $\left.\left|P_{2}\right|-|C|\right)+(|X|-|B|)+(|X|-|D|)=\left(\left|P_{1}\right|+\left|P_{2}\right|+|X|\right)-2((|A|+|C|-$ $\left.\left.\left|P_{1}\right|\right)-(|X|-|B|-|D|)\right)-(|X|-|B|-|D|) \leqq|V(G)|-2$, a contradiction.

The proof of the only if part is given by a construction of special balanced colorings, which is the same as the original one in [3]. We will transcribe the construction only for the convenience of readers.

Suppose that G is not $\left\lfloor\frac{\mid V(G)\rfloor}{2}\right\rfloor$-connected. And let Y denote a minimum vertex-cut of G. Note that $2|Y| \leqq|V(G)|-2$. Then $G[V(G) \backslash Y]$ is divided
into two graphs G_{1} and G_{2} such that $\left|V\left(G_{i}\right)\right| \geqq 1$ and $N_{G[V(G) \backslash Y]}\left(V\left(G_{i}\right)\right)=$ $\emptyset(i=1,2)$. Without loss of generality, we assume that $\left|V\left(G_{1}\right)\right| \leqq\left|V\left(G_{2}\right)\right|$. Let l denote the number $\min \left\{|Y|,\left|V\left(G_{1}\right)\right|-1\right\}$. Suppose an arbitrary balanced coloring $V(G)=P_{1} \uplus P_{2} \uplus X$ of G such that $\left|Y \cap P_{1}\right|=l$ and $\left|Y \cap P_{2}\right|=|Y|-l$ and $\left|V\left(G_{1}\right) \cap P_{2}\right|=l+1$ and $V\left(G_{1}\right) \cap P_{1}=\emptyset . \quad$ Then, it is easy to see that every balanced decomposition associated with such a balanced coloring has at least one component whose vertex-size is at least 4, that is, the balanced decomposition number of G is at least 4 .

References

[1] G. J. Chang and N. Narayanan, On a conjecture on the balanced decomposition number, preprint, 2011.
[2] R, Diestel, Graph Theory, Third Edition, Springer-Verlag, 2005.
[3] S. Fujita and H. Liu, The balanced decomposition number and vertex connectivity, SIAM Journal on Discrete Mathematics, 24 (2010), 15971616.
[4] S. Fujita and T. Nakamigawa, Balanced decomposition of vertex-colored graph, Discrete Applied Mathematics, 156 (2008), 3339-3344.
[5] P. Hall, On Representatives of Subsets, Journal of the London Mathematical Society, 10 (1935), 26-30.

[^0]: ${ }^{1}$ Email: sakuma@e.yamagata-u.ac.jp

