arXiv:1212.2308v3 [math.CO] 20 Feb 2014
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Abstract

A balanced coloring of a graph G means a triple {P;, P, X} of
mutually disjoint subsets of the vertex-set V(G) such that V(G) =
Py PwX and |Pi| = |P|. A balanced decomposition associated with
the balanced coloring V(G) = PiW P,W X of G is defined as a partition
of V(G) = V1. - -wV, (for some r) such that, for every i € {1,--- 7},
the subgraph G[V;] of G is connected and |V;NP;| = |V;NP,|. Then the
balanced decomposition number of a graph G is defined as the minimum
integer s such that, for every balanced coloring V(G) = PyW P, W X of
G, there exists a balanced decomposition V(G) = Vi W --- &V, whose
every element V;(i = 1,--- ,r) has at most s vertices. S. Fujita and
H. Liu [STAM J. Discrete Math. 24, (2010), pp. 1597-1616] proved
a nice theorem which states that the balanced decomposition num-
ber of a graph G is at most 3 if and only if G is L@J—conneeted.
Unfortunately, their proof is lengthy (about 10 pages) and compli-
cated. Here we give an immediate proof of the theorem. This proof
makes clear a relationship between balanced decomposition number

and graph matching.
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1 Introduction

Throughout this paper, we only consider finite undirected graphs with no
multiple edges or loops. For a graph G, let V(G) and E(G) denote the
vertex-set of G and the edge-set of GG, respectively. For a subset X C V(G),
G[X] denotes the subgraph of G induced by X, and Ng(X) denotes the set
{y € V(G)\ X3z € X, {z,y} € E(G)}. This set Ng(X) is called the
open neighborhood of X in G. A subset Y C V(G) is called a vertez-cut
of G if there is a partition V(G) \ Y = X; W X, such that |X;| = 1 and
New@ny)(Xi) = 0 (i = 1,2). For other basic definitions in graph theory,
please consult [2].

In 2008, S. Fujita and T. Nakamigawa [4] introduced a new graph invari-
ant, namely the balanced decomposition number of a graph, which was moti-
vated by the estimation of the number of steps for pebble motion on graphs.
A balanced coloring of a graph G means a triple {P;, P, X} of mutually
disjoint subsets of V(G) such that V(G) = PLwW P, W X and |Py| = | Pl
Then a balanced decomposition of G associated with its balanced coloring
V(G) = PLWPWX is defined as a partition of V/(G) = V1. - -V, (for some r)
such that, for every i € {1,--- ,r}, G[V;] is connected and |V;NP;| = |V;NPy|.
Note that every disconnected graph has a balanced coloring which admits no
balanced decompositions. Now the balanced decomposition number of a con-
nected graph G is defined as the minimum integer s such that, for every
balanced coloring V(G) = P, W P, W X of G, there exists a balanced decom-
position V(G) = V; W - WV, whose every element V;(i = 1,--- ) has at
most s vertices.

The set of the starting and the target arrangements of mutually indis-
tinguishable pebbles on a graph G can be modeled as a balanced coloring

V(G) = PLWP,W X of G. Then, as is pointed out in [4], the balanced decom-



position number of GG gives us an upper-bound for the minimum number of
necessary steps to the pebble motion problem, and, for several graph-classes,
this upper bound is sharp.

In addition to the initial motivations and their applications in [4], this
newcomer graph invariant turns out to have deep connections to some essen-
tial graph theoretical concepts. For example, the following conjecture in [4]
indicates a relationship between this invariant and the vertex-connectivity of

graphs:

Conjecture 1. (S. Fujita and T. Nakamigawa (2008)) The balanced de-

composition number of G is at most L&QG)‘J + 1 if G is 2-connected.

Recently, G. J. Chang and N. Narayanan [I] announced a solution to this
conjecture.
Then especially, S. Fujita and H. Liu [3] proved the affirmation of the

“high”-connectivity counterpart of the above conjecture, as follows:

Theorem 1. (S. Fujita and H. Liu (2010)) Let G be a connected graph
with at least 3 vertices. Then the balanced decomposition number of G is at

most 3 if and only if G is L@j -connected.

Thus, there may be a trade-off between the vertex-connectivity and the
balanced decomposition number. This interesting relationship should be in-
vestigated for its own sake.

Unfortunately, the proof of Theorem[lin [3] is lengthy (about 10 pages)
and complicated.

In this note, we give a new proof of the theorem[Il The advantages of our
proof is that it is immediate and makes clear a relationship between balanced

decomposition number and graph matching.



2 A quick proof of Theorem/[]

We show our proof of the theorem[I] here.

Proof of Theorem[Il In order to prove the if part, let us define the following
new bipartite graph H from a given balanced coloring V(G) = PLW P, W X
of a graph G:

1. The partite sets of H are V;(H) := PiWX; and V5(H) := P,wWX,, where
each X; :={(z,7) | z € X} (i = 1,2) is a copy of the set X(C V(G)).

2. The edge set F(H) of H is defined as follows:

E(H) := {{p1,p2} | p1 € Pr,p2 € P2, {p1,p2} € E(G)}
U{{p1, (z,2)} | p1 € P,z € X,{p1,2} € E(G)}
U {{(377 1),p2} | v € X,p2 € Py, {x,p2} € E(G)}

U{{(z,1),(z,2)} |z € X}.

Then clearly, the balanced coloring V(G) = P, W P, W X of G has a balanced
decomposition V(G) = Vi W- - - WV, whose every element V;(i =1,...,7) con-
sists of at most 3 vertices, if and only if the graph H has a perfect matching.

Then we use here the famous “Hall’s Marriage Theorem” [5], as follows.

Lemma 2. (P. Hall(1935)) Let G be a bipartite graph whose partite sets
are V1(G) and Vo(G). Suppose that |V1(G)| = |Va(G)|. Then G has a perfect
matching if and only if every subset U of V1(G) satisfies |U| < |Ng(U)|.

Now, suppose that H does not have any perfect matching. Then, from
lemmal, 3A C P,3B C X1,|Ng(AUB)| = |Al + |B] = 1. Let C :=
P, \Ny(AUB) and D := X3\ Ny (AUB). Then, by symmetry, [Ny (CUD)| <
|C| 4 |D| —1 also holds. Furthermore, by the definition of H, |B| < | X5\ D|



and |D| = | X\ B] hold, and hence 0 < | X|—|B|—|D| £ |A|+|C|—|P|—1=
|A| + |C| — | Py| — 1 satistfies. Please see Figure[ll which shows this situation.
The vertex-cut of V(G) corresponding to the set (P \ A)U (P \C)U(X;\ B)

Figure 1: The bipartite graph H which has no perfect matching.

separates G[C] from its remainder. By symmetry, the vertex-cut of V(G)
corresponding to the set (P \ A) U (P, \ C') U (X3 \ D) separates G[A] from
its remainder. Hence if G is |9 |-connected, [V(G)| —1 < 2(|P1| — |A| +
IBy] = [C1) + (1X] = [B]) + (1X| = D]) = (1] + |Py] + |X]) = 2((]1A] + €] -
\P1]) = (|X|—|B|—|D])) = (IX| = |B| = |D|) £ |[V(G)| — 2, a contradiction.

The proof of the only if part is given by a construction of special bal-
anced colorings, which is the same as the original one in [3]. We will tran-
scribe the construction only for the convenience of readers.

Suppose that G is not L&fﬂj—connected. And let Y denote a minimum

vertex-cut of G. Note that 2|Y| < |V(G)| — 2. Then G[V(G) \ Y] is divided

bt



into two graphs Gy and G such that |[V(G;)| 2 1 and New @y (V(Gi)) =
0 (1 = 1,2). Without loss of generality, we assume that |V (G;)| = |V(Ga)].
Let | denote the number min{|Y|, |V (G1)| — 1}. Suppose an arbitrary bal-
anced coloring V(G) = P W P, W X of G such that |Y N P| = [ and
YNP| =|Y|—1land |V(G)) NP =1+ 1and V(G;) N P, = (. Then,
it is easy to see that every balanced decomposition associated with such a
balanced coloring has at least one component whose vertex-size is at least 4,

that is, the balanced decomposition number of G is at least 4. |
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